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ABSTRACT We describe a model of the mechanical properties of the cell plasma membrane using a finite-temperature par-
ticle-dynamics simulation of the whole cell, in which a two-dimensional network of virtual particles embedded in a three-
dimensional closed surface represents the membrane. The particles interact via harmonic potential and dihedral angle potential
and are subject to a constant area constraint. The evolution of the positions of the particles yields the equilibrium state of the
membrane and allows determination of the membrane thermal fluctuations and the elastic moduli. We show that time-averaging
of the cell-model configurations allows quantitative comparison with experimental data on membrane fluctuations and elastic
moduli of the red blood cell.

INTRODUCTION

The mechanical properties of plasma membranes have been

shown in recent years to play an important part in physiology

and cell biology. An archetypal system for study is the red

blood cell (RBC) membrane, the elastic character of which

determines many of the flow properties of blood and enables

the red blood cells to transverse the capillaries. The RBC

membrane consists of a mixed lipid-protein bilayer, an

attached intracellular network called the membrane cyto-

skeleton, and an extracellular glycocalyx (a layer of glyco-

proteins covering the outer surface of the cell), thought to

have little or no affect on the mechanical properties. The

main component of the cytoskeletal network is the protein

spectrin. Spectrin cross-links with very short actin filaments,

resulting in junctional nodes that are approximately five- or

sixfold coordinated in spectrin. Although the red cell is unique,

in that it contains no cytoplasmic cytoskeleton or organelles,

the complexes of the proteins that make up its associated

membrane skeletal network and give it its elastic properties

also occur in the plasma membranes of other cell types.

The RBC at rest assumes a biconcave discoid shape with

a diameter of ;8 mm and it is capable of passing through

capillaries with less than half the diameter. To allow the RBC

to deform inside a capillary, the resistance to deformation of the

RBC membrane must not be too large. The resistance, on the

other hand, must not be too small, otherwise the cell’s integrity

would not be preserved during normal flow in the circulatory

system. Bending deformability of the RBC membrane is also

shown by its mechanical out-of-plane and in-plane fluctuations

with amplitudes in the range of 10–400 nm (1–3).

A long-standing problem in the study of RBC structure is

that the observation of thermal fluctuations of nanometer-

size seems to be consistent only with a vanishingly small shear

modulus (2), whereas static deformation experiments such as

micropipette aspiration (4) report a large shear modulus.

Strey et al. (2) studied the flickering of RBC to derive the

mean-square amplitudes of the first three azimuthal eigen-

modes and they obtained a shear modulus,m, 100-times smaller

than the static value measured by micropipette aspiration,

m ¼ 6 3 10�6 N/m (4), with a fluorescent multiparticle

tracking system m ¼ 1–10 3 10�6 N/m (3) or by optical

tweezers, m ¼ 2.5 3 10�6 N/m (5) and m ¼ 11.1–17.7 3

10�6 N/m (6). They concluded that the shear resistance

for small deformations vanishes and therefore it does not

contribute to thermal shape fluctuations.

We have chosen to analyze the problem considering both

shear and bending moduli in the attempt to reconcile a finite

value of the shear modulus with the presence of the nano-

meter-scale fluctuations observed experimentally. The es-

sential assumptions of the model are that the membrane

preserves a constant global area under thermal fluctuations

and its mechanical behavior can be described by two material

parameters, an out-of-plane bending modulus, B, which de-

scribes the resistance to bending, and an in-plane shear mod-

ulus, m, which describes the resistance to shape changes of

the membrane surface. It is usually assumed that the bending

modulus, B, is dominated by the microscopic properties of

the lipid bilayer. Equivalently the shear modulus,m, is thought

to be dominated by the microscopic properties of the cyto-

skeleton, although protein-protein interactions or domains of

lipids in solid-state form can also contribute. Throughout the

article, we shall use ‘‘membrane’’ to refer to the composite

structure formed by the lipid bilayer, its integral proteins, and

associated membrane skeleton.

MODEL DETAILS

Our model envisages the RBC membrane as a two-dimen-

sional network consisting of N particles arranged in a regular
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triangulation. We emphasize that these are virtual particles

that represent discrete areas of the membrane. For small

deformation, a two-dimensional network with sixfold sym-

metry can be described by two elastic moduli—the area

compression modulus KA and the shear modulus, m (7). In

our model we keep the global surface area constant, so we

can assume that KA ; N. The two-dimensional network is

embedded in a three-dimensional closed surface where it is

allowed to fluctuate in all directions (see Fig. 1 a). Equations
of motion of the virtual particles are solved in a molecular-

dynamics fashion (8,9) to derive the time-evolution of the

system and calculate the time-dependent properties.

