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ABSTRACT In this study, four possible conformations of the His-37 and Trp-41 residues for the closed state of the influenza M2
ion channel were identified by a conformation scan based on a solid-state NMR restraint. In the four conformations, the His-37
residue can be of either the t-160 or t60 rotamer, whereas Trp-41 can be of either the t-105 or t90 rotamer. These conformations
were further analyzed by density functional theory calculations and molecular dynamics simulations, and the data indicate that the
His-37 residue most likely adopts the t60 rotamer and should be monoprotonated at the 8-nitrogen site, whereas Trp-41 adopts the
190 rotamer. This resultis consistent with published experimental data and points to a simple gating mechanism: in the closed state,
the His-37 and Trp-41 residues adopt the (t60, t90) conformation, which nearly occludes the pore, preventing nonproton ions from
passing through due to the steric and desolvation effects. Moreover, the His-37 tetrad interrupts the otherwise continuous
hydrogen-bonding network of the pore water by forcing the water molecules above and below it to adopt opposite orientations, thus
adding to the blockage of proton shuttling. The channel can be easily opened by rotating the His-37 x» angle from 60 to 0°. This open
structure allows pore water to penetrate the constrictive region and to form a continuous water wire for protons to shuttle through,

while being still narrow enough to exclude other ions.

INTRODUCTION

The M2 protein of the influenza A virus is a transmembrane
protein found in the virion membrane and infected host
cells. It can adjust the pH by transporting protons across the
membrane, which plays an important role during the virion-
uncoating (1-3) and hemagglutinin-maturation processes
(4,5). A large amount of evidence has confirmed that this
functionality can be mainly ascribed to a proton channel (the
M2 channel) formed by its transmembrane (TM) domain
(6-9), which can be specifically inhibited by the antiflu drug
amantadine (1-aminoadamantine hydrochloride) (10,11,7).
Because of the essential roles of the M2 channel in the viral
life cycle, studying its structure and illuminating its proton
conductance mechanisms are of great interest to antiflu drug
design, pharmacology, and medicine.

Considerable effort has been devoted to elucidating the M2
channel’s structure. To date, experimental data have shown
that the TM domain is a homotetramer, forming a parallel
a-helix bundle in a (pseudo-) C4 symmetrical fashion (12—
14). A 25-residue peptide (M2-TMP) with the following
amino acid sequence: NH,-Ser-Ser-Asp-Pro-Leu-Val-Val-
Ala-Ala-Ser-Ile-Ile-Gly-Ile-Leu-His-Leu-Ile-Leu-Trp-Ile-
Leu-Asp-Arg-Leu-COOH, corresponding to the residues
22-46 (encompassing the segment for the TM domain,
residues 25-43) in the M2 protein, has been shown to be able
to form amantadine-sensitive proton channels in lipid
bilayers with almost the same specificity and efficiency as
the whole M2 protein (10). A backbone structure of the M2-
TMP in dimyristoylphosphatidylcholine (DMPC) bilayer
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has been determined by both solid-state NMR and infrared
dichroism spectra experiments (15-18), revealing that the
M2-TMP peptide in lipid bilayer adopts a similar «-helix
structure with a tilt angle of 30-38° and a rotational angle
(po) of roughly —50°. This result is generally consistent with
other structural information on the M2 channel (13), though
the tilt angle was recently found to be slightly larger than that
(25° = 3) for the TM domain of the whole M2 protein (19,20).
Despite this discrepancy, M2-TMP seems an excellent model
system for studying the structure and mechanisms of the M2
channel.

Electrophysiological studies have shown that the M2
channel is highly proton selective, roughly 10°~fold more con-
ductive than other monovalent cations (21,22). It is activated
(open) when the pH at its N-terminal side (pH,,,; the pH at
the C-terminal side is herein denoted pH;,) goes lower than
6.0 (10,9). Mutagenesis studies have suggested that the 37th
residue (His-37) plays a key role in the conductance mech-
anism (7,9). Modeling studies have also provided insights
into the detailed structure (23-26). For the closed state, all
models agree that the four His-37 residues are oriented such
that their imidazole side chains are directed toward the
lumen, occluding the pore. For the open state, two conduc-
tance mechanisms, namely the shutter (27) and the shuttle
(13) mechanisms, have been proposed. The former suggests
that the function of the His-37 residues is like a camera
shutter: when two or more of them are protonated, they move
apart under the electrostatic repulsion, and the pore is open to
allow water molecules to form a continuous water wire for
protons to hop through via Grotthuss hopping. The shuttle
mechanism, on the other hand, suggests that His-37 is a part
of the proton relay system, and therefore opening the pore for
water molecules is not necessary. To date, both mechanisms
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have obtained some support from experimental and/or com-
putational studies, and more evidence is needed to clarify
this important issue about the M2 channel. (For more details
of the mechanism see, e.g., Wu and Voth (28) for a recent
review.)

