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ABSTRACT The magnetic field dependence of the proton-spin-lattice relaxation rate in rotationally immobilized proteins shows
that the one-dimensional character of the protein primary structure causes a dramatic increase in the population of low-frequency
motions from 10 kHz to 20MHz. As a consequence, the probability and rate at which functionally critical conformational states are
thermally sampled in a protein are dramatically increased as well, when compared with a three-dimensional lattice structure.
Studies of protein dynamics often focus on time periods far shorter than those associated with catalytic function, but we show here
that the magnetic field dependence of the proton nuclear spin-lattice relaxation rate in rotationally immobilized proteins reports
unambiguously the structural fluctuations in the frequency range from 10 kHz to 20 MHz. This relaxation rate decreases with
increasing Larmor frequency according to a power law that derives from the distribution of dynamical states, the localization of the
structural disturbances, and the spatial distribution of hydrogen atoms in the structure. The robust theoretical foundation for the
spin-relaxation process, loosely characterized as a direct spin-phonon coupling, shows that the disturbances propagate in a space
of reduced dimensionality, essentially along the stiff connections of the polypeptide chain. The reduced dimensionality traps the
disturbance and changes the efficiency for energy redistribution in the protein and the processes that drive nuclear spin relaxation.
We also show that the Larmor frequency dependence of the protein-proton-spin-lattice relaxation rate constant is related to the
frequency dependence of force constants and mean-square displacement commonly observed or calculated for proteins. We
believe that these approaches give additional physical insight into the character of the extremely low-frequency protein dynamics.

INTRODUCTION

Structural fluctuations in proteins and other macromolecules

provide access to functional conformations that result in con-

certed and critical changes directly coupled to chemical re-

activity, transport, or functional control (1–5). The complex

dynamical spectrum of a folded polymeric structure may span

many decades in frequency or time (6,7), although most

recent discussions of protein dynamics focus on timescales of

nanoseconds and shorter. However, these time periods are far

shorter than those associated with biological functions. Other

experiments and theories are thus necessary to report on

protein dynamics on amuch longer timescale. Here, we report

on the protein dynamics in the frequency range from 10 kHz

to 20 MHz or the time range from tens of microseconds to 10

nanoseconds, by using the proton magnetic relaxation dis-

persion (MRD), i.e., the magnetic field dependence of the

spin-lattice relaxation rate constant, 1/T1. The frequency

range explored is well below the one usually addressed by

high-resolution NMRmethods (5) and complementary to, but

more extensive than, transverse relaxation dispersion mea-

surements (8).MRD reports on protein dynamics over a range

from fast and localized motions to slow and delocalized col-

lective motions which may involve the whole protein.

To probe the intramolecular protein dynamics, we focus on

MRD measurements of rotationally immobilized proteins.

These systems are excellent models for the spin relaxation in

whole tissues, and the theoretical description we have devel-

oped accounts well for the magnetic field dependence of spin-

lattice relaxation time constants in tissues. In addition to the

practical implications of this quantitative theory for clinical

medicine, the experiment and the theory provide important

insights for intramolecular protein dynamics that impact mo-

lecular function and its mechanism.

The rotational immobilization eliminates the high-

resolution spectra usually associated with proton NMR spec-

troscopy in liquids. However, the strong dipolar couplings

magnetically connect all the protons to provide a broad homo-

geneous NMR spectrum consisting of one line ;25 kHz

wide. The spin-spin communication within the immobilized

protein-proton spin system is rapid. Dynamics that relax one

portion of the protein-proton population then affect the total

proton population so that the dynamical report provided by

the protons collectively includes all motions that modulate

proton-proton couplings; i.e., the observable proton spin

relaxation provides a global report of protein dynamics.

Nuclear spin relaxation is stimulated by the spin coupling

to the magnetic noise at the resonance frequency that derives

from the relative motions of the spin-bearing components.