Each particle is tethered to its six nearest-neighbors (see

Fig. 1 b) by linear springs, giving a potential energy of

V
spring

ij ¼ 1

2
k½ðri � rjÞ � r0�2; (1)

where k is the spring constant, which is the same for all the

particles, ri is the position of particle i, and r0 is the equi-

librium distance between particles. The value of r0 fixes the
minimum wavelength of the membrane fluctuations. We

chose r0 to be close to the average length of the spectrin

filaments (;100 nm). This is the minimum length for which

it is reasonable to expect the particles to be homogeneous. If

a smaller length-scale is chosen (for example, that of mem-

brane thickness) it would be necessary to consider hetero-

geneous particles to account for inhomogeneity at the

molecular scale.

A dihedral angle potential is applied between adjacent

triangles. This potential is used in molecular dynamics sim-

ulations to describe interactions arising from torsional forces

in molecules (8,9). The expression of the dihedral angle po-

tential we used is (10)

V
dihedral

ijml ¼ D½11 cosðuijmlÞ�; (2)

where fijml is the dihedral angle between the triangles Dijm

and Djml (see Fig. 1 b). This potential has a minimum when

two adjacent triangles are co-planar. Intuitively it can be seen

as a mechanism for the particles to resist out-of-plane bend-

ing. The dihedral angle potential is commonly used as a

procedure for curvature discretization in a triangulation (11)

and it can be shown that the continuum limit of Eq. 2 is the

Kantor and Nelson’s bending energy for solid membranes

(12). Aronovitz and Lubensky (13) stressed that this bending

energy is in general different from the bending energy which

Helfrich used to describe a fluid membrane (14). However,

for the small displacements that occur in our system, the

bending energies for solid and fluid membranes are identical.

Furthermore, Gompper and Kroll (15) reported a more gen-

eral expression for the bending energy that includes the ef-

fect of changes in area of triangular elements. They showed

that when equilateral triangles are used, the area dependency

cancels out. Since we use equilateral triangles as the equi-

librium configuration, the effect of dynamic area changes

will be negligible on average because of our constant area

constraint.

We stress here that the bending and shear moduli are not

independent (16), so in general it is not possible to change k
(or D) and independently change the value of m (or B).
Details are given below about the derivation of m and B that

we adopted in our work.

In general the free energy of a system is given by two

contributions, F¼ E–TS. In the case of a spring-network, for
example, the energetic contribution E is given by the sum of

Vspring
ij over all the particles. The entropic contribution TS

depends in general on the number of configurations available

to the system at a particular state. Both contributions in-

fluence the system elasticity. A clear sign that the elasticity is

entropy-dominated is that the shear modulus increases when

the temperature increases. It is not clear yet which of the two

contributions is the dominant one in determining the RBC

membrane elasticity (7). In the present model the elasticity of

the system is dominated by the energetic contribution. This

should not restrict our analysis since we study membrane

fluctuations at a given temperature and with a given shear

modulus. Furthermore, the constraint is readily overcome

since removing bonds between neighboring particles within

our model allows simulation of a system where the entropy

can be the dominant contribution to the elasticity (17).

As in any standard molecular dynamics simulation, we

define the temperature, T, of the system as

FIGURE 1 Particle-network repre-

senting the whole-cell model is reported

in a. In b we illustrated a portion of the

network and the dihedral angle fijml

between the adjacent triangles Dijm and

Djml.
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where N is the number of the particles; kB is the Boltzmann

constant (1.3805 3 10�23 J/K); vxi ; v
y
i ; v

z
i

� �
are the velocity

components of particle i; m is the mass of the particle; and

Æ. . .æ represents the time-average. The temperature is kept

constant to the desired value using a Nosé-Hoover ther-

mostat (8,9). The value used for the temperature is T¼ 309 K

(;37 C).