A recent ultraviolet resonance Raman spectroscopy study
of the M2-TMP in lipid bilayer indicated that the 41st residue
(Trp-41) is involved in the gating via cation-7r interactions
with the protonated His-37 residues in the open state (29).
The involvement of Trp-41 was also proposed for the closed
state in a more recent mutagenesis study, revealing that re-
placement of Trp-41 with Ala, Cys, or Phe leads to a ‘‘leaky’’
channel that allows outward proton current (the wild type
only conducts protons inwardly) (30).

The most detailed structural information about His-37 and
Trp-41 has been obtained from a solid-state NMR study by
Cross and co-workers (31), revealing that the distance (d;s.,)
between the &-nitrogen atom of His-37 and the y-carbon
atom of Trp-41 should be =3.9 A for the closed state of the
M2-TMP channel in DMPC lipid bilayer. This restraint con-
siderably narrows down the conformational space accessible
by the two residues. A conformation with the His-37’s x1, x2,
and Trp-41’s x;, x> angles being —177°, +172°, —177°,
and —105°, respectively, has been proposed (Protein Data Bank
identification, INYJ) (31).

This study, inspired by the work of Cross and co-workers,
represents a reexamination of the structure for the closed
state via a thorough conformation scan. Four rotameric states
were identified, three of which cannot be further distin-
guished by the available structural information in contrast to
the previous conclusion (31). These candidates were exam-
ined here for their structural stabilities via density functional
theory calculations and classical molecular dynamics (MD)
simulations. Our results suggest a different structure for the
closed state than that proposed by Cross and co-workers. The
new structure is consistent with published experimental data
and implies a revised gating mechanism.

METHODS
Conformation nomenclature

In this article, the nomenclature from the penultimate rotamer library (PRL)
(32) is adopted to describe side-chain conformations. For example, the nota-
tion “‘t-160"’ indicates that the y; dihedral angle of an amino acid residue’s
side chain is roughly 180° (trans conformation), and its y, is roughly and
favorably —160°. A notation, for example (t-160, t-105), is used to describe
the conformation of both His-37 and Trp-41, meaning that the His-37 and Trp-
41 residues are in the t-160 and t-105 conformations, respectively. Wherever
the monoprotonation state of the histidine residue is concerned, a notation, for
example (t-160, t-105, ¢), is used to indicate that the His-37 residue in the
(t-160, t-105) conformation is monoprotonated at its e-nitrogen.

Conformation scan

The conformation of the side chain of His or Trp can be defined completely
with two dihedral angles: y; and y,. With the presumption that the M2
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channel is C4 symmetrical, the conformation of the side chains of the His-37
and Trp-41 residues is thus determined by four dihedral angles, namely the
histidine’s x, x» and the tryptophan’s y, x». Discretization of each angle by
10° gives 36 X 36 X 36 X 36 combinations, which were filtered through the
following constraints:

1. There is no severe steric clash between any atom pair within the His-37
and Trp-41 residues and the backbone. The scan results reported in this
article were obtained with the backbone structure from Cross and co-
workers (31); no essential deviation in the scan results was found when
small (within the experimental error bars) modifications in the p, and tilt
angles were applied to that backbone structure. The atom radii defined
by Richardson (33) were used to determine atomic contacts, with atom
radius overlaps >0.35 A considered severe steric clashes.

2. The ds., should be =3.9 A to be consistent with the NMR restraint (31).

3. The conformations of the His and Trp should be ones of the PRL
rotamers. This constraint accounts for the preference of the dihedral
angles.

4. There is no unavoidable steric clash between the His-37-Trp-41 adduct
and the other side chains. To this end, the surviving combinations were
energy minimized with the His-37 and Trp-41 residues kept frozen, and
then the atomic contacts were rechecked in the same way as specified in
constraint 1.