The MRD provides a direct characterization of these noise-

making motions from milliseconds to picoseconds by chang-

ing the observation window, which is linear in the magnetic

field strength (9–12). Here we probe the low-frequency

domain where rapid internal motions such as methyl group

rotation are not competitive relaxation pathways (13).

Because there is no rapid rotational averaging, the usual

approaches to spin relaxation using common spectral density
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models are inappropriate. The successful quantum theoretical

description of these experiments, which we have developed,

is based on simple assumptions that we summarize here and

are supported in detail by experiment. A crucial component of

this description rests on the fact that the stiff connections in

the protein structure are along the polypeptide chain, which

makes the system approximately one-dimensional in some

respects, not three-dimensional. The key point that follows

from the dimensionality reduction is that the structural

fluctuations in the protein are far more prevalent in the

frequency range usually associated with protein function than

expected based on three-dimensional models which are our

common experience. Last, we show that non-affine relations

exist between the proton-spin-lattice relaxation rate and

commonly encountered frequency dependences of force

constants and mean-square displacements. Though MRD

measurements explore a much lower frequency range than

most other techniques, these relations give additional phys-

ical insight to low-frequency protein dynamics.

METHOD AND RESULTS

Fig. 1 shows typical proton MRD profiles for lyophilized

bovine serum albumin (14) and lysozyme obtained at room

temperature using a fast-field-cycling spectrometer from

Stelar Instruments (Mede, Italy). The lyophilization pro-

cedure is described in Lester and Bryant (14). For both

systems, the protein-proton-spin-lattice relaxation rate is

described by a power law in the Larmor frequency,

Rp }Av�b
0 ; with A as a constant and b ¼ 0.78. Fig. 2 shows

MRD profiles for various hydrations of lysozyme. Here the

measured 1/T1 differs from Rp because of cross-relaxation

between water and protein protons (14–16). As a conse-

quence, the relaxation rates in the low field plateau region

decrease with increasing hydration. Fig. 2 also shows mea-

surements on lysozyme gels where the molecular rotation

has been inhibited by glutaraldehyde cross-linking. Results

for cross-linked serum albumin are similar; thus, the essential

features do not depend on water content or the protein

identity.

THEORY

The interpretation of these measurements is built on a

quantum theory of the nuclear spin relaxation induced by

time fluctuations of the proton dipole-dipole interaction,

Hdip(t), between spins in a disordered or non-crystalline solid
(17–21). This interaction is expanded as a superposition of

pairwise contributions HdipðtÞ ¼ +
i,j

Hdip i;j½rijðtÞ; uijðtÞ�;
which depends mainly on the interspin distance rij(t) and

the angle uij(t) between rij and the constant magnetic field B0.

Motions that change the remaining azimuthal angle fij do

not change the dipolar coupling between two protons at

magnetic fields significantly above the local dipolar field

strength. This description closely follows the basic features

of the mathematical model presented by Abragam (22),

except that even in a protein crystal, the local structure, as

sensed by the proton-proton dipolar connectivity, is disor-

dered—i.e., the protons do not form a uniform three-di-

mensional array. However, the proton dipolar interactions

are still modulated by fluctuations of the interspin vectors,

rij, in the approximation of small displacements, uij, com-

pared to equilibrium distances, Rij (e.g., rij(t) ¼ Rij 1 uij(t))
(18). This approximation is justified for proteins by the general

preservation of modest Debye-Waller factors deduced from

FIGURE 1 The proton spin-lattice relaxation rate recorded as a function

of the magnetic field strength plotted as the proton Larmor frequency for

samples of dry lysozyme and BSA at room temperature. The solid line

presents the best fit of the data with Eqs. 3a and 3b and b ¼ 0.78. This value

of b leads to a value df ¼ 3 from Eq. 3b, which indicates a uniform

distribution of protons. The peaks at 2.8, 2.4, and 0.8 MHz in the relaxation

rate profile are caused by proton relaxation coupling to the amide nitrogen

when the 14N energies match the proton Zeeman levels.