Since the lipid bilayer is relatively incompressible, we

require that the global surface area of the membrane, defined

as the sum of the areas of all triangles by which the surface

is tessellated, remains constant. To do this we apply La-

grange’s method of undetermined multipliers. We chose the

global area, Atot, to be the value given by triangles whose

sides are all equal to the equilibrium length, r0:

Atot ¼ Ntriangles

ffiffiffi
3

p

4
r
2

0 ¼ ð2N � 4Þ
ffiffiffi
3

p

4
r
2

0 : (4)

In Eq. 4 we used the relationship Ntriangles¼ 2N� 4, which is

generally true for a triangulation of the surface of simply

connected bodies. In this work we are interested in calcu-

lating the amplitude of the fluctuations to derive bulk mem-

brane properties like the shear and bending moduli. A full

description of the dynamics of the red blood cell fluctuations

should include the induced flow inside and outside the cell,

so it should take into account the viscoelastic properties of

the membrane and the equations governing the flow of the

cytoplasm and the cell environment. Brochard and Lennon

(18) pointed out that the induced flow of the cytoplasm is the

most significant among these contributions. Tuvia et al. (19)

studied the influence of extracellular fluid macroviscosity

(EFM) on RBC membrane fluctuations. They stressed that

thermally driven membrane fluctuations cannot be damped

by an increase of EFM. They stated that the partial atten-

uation of the fluctuations they observed with elevation of

EFM can be associated with metabolic forces, which are, to

some extent, responsible for the fluctuations; however, they

did not specify the nature of the metabolic forces.

The system used in the simulations consists of N particles

(vertices) embedded in a closed surface. For the initial

particle-configuration we followed Discher et al. (20), who

used two parallel sheets in the form of a hexagon. Each

particle on the perimeter of one sheet is connected to two

particles on the perimeter of the other sheet. There are six

‘‘corners’’ on each hexagonal sheet, each of which has only

fivefold coordination. The minimum number of fivefold de-

fects required by topology for the triangulation of a spheri-

cal surface is 12 and so this configuration represents one

possible triangulation of a spherical surface. All particles

move in space but the connectivity is fixed, in that each

particle has a fixed set of neighbors: 12 particles have five

neighbors and all the others have six neighbors.

The molecular dynamics simulations were performed

using the DL_POLY simulation package version 2.12 de-

veloped in Daresbury Laboratory, Cheshire, UK (10). The

equations of motion of the particles were integrated using a

Verlet leapfrog integration algorithm in conjunction with

a Nosé-Hoover thermostat. We developed a subroutine that

applies Lagrange’s method of undetermined multipliers to

keep the total surface area constant.

Because of computational time-demand considerations we

used N ¼ 5582 for number of particles. In most simulations

we used an equilibrium length r0 ¼ 100 nm. The area per

particle, Aparticle, is given by

Aparticle ¼ Atot=N;

ffiffiffi
3

p

2
r
2

0 ; 8660 nm
2
; (5)

where the total area is Atot ;5 3 107 nm2. This value is

approximately half the surface area of a real red blood cell

(;108 nm2).

We used two values of the spring constant, k1 ¼ 53 10�6

N/m and k2 ¼ 25 3 10�6 N/m, and two values of the

dihedral-angle potential constant, D1 ¼ 6 3 10�20 J and

D2 ¼ 60 3 10�20 J. We chose these values because the

derived shear and bending moduli are in the range of the

experimental measurements. We observed that using higher

values of the k and D gives an increasingly rigid behavior of

the model-network. On the other hand, lower values of k and
D generate crumpled configurations, which were not worth

studying with the present model that lacks a repulsive in-

teraction between particles and a constraint on the cell

volume. Therefore, we performed four main simulations com-

bining the two chosen values of k and D. As we report in the

following section, during the simulations we were able to

keep track of the thermal fluctuations and to estimate the

shear and bending moduli of the membrane.

DEVELOPMENT OF THE MODEL

We observed a common feature of the evolution of the shape

of the cell models. After an equilibration phase (;107 time

steps), the cell model attains an oblate shape for any of the

values of k and D used (see Fig. 2). The oblate shape persists

up to the maximum simulation time we reached (4 3 107

time steps). This is also evident in the behavior of the cor-

relation function (reported in Fig. 3). The correlation

function is defined as f ðrÞ ¼ ẑ � ÆÆnðr; r1DrÞær1Dr
r æt, where

ẑ is the z-coordinate unit vector, Æ. . .æt is the time-average,

and Ænðr; r1DrÞær1Dr
r is the instantaneous average of the

unit vectors perpendicular to the triangles that fall within r
and r 1 Dr from the cap-center. In any flat region of the

membrane, f(r) has a value close to unity.