Geometry optimizations

Geometry optimizations for the adduct formed by one histidine and one
tryptophan were performed at the B3LYP level of theory with 6-31G** basis
set using Gaussian 98 software. The initial structure of the adduct was
obtained by cutting out one His-37 and one Trp-41 residue for which the d;_,,
was <3.9 A for a given conformation from the aforementioned M2-TMP
structure (31). The C- and N-ends of each residue were capped by the —NH,
and —COCHj; groups, respectively, to mimic the peptide bonds. The atoms
in the backbone were kept frozen in the optimizations. The optimization
results were reproduced with slightly different starting structures for each
conformation.

MD simulations

Our preliminary MD simulations indicated that with the tetrameric bundle
of the M2-TMP channel structure is quite unstable with a tilt angle of 38° as
proposed by Cross and co-workers. (31). Two of the four helices were ob-
served to bend so much that the pore at the N-end became essentially sealed.
This behavior contradicts the experimental observation that the backbones are
almost ideal a-helices (15), and the instability can be considerably improved
by reducing the tilt angle to 30° and increasing the p, angle by roughly 10°
(both changes are still within the range of the experimental uncertainties).
This backbone structure was used throughout the MD simulations. The re-
maining small distortion in the backbone was considered an artifact due to
the force fields that were essentially parameterized for polar environments.
Stiffer a-helices with stronger hydrogen bonds within the backbone have
been observed for membrane peptides (34). To be consistent with the exper-
imental observation that the a-helices have little distortion (15), harmonic
position restraints with a small force constant (1.2 kcal/mol/A?) were applied
on the a-carbon atoms in our production simulations.

The channel structure with the desired conformation of the His-37 and
Trp-41 residues were placed into a well-equilibrated and fully solvated DMPC
bilayer. Additional waters were added into the channel lumen to solvate the
pore, resulting in a system containing a complete M2-TMP channel, 82
DMPC lipid molecules (41 for each monolayer), 1 Na™ counter ion, and
2888 water molecules. To avoid artifacts due to a single force field, the MD
simulations were independently performed with the Amber99 (parm99 data
set (35) for the protein and the sodium plus an Amber-compatible force field
for the DMPC lipid (36)) and OPLS-AA force fields (37). The simulations
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were run using DL_POLY version 2.13 (38) (with the Amber99 force field)
and GROMACS version 3.1.4 (39) (with the OPLS-AA force field).

The MD simulation conditions were as follows: the system was placed
into a periodic box and coupled with a Nosé-Hoover thermostat (40,41) and
a Hoover barostat (42) (or a Berenderson barostat (43) in GROMACS) so
that the temperature and pressure of the system could be maintained at 310 K
and 1 atm with the relaxation times of 0.2 and 1 ps, respectively. Long-range
Coulomb interactions were treated using the particle mesh Ewald method
with a real space spherical cutoff (radius = 10.0 A) and a computing
precision of 107> (44). The short-range van der Waals interactions were
described by the Lennard-Jones potential with a spherical cutoff (radius =
10.0 A), and its long-range dispersion effects were compensated for both the
energy and the pressure (45). All bond lengths were constrained with
the SHAKE method (46) (or the LINCS method (47) in GROMACS). The
equations of motion were integrated using the leapfrog algorithm with a time
step of 2 fs.

The system was equilibrated for 400 ps with strong position restraints
on both the backbone atoms and the heavy atoms of the side chains of the
His-37 and Trp-41 residues, allowing the lipid, water, the ion, and the other
protein side chains to fully relax. Then the equilibrated structure was used
for 5-ns production runs without restraints on the side chains. To avoid
artifacts due to a single starting structure, the production simulations were
repeated with two different starting structures that were the snapshots at 300
and 400 ps of the equilibration trajectories.

RESULTS
Possible conformations for the closed state

Based on the solid-state NMR restraint and Cross and co-
workers’ backbone structure (31), a conformation scan (see
Methods) was performed in this study. This approach rep-
resents a more thorough search for possible conformations
than that by the previous study (31), where only the y, angle
of His-37 was scanned, and the y; angles of both His-37 and
Trp-41 were fixed (presumably) to the ideal value (—177°),
which leads to the exclusion of other possible rotameric
states (see below). The scan reveals four possible con-
formations such that the His-37 residues can be in either the
t-160 or t60 state, and Trp-41 in either the t-105 or t90 state
(see Table 1; representative structures illustrated in Fig. 1). It
was confirmed that the His-37 and Trp-41 residues must be
from two neighboring helices to satisfy the NMR restraint
(31). The pore radius profiles (supplementary Fig. S1) show
that in all conformations the His-37 and Trp-41 residues
form the only constrictive region where the overall pore
radius quickly drops from >3 to <1.8 A, implying that
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a considerable desolvation effect may be associated with
ions passing the constrictive region. The minimal pore radius
in (t-160, t90), in contrast to the other states, is slightly larger
than the van der Waals radius of water (~1.4 A), implying
that it may not be a closed state for protons.