FIGURE 2 The proton spin-lattice relaxation rate recorded as a function

of the magnetic field-strength plotted as the proton Larmor frequency for

lysozyme samples hydrated to various degrees (weight %) at room tem-

perature. The solid lines are the best fits to the data using Eqs. 3a and 3b. The

two parameters adjusted are b and the exchange rate constant between the

protein protons and the water proton populations. The value df is obtained
from b according to Eq. 3b.
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x-ray scattering determinations of protein structure in the

crystal. We have extended the model for relaxation caused by

a direct spin-phonon process (18). The strong magnetic field

dependence and linear temperature-dependence of the spin-

lattice relaxation rate support this model and eliminate the

Raman process in the temperature range above 270 K (22).

Only the phonons in the neighborhood of the Larmor

frequency contribute to nuclear spin relaxation. In the

following, we outline the three contributions responsible for

the magnetic field dependence of protein-proton-spin-lattice

relaxation rate Rp that yield a quantitative expression for the

frequency dependence of Rp, and that allow us to probe the

internal protein dynamics from the data displayed in Figs. 1

and 2.

Normal mode expansion

In the approximation of small displacements uij compared

to equilibrium distances Rij, one can expand the time-depen-

dent spatial parts of the proton dipole-dipole interaction

up to their first-order contributions: Hdip i;j½rijðtÞ; uijðtÞ� ¼
Heq

dip i;j1dH
ð1Þ
dip i;j: We show in Korb and Bryant (18) how this

expansion can be put in a form appropriate for calculations

by writing the displacement vector uij(t) in a normal co-

ordinate expansion, where the longitudinal displacements

(u//) modify only the interspin distance rij, and the displace-

ments (u?) perpendicular to the interspin distance modify

only the angle uij. Calculations show that dH
ð1Þ
dip i;j may be

written as a linear combination of the gradients of u
expressed in this normal coordinate system (//, ?). The

transition rate per unit of volume induced by the time-

dependent perturbation dH
ð1Þ
dip i;j is calculated with the Golden

rule for time perturbation theory of harmonic oscillators.

This contribution enters as the square of the dipole-dipole

perturbation dH
ð1Þ
dip i;j averaged over the Zeeman and lattice

Boson states, which, at high temperature, finally gives

Rp }v�2
0 ; where v0 is the proton Larmor frequency.

Density of vibrational states

The summation of the transition rate over the lattice Boson

states is replaced by an integration over the density of

vibrational states s(v), and Rp thus becomes proportional

to s(v). The question now is what expression of density of

vibrational states should be used for a disordered system like

a protein. The usual Debye description for the vibrational

distribution of states, s(v) } vd�1 for a d-dimensional sys-

tem ofN atoms, is drastically dependent of the dimensionality

(see Fig. 3). One notes a dramatic increase (18 orders of

magnitude) of s(v) at low-frequency range probed in a

MRD experiment when reducing the dimensionality from

d ¼ 3 to d ¼ 1. The importance of the dimensionality is

implied by previous work of Kimmich, who found the same

power-law exponents (b ¼ 0.8) for the proton MRD of

polypeptide chains (polyglycine) that present no side chains

and proteins, which do have side chains (23,24). From the first

principles of proton NMR relaxometry, this result unambig-

uously demonstrates that the dynamics probed in these

MRD experiments reflect those of the protein backbone.

The motions that dominate the shape of the magnetic field

dependence of the proton-spin relaxation at room temperature

in the very low-frequency range are thus associated with the

backbone of the polypeptide chain and not with the side

chains.We note a critical point here. The structural fluctuation

itself is not one-dimensional; atomsmove in three dimensions

and involve backbone as well as side chains of the protein.