It is not the purpose of our current work to investigate the

overall shape of the red blood cell. Further work is needed to

assess how the shape is affected by the presence of the 12

defects at the rim of the cell. Moreover a mechanism to keep

the total volume constant needs to be introduced in the model

to study the overall shape of the cell. However, we observed

Thermal Fluctuations of Membranes 2475
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that once the system has reached equilibrium, the volume

fluctuations account for ,1% of the total volume. This

feature corresponds well to the cell behavior observed in the

experiments, where the volume remains essentially constant.

This allows us to infer that our findings are not significantly

affected by volume fluctuations.

The center of the cell cap is almost flat and parallel to the

x-y plane. We exploited this feature and decided to monitor

a small portion of the membrane in this region to study the

thermal fluctuations. We consider 19 particles located at the

center of the cell cap (the lighter patch in Fig. 4), which

correspond to an area of ;1.6 3 105 nm2. We define the

average of the z-displacement of the 19 particles as the out-

of-plane instantaneous fluctuations of the patch. We also

keep track of the positions of single particles, which cor-

respond to fluctuations of the smallest area accessible to our

model (;9740 nm2). More specifically, we monitor the par-

ticle at the center of the cap and four other particles at or-

thogonal positions around the cell (see dashed arrows in

Fig. 4) and monitor the displacements of the particles in

the membrane plane (in-plane fluctuations). Our resolution is

comparable with the resolution used in flicker measure-

ments. Tuvia et al. (19), for example, measured membrane

fluctuations over a cell patch with an area of 2.5 3 105 nm2

using point-dark-field microscopy.

To derive an estimate of the shear modulus we consider

the 19-particle patch and we use the average of the x- and
y-displacements of the 19 particles as the in-plane fluctuations

of the patch. The estimate of the shear modulus is obtained

using the expression reported by Lee and Disher (3),

FIGURE 2 Overall shape of the cell: top and side views

for four different cases. Case LS, k ¼ 253 10�6 N/m, B ¼
6 3 10�20 J. Case LL, k ¼ 25 3 10�6 N/m, B ¼ 60 3

10�20 J. Case SS, k ¼ 5 3 10�6 N/m, B ¼ 6 3 10�20 J.

Case SL, k ¼ 5 3 10�6 N/m, B ¼ 60 3 10�20 J.
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m � kBT
lnð

ffiffiffiffiffiffiffi
Atot

p
=r0Þ

2p
Æu2

x 1 u
2

yæ
�1
; (7)

where ux and uy are the in-plane fluctuations of the patch

in the x- and y-directions, respectively. In Eq. 7,
ffiffiffiffiffiffiffi
Atot

p
repre-

sents the maximum wavelength of the fluctuations, and r0
represents the minimum wavelength. To test the validity of

Eq. 7 we performed preliminary simulations of a triangular

network in two-dimensional space with periodic boundary

conditions. We used Eq. 7 to calculate the shear modulus and

compared the results with an analytical expression reported

by Discher et al. (21) for the shear modulus of a two-dimen-

sional regular triangulation at zero temperature,

mT¼0 ¼
ffiffiffi
3

p

4
k ð4� 3r

1=2Þ; (8)

where r is the density of the patch relative to the stress-free

state. We performed the two-dimensional simulations at two

different temperatures, T ¼ 309 K (reduced temperature,

T� ¼ kBT=kr
2
0 � 10�2), and T ¼ 10 K (T* � 5 3 10�4),

respectively. In both cases Eq. 7 agrees within the variance

with the analytical values predicted by Eq. 8. This also sug-

gests that the temperature does not significantly affect the

shear modulus for the range of temperatures we used.