A further constraint on the possible rotameric states can be
imposed by examining the motionally averaged dipolar cou-
pling between '°Nj-His-37 and '>C,-Trp-41. Both (t-160,
t-105) and (t-160, t90) satisfy the last constraint (note that
(t-160, t90) was previously excluded in reference (31) by
mistakenly assuming that the t90 state would result in severe
steric clashes), whereas (t60, t-105) can be safely excluded
because its dipolar coupling is too small. The dipolar cou-
pling of (t60, t90) is, however, elusive due to its high sen-
sitivity to the uncertainties in the structural parameters of the
backbone, e.g., the tilt and pg angles and the interhelical dis-
tance (see supplementary Tables S1 and S2 for detailed com-
parison results). For this reason, these three candidates were
further examined by their structural stabilities as described
below; the (t60, t-105) state was also included (as a negative
control) without prior distinction from the others.

Optimized geometries and energetics of the
His-37-Trp-41 adduct in different conformations

To distinguish the internal conformational stability of the
His-37-Trp-41 adduct in different conformations, the struc-
tures were optimized at the B3LYP level with the 6-13G**
basis set for the four conformations and for both mono-
protonation states (MPS) of the histidine. The results are
summarized in supplementary Table S3; (t-160, t90, &), (t60,
t90, ¢), and (t-160, t90, 8) experienced alterations in their
rotameric state after the optimization—an indicator of insta-
bility of the original conformation, and therefore they were
excluded from further consideration. The MPS can have
a remarkable effect on the energetics of the adduct, and so
the ones with lower energies were chosen for further con-
sideration, giving the following states: (t-160, t-103, ¢), (t60,
t-105, 8), and (t60, t90, 8). Finally, the consistency with the
NMR restraint (ds., = 3.9 A) is considered. The ds_,’s of
the optimized structures for the remaining states are 4.6, 4.3,
and 4.0 A, respectively; (t60, t90, &) is obviously in best
agreement with the NMR result. Fig. 2 shows its optimized

TABLE 1 Possible conformations of His-37 and Trp-41
Dihedral angles (°)
His-37 Trp-41 Rotamers

X1 X2 X1 X2 His-37 Trp-41
160-170 190-200 150-160 280-290 t-160 t-105
160-170 160-190 170-210 090-100 t-160 90
150-160 50-70 150-170 270-290 t60 t-105
150-160 050-110 160-210 090-100 60 90

The dihedral angles were obtained via conformation scan with a discretization of each angle by 10°. These conformations do not have steric clashes and are
consistent with both the NMR restraint (ds.y = 3.9 A) (31) and the penultimate rotamer library (32). The PRL rotamer nomenclature is used here.
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FIGURE 1 The representative structures
of the four possible conformations for the
closed state. The coils represent the back-
bones. The left image of each pair is the
side view with the side chains of the His-37
and Trp-41 residues depicted in the stick
model. The right one of each pair is the top

(160, t90)

geometry, where the 8-hydrogen of His-37 is seen to be
directed toward the hexamer ring of the indole moiety of the
tryptophan, suggesting a stabilizing hydrogen-7 interaction
that is not observed for the other states. The prediction of the
6-MPS of His-37 is in agreement with the NMR result where
a "H-""N; dipolar coupling has been detected (31).

Equilibrium structures of the His-37 and Trp-41
residues in MD simulations

To further evaluate the stability of the different conforma-
tions with 6-MPS in the complete channel environment, MD
simulations were performed. To avoid artifacts from a single
force field, the simulations were conducted with two differ-
ent force fields—Amber99 and OPLS-AA, as stated earlier.
Very similar results were obtained, and hereby only those
from the Amber99 force field are presented unless stated
otherwise.