However, the propagation of the structural disturbance is of

reduced dimensionality; i.e., the propagation of the structural

disturbance is not in three dimensions, but largely restricted

to one, which is along the chain. This is the reason that two

parameters enter the theory, one characterizing the distribu-

tion of protons in space, and one for the effective dimen-

sionality of the propagation. Therefore, vibrational density of

states and consequently Rp is dramatically enhanced in the

low-frequency range compared with the three-dimensional

case (see Fig. 3). To take into account such an anisotropic

propagation of disturbance, the usual Debye description for

the vibrational distribution of states, s(v) } vd�1 for a

d-dimensional system of N atoms, is then modified (25) to

sðvÞ ¼ 3dS N
v

dS�1

V
dS

; (1)

with V the maximal frequency in the problem and with the

normalization requirement of
RV

0
s vð Þdv ¼ 3N: Here ds,

called a spectral dimension, is ,2 for systems that are not

three-dimensional crystals. The value ds is related to the

FIGURE 3 Frequency dependence in MHz of the normalized density of

vibrational distribution of states s(v)/3N calculated from Eq. 1 for different

dimensionalities d (3, dS ¼ 4/3 and 1). The range of frequency (104 � 2 3

107 Hz) probed by magnetic relaxation dispersion is indicated by an arrow.

The frequency, V � 1013 Hz, corresponds to the highest vibrational mode.

One notes a dramatic increase (18 orders of magnitude) of the density of

vibrational states at low-frequency when reducing the dimensionality from

d ¼ 3 to d ¼ 1.
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propagation of the structural disturbance or the number of

sites sampled by a random exploration of the space char-

acterized by a fractal distribution of mass of dimension df.
Both experiment and simulation suggest that ds is 4/3 for

percolation systems (25,26). According to Alexander and

Orbach, ds depends both on the internal geometry of the

fractal and the way it is internally connected (25). They note

also that, concerning the vibrational problem, ds depends also
on the way the fractal is embedded in the external space and

on the nature of the terms in the harmonic expansion that

determine its rigidity. This is preciselywhy it is called spectral

dimension. In summary, the 1H relaxation rate, Rp, is pro-

portional to sðvÞ}vds�1.

Localization and scaling in proteins

The structural disturbance in the dry and disordered protein

is confined or spatially limited; its extent, ‘a; ranges from

a minimal size, a that may be less than the size of the

monomer unit, up to the size of the protein, and is related to

the frequency of the fluctuation va 2 fvmin, Vg. This model

considers a process of overdamping of vibrational modes of

frequency v . va on a region of size ‘ðvaÞ: On random

strongly disordered fractals, this corresponds to the strong

localization model where ‘ðvaÞ is defined as the localization
length. From a mathematical point of view, such a localiza-

tion is expressed through an exponential spatial decay of the

displacement vector through a normalized wave function

} ‘ðvaÞ�df=2exp½�r=2‘ðvaÞ�: The localization greatly af-

fects the values of the gradient of spin displacements =u and
thus Rp. Scaling arguments show that the product of the

volume of localization,Va } ‘dfa ; for a given frequencyva and

the number of modes, Na ¼
R va

0
sðvÞdv}vdS

a ; outside this
volume Va, is a constant (see (25)),

‘
df
a
v

dS
a
¼ adfV

dS ¼ Cte: (2)

This relation leads to an anomalous dispersion relation

qa ¼ 1=‘a }vdS=df
a between q space and frequency. The

quantity df is the fractal dimensionality associated with the

distribution of protons in the protein structure. We have

computed fractal dimensions df for the spatial distribution of
protons based on the crystal structure of lysozyme and other

globular proteins and find that they agree with the values

derived from treating df as an adjustable parameter in fitting

the protonMRDdata (18). The values of df are those expected
for systems that form percolation networks. For the a-carbons,

this is dominated by the connectivity of the polypeptide chain

(27,28). Thus, the primarymotion is along the stiff connections

of the polypeptide chain. Calculations show that the proton

relaxation rate Rp is proportional to the square of the gradient

of the displacement vector as j=uj2 � q2a }v2dS=df
a : By com-

parison, in a Euclidean space of dimension dwhere ds¼ df¼ d,
one has a normal dispersion behavior without any damping

qa } va (existence of phonons) and j=uj2 � q2a }v2
a:

A consequence of such anomalous dispersion is that the radii

of localization at the two extremes of our frequency range,

‘max=‘min ¼ ðvmax=vminÞðdsÞ=df � 50; changes from essen-

tially the limit of the bond lengths to the approximate size of

the protein molecule. Thus, Rp is proportional to v2ds=df : We

note that the term localization is used to distinguish the spatial
extent of the structural disturbance from very short wavelength

modes that may be appropriate to hard three-dimensional

crystals. We emphasize that at the low-frequency limit of the

MRD, the length scale of the fluctuation is approximately the

diameter of the protein.