To derive the bending modulus we used the formulae

reported by Helfrich and Servuss (14),

Æu2

zæ ¼
kBT

4ps
ln 11

sAtot

Bp
2

� �
; (9)

DApatch

Apatch

� �
¼ kBT

8pB
ln

p
2
=r20 1s=B

p
2
=Atot 1s=B

� �
; (10)

which are derived in the harmonic approximation and under

the condition of small fluctuations, which is satisfied when

tan q � 1, where q is the tilt angle of the membrane with

respect to the x-y plane. In particular Eq. 9 is valid for

Atot � r20. In Eqs. 9 and 10, s is the lateral tension, Æu2zæ is the
out-of-plane mean-squared displacement of the membrane

cap, and DApatch is the difference between the true area of the

19-particle patch and the projected area of the patch on the

x-y plane.
From each simulation we can easily calculate Æu2zæ and

ÆDApatch/Apatchæ, so we can derive the relative values of B and

s using Eqs. 9 and 10. In the case in which the lateral tension

is zero, Eqs. 9 and 10 simplify to

Æu2

zæs¼0 ¼
kBT

4pB

Atot

p
2 ; (11)

DApatch

Apatch

� �
s¼0

� kBT

4pB
ln

A
1=2

tot

r0

 !
: (12)

However, we found that these equations gave different and

inconsistent values of B in our models and so we used Eqs. 9

and 10 and allowed the existence of lateral tension in all

further analyses. This gave a much smaller value of B. It is
noteworthy that Strey et al. (2) reported that the lateral

tension had no influence on their RBC membrane fluctuation

measurements and used Eq. 11 to derive the bending mod-

ulus from their measurements obtaining a bending modulus

B ¼ 20–70 3 10�20 J. However, this value is larger than

most of those reported by other authors: B ¼ 21 3 10�20 J

(22); B ¼ 18 3 10�20 J (23); B ¼ 1.3–3.0 3 10�20 J (18);

and B ¼ 2.3 3 10�20 J (24).

RESULTS AND DISCUSSION

In Table 1 we report the main results of our simulations. The

first two rows show the values of k and D we used as inputs

in four different simulations, the results of which are

FIGURE 3 Correlation function, f ðrÞ ¼ ẑ � ÆÆnðr; r1DrÞær1Dr
r æt versus

r/r0. Case LS (s), k ¼ 25 3 10�6 N/m, B ¼ 6 3 10�20 J; Case LL (h),

k¼ 253 10�6 N/m, B ¼ 60 3 10�20 J; Case SS (¤), k ¼ 5 3 10�6 N/m,

B ¼ 6 3 10�20 J; and Case SL (:), k ¼ 5 3 10�6 N/m, B ¼ 60 3 10�20 J.

FIGURE 4 View of the cell from the top. The lighter spot represents the

19-particle patch. The four dashed-arrows indicate the positions where the

rim fluctuations are taken. The solid arrows indicate the directions along

which the amplitudes, U, are taken.
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displayed in the columns LS, LL, SS, and SL. The following
six rows report the root-mean-squared (RMS) amplitude, U,
of the fluctuations:

Cap out-of-plane fluctuations, UCap
z .

Cap in-plane fluctuations, UCap
x and UCap

y in the x- and
y-directions, respectively.

Rim out-of-plane fluctuations, URim
r .

Rim in-plane fluctuations, URim
c and URim

C along the

smaller and bigger curvatures, respectively.

The results for the shear modulus obtained using Eq. 7, and

for the bending modulus and lateral tension obtained using

Eqs. 9 and 10 are also reported in the table. We observe that

the RMS amplitudes of the fluctuations for one-particle case

and for the 19-particle patch case are very similar. This

means that the particles in the patch are all moving together.

Both the 19-particle patch and one-particle RMS amplitudes

are within the variance of the results reported in Table 1.

The first notable result in Table 1 is that the fluctuations, in

particular the out-of-plane fluctuations, are in the nanometer

scale (;20–60 nm) as observed in experimental measure-

ments (1,2). This is significant because these fluctuations are

observed in conjunction with values of the shear and bending

moduli that are of the same order of magnitude of those

measured experimentally. Case LS in Table 1 is particularly

interesting: UCap
z is 55 nm; the calculated bending modulus,

B ¼ 3.7 3 10�20 J, agrees well with experimental mea-

surements, 1.3–3 3 10�20 J (18), and 2.3 3 10�20 J (24), as

does the calculated shear modulus, m ¼ 6.7 3 10�6 N/m,

with the relative experimental values, 6 3 10�6 N/m (4),

1–10 3 10�6 N/m (3), and 2.5 3 10�6 N/m (5). Moreover,

UCap
x and UCap

y ; calculated with our simulation (14 and 15

nm), are quite close to the experimental values, 17–19 nm

(3). Fig. 5 shows our results for m and B together with an

indication of the experimental measurements obtained with

different techniques.