Fig. 3 illustrates the representative equilibrium structures
of the His-37 and Trp-41 residues and nearby water mole-
cules. The conformation of His-37 have dramatically changed
in the (t-160, t-105) and (t-160, t90) simulations: the struc-

FIGURE 2 The structure of the (160, t90) conformation that was opti-
mized at the B3LYP level of theory with the 6-31G** basis set. The imid-
azole and indole moieties are depicted in the space-filling model with the
carbon, nitrogen, and hydrogen atoms represented as large gray, large black,
and small black balls, respectively. Note that the §-hydrogen of the His-37
residue is pointed toward the hexamer ring of the indole moiety of the Trp-41
residue, implying a hydrogen-7 interaction between the two side chains.

view (from the N-end to the C-end) with the
side chains depicted in the space-filling
model. The residues in red color are His-37,
while those in green color are Trp-41. Note
that the pore in the (t-160, t90) conforma-
tion is obviously larger than those in the
other conformations.

ture of the side chains of His-37 protrude into the channel
lumen, occluding the pore, which is in striking contrast to
the initial structures where the side chains stick to the chan-
nel wall (Fig. 1). Comparatively, the conformation of His-37
appears more stable in the (t60, t-105) and (t60, t90) simu-
lations with much smaller deviation of the side-chain con-
formation from the starting structure. The side chains of
Trp-41 in the t-105 state essentially changed their confor-
mation by rotating themselves into the lumen so to minimize
the free energy penalty of solvating the nonpolar bulky side
chains by water, whereas in the t90 state, they are much less
exposed to water and thus avoid such a free energy penalty,
showing a consistent structure with the t90 state.

It should be noted that the pore water chain is completely
interrupted in all structures. There are only a few water mol-
ecules in the constrictive region. Interestingly enough, the
water molecules below and above the His-37 tetrad exhibit
opposite orientations in (t60, t90), which has important impli-
cations for the gating mechanism for protons as will be dis-
cussed later.

Structural stability of the His-37 and Trp-41
residues in MD simulations

The dihedral angles of the side chains are shown in Fig. 4 as
a function of time. In the (t60, t90) simulation, all His-37’s
x1 angles stay in the frans conformation (160°) for most of
the time; whereas in the (t-160, t-105) simulation only one
His-37 residue keeps the trans conformation, and the others
are instead stabilized at 90°. The His-37’s x, angles are also
much more stable in the t60 state than in the t-160 state. With
the Amber99 force field, two of the four His-37 x, angles in
the simulation of the (t60, t90) conformation were observed
to be unstable with a considerable change from 60° (or 120°)
to 280° at roughly 2.6 ns, which is, however, not surprising
given that the potential energy barrier for a dihedral angle
is normally of the order of roughly 5 kcal/mol (48) and that
the corresponding potential in the Amber99 force field is
actually zero. This fluctuation was not observed with the
OPLS-AA force field where the highest stability of the t60
conformation still holds.
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Trp-41’s x, and x, angles are extremely stable in the t90
conformation, with almost no deviation from the original
value throughout the whole length of simulation, whereas they
fluctuate considerably in the t-105 conformation.

Root mean square deviations (RMSD) were calculated for
the His-37 and Trp-41 residues with respect to their starting
structure (Fig. 5). The (160, t90) simulation has the smallest

His37 X, (deg)

0 500 1000 1500 2000 25-00 3000 3500 4000 4500 5000
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RMSDs (1.02 = 0.21 A and 0.77 = 0.16 A for His-37 and
Trp-41, respectively), followed by (t60, t-105). The (t-160,
t-105) simulation has the largest RMSDs (1.44 = 0.10 A and
2.06 = 0.18 A for His-37 and Trp-41, respectively). These
data indicate that (t60, t90) is the most stable conformation
among the four candidates, consistent with the above dihedral
angle analysis.
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FIGURE 4 The dihedral angles of the side chains of the His-37 y; (a) and x, (b) and Trp-41 x; (¢) and y, (d) residues as functions of time. Different colors
correspond to different monomers. The black dashed lines indicate the favorable value of the corresponding rotamer in the penultimate rotamer library.
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FIGURE 5 The root mean square deviation (RMSD) of the side chains of
the His-37 (gray) and Trp-41 (black) residues for different conformations.

Reproduction of the solid-state NMR restraint was exam-
ined by calculating ds_, as a function of time (Fig. 6). The
average ds_,’s (over t%me and over the tetramer) of all con-
formations are >3.9 A. The smallest average djs., is that of
the (t60, t-105) simulation, followed by (t60, t90). The worst
agreement with the NMR restraint is again the (t-160, t-105)
simulation. For the (t60, t90) and (t60, t-105) simulations,
there are two or three His-37-Trp-41 pairs whose d;s_,’s are
~3.9 A throughout the whole length of simulations. A sig-
nificant deviation was observed for two of the four His-37—
Trp-41 pairs in the (t60, t90) simulation, which is due to the
X2 angle change as shown in Fig. 4 b and was again not
observed with the OPLS-AA force field.