Frequency dependence of proton-spin-lattice
relaxation rate in dry proteins

The three contributions described above coming from

normal modes, density of vibrational states, and localization

combine to yield Rpðv0Þ} kBTv
�2
0 sðv0Þv2dS=df

0 ; where T is

the temperature. By comparison, in a Euclidean space of

dimension d, this relation becomes Rpðv0Þ} kBTsðv0Þ}
vd�1
0 (22). Considering both longitudinal (//) and transverse

(?) motions associated to the normal modes u// and u? and

characterized by their density of vibrational states given by

Eq. 1 with maximal frequencies V// and V? yields the quan-

titative expression (18,20) of

Rpðv0Þ ¼
9pb

5

kBT

Z
dSv

2

dipðA== 1A?Þv�b

0 ; (3a)

where

b ¼ 3� 2
dS

df

� dS; (3b)

and A== ¼ ð3=4Þð112�bÞVb�2
== ; A?¼ð1=6Þð7=212�bÞVb�2

? ;

b is a numerical factor (b � 3) associated with the effective

size of the proton dipolar coupling, vdip/2p ¼ 11.3 kHz;

and V// and V? correspond to the frequencies of the

highest vibrational modes parallel and perpendicular with the

polypeptide chain, taken as the amide (I) and (II) modes at

1560 cm�1 and 200 cm�1, respectively (29). The frequency

dependence of Rp (Eq. 3) and the anomalous dispersion (Eq.

2) thus allow us to probe the internal protein dynamics from

the fast localized motions to the slow cooperative delocalized

motions.

DISCUSSION

MRD protein data

For the dry proteins shown in Fig. 1, only the longitudinal

motions (//) are needed due to highly steric constraints.

Equation 3a fits the data well with b ¼ 0.78, which corre-

sponds to df ¼ 3 according to Eq. 3b, i.e., the same as the

Euclidean dimension. This result is a limiting value that

implies that the distribution of protons in space is essentially

uniform and that the protein structure in the lyophilized solid
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is more uniform than in the hydrated crystal, for which we

deduce a value of df ¼ 2.5 from the hydrogen atom positions

implied by the x-ray structure. Similar b values have been

found for polypeptides and other proteins (23,24), which

demonstrates that the dynamics probed in the MRD experi-

ments reflect propagation along the protein backbone. In the

presence of water, only the lower frequency transverse term

A? is required and dominates becauseV?/Vk� 1/8. The solid

lines through the hydrated protein data of Fig. 2 are obtained

using the expressions in Eq. 3 in combination with the

solution to the problem of magnetic coupling between the

mobile water protons and the protein protons (19). Only two

parameters were adjusted: the values of df and of the exchange
rate constant between the two spin populations. The value of

df changes essentially logarithmically as a function of the

ratio of the number of protein protons to the number of water

protons from 3 for the dry protein to 2.5 for a fully hydrated

protein (Fig. 4). Such a weak variation of the fractal

dimension, which represents a single parameter characteriza-

tion of the three-dimensional distribution of protons in space,

implies that the protein structure changes in small local incre-

mental steps rather than by large scale or global cooperative

transitions as the protein adjusts to increasing water content

from the lyophilized state. Further, the decrease in the fractal

dimension, df, implies that the proton distribution changes

from essentially uniform in the lyophilized protein to sig-

nificantly non-uniform in the fully hydrated state. This change

almost certainly involves an increase in free volume in the native

structure that may be occupied by water in the cases where the

volume increments are sufficiently large. A consequence of

an increase in free volume is increased local motion, which is

reflected in the fact that the perpendicular components of Eq. 3

dominate the hydrated cases.