For each of the four cases, UCap
x and UCap

y coincide within

the variance. This means that the flat portion of the mem-

branes behaves like an isotropic two-dimensional network.

Furthermore, in cases LL, SS, and SL, URim
c and URim

C co-

incide within the variance, showing an isotropic behavior. In

case LS, on the other hand, where the differences between the
two principal curvatures are more pronounced (see Fig. 2),

URim
c and URim

C do not coincide. The fluctuations in that

region are not isotropic. Lee and Discher (3) studied the thermal

fluctuation of the red blood cell by measuring the displace-

ment of a fluorescent nanoparticle attached to the membrane.

They found isotropic fluctuations when the particle was

centrally attached in a spherical contour of the cell, but an-

isotropic fluctuations when the particle was located in a

highly strained region where the principal curvatures were

different. We observed the same phenomenon with the out-

of-plane fluctuations. The different values of UCap
z and URim

r

reported in Table 1 are also due to the different curvature in

the two regions.

In Fig. 6 we show the histogram of the out-of-plane

fluctuation amplitude for the case LS (k ¼ 25 3 10�6 N/m,

D ¼ 6 3 10�20 J) and for the case LL (k ¼ 25 3 10�6 N/m,

D ¼ 6 3 10�19 J). Thermal fluctuations follow a Gaussian

distribution. We observe in both cases shown in Fig. 6 that

the amplitude can be approximated by a Gaussian distribu-

tion and the amplitude for the case LL is narrower due to the

higher value of the dihedral constant D. This is expected

since a higher value of D gives a higher value of the bending

modulus, which induces a lower RMS amplitude in the out-

of-plane fluctuations. Equivalently, the RMS amplitude of

the in-plane fluctuations is lowered by higher values of the

shear modulus, which are obtained using a higher value of

the spring constant k.
In Table 1, simulations using the same dihedral constant

give similar bending moduli, suggesting that the bending

resistance is not affected significantly by the value of the

spring constant k for the range of values we used. The results
for the shear modulus show a more interesting behavior. The

shear modulus for cases LL and SL obtained with Eq. 7

agrees well with the prediction of Eq. 8. The shear moduli

obtained with Eq. 7 for cases LS and SS, instead, are 40% and

30% lower than the prediction of Eq. 8. We believe that this

deserves more detailed analysis, which we report in the

Appendix.

The lateral tension reported in Table 1 ranges between

0.5 and 2.63 10�6 N/m. These values are three or four orders-

of-magnitude smaller than the isotropic lysis tension, 3–12 3

10�3 N/m (25). We stress that the lateral tension proscribes

the use of Eqs. 11 and 12, which are valid only for vanishingly

small values of the lateral tension.

CONCLUSIONS

The model we implemented showed itself able to describe

the elastic properties of the red blood cell membrane related

TABLE 1 Main results from four simulations

LS LL SS SL

k (10�6 N/m) 25 25 5 5

D (10�20 J) 6 60 6 60

UCap
z (nm) 55 (9) 22 (6) 55 (8) 35 (6)

UCap
x (nm) 14 (2) 12 (2) 28 (4) 23 (3)

UCap
y (nm) 15 (2) 14 (2) 30 (3) 29 (5)

URim
r (nm) 23 (1) 16 (2) 42 (7) 25 (7)

URim
c (nm) 16 (1) 16 (1) 30 (2) 28 (3)

URim
C (nm) 24 (3) 16 (2) 36 (5) 28 (3)

m (10�6 N/m) 6.7 (0.7) 11 (1) 1.5 (0.1) 2.1 (0.3)

B (10�20 J) 3.7 (0.5) 31 (2) 3.1 (0.3) 23 (3)

s (10�6 N/m) 0.5 (0.2) 2.6 (1) 0.5 (0.1) 0.8 (0.2)

First two rows: values of k and D used. Third row: out-of-plane RMS

fluctuations of the cap. Fourth and fifth rows: cap in-plane RMS fluctuations

(x- and y-directions, respectively). Sixth row: rim out-of-plane RMS

fluctuations. Seventh and eighth rows: rim in-plane RMS fluctuations (along

smaller and bigger curvatures, respectively). Ninth row: shear modulus

obtained using Eq. 7. Tenth and eleventh rows: bending modulus and lateral

tension obtained using Eqs. 9 and 10. The variance is reported in parentheses.