Asp-44—-Arg-45 salt bridges and their stability

It was found from our simulations that the Asp-44 and Arg-
45 residues could form interhelical salt bridges. To our

4F (1160, 1-105) average = 6.0740.57
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| A ]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time (ps)

FIGURE 6 The distance (ds.,) between the d-nitrogen of His-37 and the
y-carbon of Trp-41 as functions of time for different conformations. The
value in each panel is the average ds.,, over the time and monomers.
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knowledge, this has not been noticed in earlier simulation
studies, probably due to the fact that the po angle was improp-
erly defined whereas our backbone model is based on the
experimental data (16,18). Incorrect p, angles often result in
intrahelical salt bridges or no bridges at all according to our
previous simulations. Fig. 7 a shows a representative struc-
ture of the salt bridges taken from the (t60, t90) simulation.
In this structure, both residues adopt extended conformations
so that the —COO™ group of Asp-44 approach and form a salt
bridge with the —NHC (NH);r group of Arg-45 from a neigh-
boring helix, implying that they may play important roles in
stabilizing the overall tetrameric architecture.

The stability of the salt bridges could be greatly influenced
by conformations of the nearby residues (e.g., Trp-41 and
His-37), which arises because the bulky side chain of the
tryptophan residue is close to, and therefore may interfere,
with the salt bridges due to the steric effects. For example, it
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FIGURE 7 (a) The final snapshot of the (t60, t90) simulation, demon-
strating well-formed salt bridges between the Asp-44 and Arg-45 residues,
where the coils represent the backbone structure and the elements C, N, O,
and H are, respectively, in light blue, dark blue, red, and gray colors. (b) The
minimal distance between the —COO~ group of Asp-44 and the —NHC(NH),
group of Arg-45 as functions of time for different conformations. The different
colors in b correspond to different monomers.
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was observed from the simulation trajectories that with the
t-105 conformation the side chains of Trp-41 can stay in
between the Asp-44 and Arg-45 residues, breaking the salt
bridges. The strength of salt bridges can be quantitatively
represented by the minimal distance between the two charged
groups. In Fig. 7 b, the minimal distance between the
—COO™ and —NHC(NH), groups are plotted as a function
of time for each conformation. This quantity in the (t60, t90)
simulation is very small (3—4 A) for all Asp-44—Arg-45 pairs,
whereas only one or two pairs in the other simulations could
keep the minimal distance under 4 A, which suggests that the
salt bridges in the (t60, t90) conformation are stronger than
those in the other conformations, thus lending additional sup-
port to the proposition that (t60, t90) is the most stable state.

A possible open structure corresponding
to the (160, t90) closed structure

The correct closed structure should also allow for an open
structure to be accessible through reasonable conformational
changes of the residues. As mentioned above, it was noticed
that the (t-160, t90) conformation seems like an open struc-
ture, which can be formed from the (t60, t90) conformation
simply via rotating the His-37’s y, angle by roughly 100-
140°. A very similar open structure could be obtained from
the (t-160, t90) conformation by flipping the imidazolium
moiety by 180° around the bond connecting the B-carbon
and y-carbon atoms of the histidine. Changing to the latter
conformation (denoted (t0, t90) in this article; note t0 is not
a standard rotamer in the PRL) from (160, t90), the His-37’s
X2 angle only needs to rotate by roughly 40-80°.

To compare the stabilities of the two conformations, geom-
etry optimizations were performed for the His "-Trp adduct
using the same density functional theory methodology as
mentioned earlier. The energies of the relaxed structures
indicate that the (t0, t90) conformation is roughly 5 kcal/mol
more stable than the (t-160, t90) conformation. Therefore,
(t0, t90) seems more likely to be the open structure for
(160, t90).

An MD simulation was performed to examine if the
(t0, t90) conformation actually corresponds to an open struc-
ture. In the simulation, the heavy atoms of the His-37 and
Trp-41 residues were restrained to their ideal positions, and all
His-37 residues were protonated. The simulation lasted for 950
ps. A representative equilibrium structure of the pore water
molecules is shown in Fig. 8, demonstrating a continuous
water column throughout the channel. The pore radius of the
narrowest region is still very small—only one water mol-
ecule can be accommodated, suggesting that transport of
nonproton ions may be blocked due to a large desolvation
penalty. The selectivity of this channel can therefore be ratio-
nalized with this open structure.