2478 Marcelli et al.

Biophysical Journal 89(4) 2473–2480



to thermal fluctuations. We demonstrated that it is possible to

observe nanometer-scale fluctuations in conjunction with

values of the shear and bending moduli similar to those

obtained experimentally. In particular, given the microscopic

parameters k and D and the assumption of constant area, the

model reproduces the experimental values of the fluctuation

amplitudes, the shear and bending moduli. We must em-

phasize that the constraint of constant area is an important

feature of the model, since without it the model would show,

in general, different dynamics. Moreover, it is essential to

use Eqs. 9 and Eq. 10 properly. We found that the ap-

proximate expressions in Eqs. 11 and 12 give incorrect and

inconsistent values of the bending modulus, due to the pres-

ence of a non-vanishingly small lateral tension. This high-

lights the importance of measuring ÆDApatch/Apatchæ (or

related quantities) when studying membrane fluctuations

experimentally and of properly choosing the minimumwave-

length appearing in Eqs. 9 and 10.

APPENDIX

In this section we analyze the behavior of the shear modulus reported

in Table 1. The shear modulus for cases LL and SL agrees well with the

prediction of Eq. 8, which is valid for T ¼ 0 K. This suggests that the

shear modulus is not affected by the temperature or by the out-of-plane

fluctuations of the system. In cases LS and SS, instead, the shear modulus

obtained with Eq. 7 is 40%, and 30%, respectively, lower than the predic-

tion of Eq. 8. We believe that this softening of the shear modulus can be

explained using rescaling arguments reported by Aronovitz and Lubensky

(13,26). These authors used renormalization group techniques to study the

crumpling transition and the fluctuations around a flat phase of flexible

D-dimensional crystalline membranes embedded in d-dimensional space.

FIGURE 5 Values of the shear modulus m and bending modulus B calculated as described in the text compared with experimental values measured by

different methods as reported in the literature. The calculated values, LS, SS, LL, and SL (�), refer to the combinations of k and D used in the calculations (see

caption of Fig. 2). The shaded horizontal boxes enclosed by solid lines represent the range of experimental values reported by different authors (mean6 SD or

range of values) for the shear modulus m (10�6 N/m), whereas the vertical boxes enclosed by dotted lines represent the range of values reported for the bending

modulus B (10�20 J). The method of measurement is also indicated. Strey et al. (2) report a value for both m and B estimated by flicker measurements; the value

of B is indicated by the width of the box, but their value of mwas,0.16 (10�6 N/m), and therefore the height of the box is not a true indication of their reported

modulus.
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They reported that for fluctuations of wavelength, l, greater than the non-

linear length, jnl, the shear modulus is renormalized and behaves as m(l) ¼
(1/l)h, the nonlinear length being defined as jnl ¼ ðB̃=m̃Þ1=2, for D ¼ 2,

where B̃ and m̃ are the bare elastic moduli divided by the temperature. Using

T ¼ 309 K and the values of D and mT¼0 (Eq. 8) to derive jnl, the following

values are obtained: jLLnl � 30r0, j
SL
nl � 60r0, j

LS
nl � 3r0, and j

SS
nl � 6r0. For

the shear modulus to be renormalized and then to undergo softening, the

critical exponent h must be positive and the fluctuation wavelengths of the

system must be larger than jnl. In cases LL and SL the nonlinear length is

comparable with the size of the system, and for this reason the renormaliza-

tion of the shear modulus is less significant. In cases LS and SS, instead, jnl is

much smaller than the size of the system and the conditions for the softening

of the shear modulus are met.

To corroborate further the conclusion that the softening of the shear modulus

can be ascribed to renormalization, we performed simulations on a hexagonal

sheet (open surface) with the same characteristics as the LS case. We used

hexagonal sheets with three different diameters, namely, 40r0, 60r0, and

100r0. We obtained the following values for the shear modulus: m(40r0) ¼
9.9(0.1), m(60r0) ¼ 9.0(0.3), and m(100r0) ¼ 8.2(0.3) 10�6 N/m, which

show that the shear modulus diminishes as the size of the system increases.

These are preliminary results and more systematic work should be done, but

they seem to show an interesting behavior. Considering that our system is

realistic in terms of size and range of elastic moduli, we can infer that the

renormalization group may play an important role in the understanding of

red-blood cell mechanical properties.
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(k ¼ 25 3 10�6 N/m, D ¼ 6 3 10�19 J).
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