Fig. 8 also reveals an ordered pore water structure that can
impede protons from hopping into the channel, which is
mainly due to the fact that all of the His-37 residues are pos-
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FIGURE 8 The final snapshot of the MD simulation for the (t0, t90) confor-
mation where the four His-37 residues are all protonated, demonstrating
the structure of the pore water (highlighted angled sticks in the picture).
The His-37 (blue) and Trp-41 (green) residues are depicted as van der Waals
surfaces. For the sake of clarity, one pair of His-37 and Trp-41 is not shown.
Note that the pore water is able to penetrate the constrictive region lined by
the His-37 and Trp-41 residues and that the ordered pore water structure may
be restrictive for protons to hop into the channel.

itively charged in this simulation. The exact protonation state
of the four His-37 residues for the open channel is still un-
known. The implication of the extremely ordered pore water
structure on this point will be discussed in the next section.

DISCUSSION

Our conformation scan has revealed four possible confor-
mations for the closed state structure of the M2 channel, i.e.,
the (t-160, t-105), (t-160, t90), (t60, t-105), and (60, t90)
rotameric states. In all of these conformations, a narrow pore
region is formed by the His-37 and Trp-41 residues. The
simulated dipolar coupling calculation indicates that the (t60,
t-105) state can be safely excluded, whereas the other states
cannot be distinguished (see supplementary Tables S1 and
S2 for details). This result contradicts the previous con-
clusion that (t-160, t-105) was the only state consistent with
the NMR distance restraint and the '*N5-His-37-'">C,,-Trp-
41 and "H-""Ny-His-37 dipolar couplings (31), which, we
believe, was mistakenly drawn from an incomplete search
through the conformational space. More specifically, it
seems that in the previous study, only one value (177°) of the
trans state for the y; angles of both His-37 and Trp-41 was
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taken into account; in addition, the effects of the uncertain-
ties in the backbone structure on the dipolar coupling are sig-
nificant.

In this study, the further distinction of the conformations
was based on their respective structural stability. Our data
consistently indicate that (t60, t90) is the most stable state of
the four candidates. In addition, the interhelical salt bridges
formed by the Asp-44 and Arg-45 residues are found to be
most stable with the (60, t90) state. Therefore, (t60, t90)
seems likely to be the most probable structure for the closed
state over the other candidates.

In the (160, t90) state, possible hydrogen-7 interactions
between His-37 and Trp-41 have been noticed (Fig. 2). This
interaction may stabilize the (t60, t90) conformation and lead
to cooperative motion of the two residues. Mutating out either
residue would thus destabilize or even destruct the wild-type
conformation of the other residue, which in turn results in
a more open and/or weakly selective channel. This analysis
is in good agreement with mutagenesis results. In particular,
it has been shown that replacing His-37 with Ala, Glu, or Gly
results in a large increase in proton conductance and loss of
pH-induced gating behavior (7,9), and with Glu it can also
weaken the selectivity (9). Furthermore, the structure of Trp-
41 can hide the side chains of the His-37 residues from the
C-end bulk water, assuring that the histidine residues are not
accessible by ions coming from the C-end. Replacement of
Trp-41 with Phe, Cys, Tyr, or Ala enables the channel to be
more easily activated by pH;, (30). One phenomenon
observed in experiments for the Trp-41Tyr mutant is that,
unlike the other mutants, it cannot be activated by low pHj,
(30). This can be well explained with the (60, t90) closed
state structure: Tyr-41 can provide a hydroxyl group to form
a hydrogen bond with the &-hydrogen of His-37. The hy-
drogen bond resembles the hydrogen-r interaction, and thus
a similar structure of the His-37 and Tyr-41 residues to (t60,
t90) can be adopted such that the side chains of the His-37
residues can be well covered by Tyr-41 and thus avoid being
exposed to the water at the C-end.

The (t60, t90) closed-state structure demonstrates that the
constrictive region of the channel is formed by both His-37
and Trp-41. This region is narrow enough to prevent non-
proton ions from passing through the channel due to steric
and desolvation effects. It is noted that the pore water mol-
ecules below and above the His-37 tetrad adopt opposite
orientations (Fig. 3), forming hydrogen bonds with the
e-nitrogens of the His-37 residues rather than with the water
molecule at the other side of the tetrad. This structure sug-
gests that protons cannot go through the constrictive region
without protonating at least one of the His-37 residues first.
The four e-nitrogens of the His-37 residues are unprotonated
and are pointed toward the center of the channel. The dis-
tance between two g-nitrogen atoms in the diagonal corner is
roughly 4.8-6 A, which suggests that the His-37 tetrad in the
(t60, t90) conformation could be a good chelating site for
a Cu”" jon, providing a reasonable explanation to the ob-
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servation that the M2 channel can be inhibited by Cu®" ions
(49).

The orientation of the imidazole ring of the His-37 residues
in the (t60, t90) conformation is worth special attention: The
e-nitrogen atoms are pointed toward the center and are the
only acceptors of the protons coming from the N-end, whereas
the 6-nitrogen atoms are pointed to the indole ring of Trp-41
and cannot form hydrogen bonds with pore water. This char-
acteristic of the (t60, t90) structure does not support the
shuttle mechanism that requires both nitrogen atoms of the
imidazole side chain of His-37 to be able to form hydrogen
bonds with the pore water so that the imidazole moiety can
accept a proton at one side and release another proton at the
other side. To change to the required orientation from the
t60 state, relatively large conformational change involving
both y; and y, angles of His-37 has to occur. Moreover, the
tautomerization of the imidazole moiety of His-37, as being
used in the shuttle mechanism to explain how the next proton
would be transported, is difficult to justify from the atomic
details. A variant of the shuttle mechanism could be a load-
flip-deliver cycle: for instance, the imidazole moiety accepts
a proton from one side, and then the imidazolium ring is
flipped so that the proton can be released to the other side,
after which the imidazole ring is flipped back to the original
orientation and ready for ‘‘shuttling’’ the next proton. Though
reasonable, this picture requires much more complicated
conformational behavior of the His-37 residues. Due to these
issues, the shuttle mechanism is less favored than the much
simpler shutter mechanism by the (t60, t90) conformation.

A correct closed structure should allow a reasonable open
structure to be found to which the closed one can change
without an obviously large energy penalty. This is a favorable
characteristic of the (t60, t90) conformation. Our results
suggest that such an open structure can be obtained via a
minimal conformational change—simply rotating each His-
37’s x» angle roughly from 60 to 0°. This open structure
allows the pore water molecules to penetrate through the
constrictive region while still narrow enough to preserve the
proton selectivity (Fig. 8). Furthermore, this structure does
suggest that there can be cation-7r interaction between pro-
tonated His-37 and Trp-41, which is consistent with the ultra-
violet resonance Raman spectroscopy data (29). In contrast, a
reasonable open structure that can preserve the proton selectivity
and allow the cation-7r interaction seems very difficult for the
(t-160, t-105) conformation unless the Trp-41 residues change
to the t90 state.

An extremely ordered pore water structure is noted when
all four His-37 residues are charged (Fig. 8). Obviously, the
ordered structure should be mainly ascribed to the elec-
trostatic field due to the charged His-37 residues rather than
to their conformation. This orientation of the pore water does
not favor proton transport into the channel, suggesting that
the open state may not be fully protonated, which is in
agreement with previous MD simulation results (24), which
observed that a four-protonated or three-protonated M2 chan-
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nel resulted in a distorted backbone. Moreover, a more recent
MD simulation study has shown that the M2 channel with
only one protonated His-37 residue can indeed open for
proton transport (25).

CONCLUSIONS

The conformation scan in this work has revealed four pos-
sible conformations of the His-37 and Trp-41 residues,
namely the (t-160, t90), (t-160, t-105), (t60, t-105), and (t60,
t90) rotameric states, for the closed state of the M2 channel.
The latter three states cannot be further distinguished by the
available structural information, but our results indicate that
the (t60, t90) state is the most stable one that is also consis-
tent with nearly all experimental data so far. Furthermore, an
open structure consistent with the shutter mechanism can be
found for (60, t90).

The (t60, t90) conformation and the above analyses sug-
gest a modified gating mechanism that can be proposed as
follows: the channel is in the (t60, t90) conformation in its
closed state, and when one (or two) of the four His-37 res-
idues is protonated, the conformation of His-37 and Trp-41 is
changed, e.g., to the (t0, t90) conformation, which opens the
pore for water molecules to penetrate the constrictive region,
thus allowing protons to be transported by hopping through
the resulting water wire via the Grotthuss mechanism. Future
experimental and computational studies will be needed to
provide additional insight into the ion conductance proper-
ties of the M2 channel.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting
BJ Online at http://www .biophysj.org.
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