The relaxation dispersion profiles in both Figs. 1 and 2 are

monotonically decreasing functions of increasing frequency.

A consequence of this observation is that the data do not

support a model of any periodic motions of the protein struc-

ture. That is, if putative low-frequency breathing motions were

periodic, there would be a peak in the relaxation dispersion

profile. None is observed; therefore, all motions detected by

the MRD experiment are stochastic.

The successful description of these data rests on the

fundamental theoretical assumptions about the effective

dimensionality of the system and the consequences for the

vibrational distribution of states. The term vibrational is used
for convenience; the MRD experiments show clearly that all

dynamics sampled are stochastic. The assumption that s(v)

is described by Eq. 1 with ds of 4/3 is strongly supported by

these MRD data. The generality of this value for linear

disordered systems has been discussed by Orbach and co-

workers (30,31). If this description was wrong, Eqs. 3a and

3b would fail to describe the measurements by many orders-

of-magnitude (22). Thus, the effective dimensionality that

describes the critical dynamics of the protein as sensed by the

proton spins throughout the molecule is far closer to 1 than 3

in the frequency range studied.

Fig. 3 shows that the one-dimensional character of the

polypeptide chain in the folded protein increases the low-

frequency mode density in the protein by;18 orders of mag-

nitude compared with the uniform three-dimensional crystal

lattice, which is not a fruitful model for the protein in the

frequency range studied here. We note that as the frequency

increases toward V, the effects of dimensionality are elimi-

nated and at the highest frequencies and shortest distances, the

system will appear three-dimensional. Indeed, simulations of

high-frequency dynamics in proteins suggest that the three-

dimensional approaches are appropriate (32–34). This dra-

matic increase has important consequences for the magnetic

field dependence of image contrast in MRI experiments (19),

but the biophysical implications are general. Although the

protein clearly has a three-dimensional structure, the strong

connectivity is that of a polypeptide chain. The interactions

that lead to the higher order structures or the folded structure

of the protein are very weak compared with the covalent

connectivity of the primary chain. The propagation of the

structural disturbance is then primarily along the covalent

connections, which are more than an order-of-magnitude

stronger than the interactions between side chains or even

hydrogen-bond connections between different portions of the

chain. The character of the model is not that we ignore

the motions that appear in the side chains. Indeed, most of the

protons that we detect in the experiment are located on side-

chain carbon atoms. Rather, the essence of the model is that

the side-chain motions follow the structural disturbances

propagating along the main chain in these low-frequency

regimes. That is, the propagation is approximately one-di-

mensional, not the resulting motions of the protons detected.

We also note the significant distinction between the total

cohesive energy of the folded protein that depends strongly

on the integrated contribution of the relatively weak

interactions involving side chains and how a structural

FIGURE 4 The fractal dimension df of the proton distribution obtained

from Fig. 2 with use of Eqs. 3a and 3b and plotted against the ratio F
between the protein-protons and the water-protons at equilibrium. The

continuous line is a logarithmic fit to the data.
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disturbance propagates through the structure, which is pri-

marily along the stiff connections. As pointed out by Orbach,

in a different context (31), the one-dimensional character of

the stiff connections in chain molecules effectively confines

structural fluctuations and modifies energy flow in the system

that affects such fundamental characterizations as the heat

capacity. Finally, these experiments show that the power

spectrum for the protein noise is not characterized as ‘‘white’’

or by an exponentially decaying time-correlation function

common to the case of aqueous solutions, but rather by the

power law of Eq. 3. In consequence, fluctuations are much

more prevalent in the frequency range associated uniquely

with protein function, as shown unambiguously by the data in

Figs. 1 and 2.

Frequency dependences of force constants and
mean-square displacements in coarse-grained
fractal proteins

Equation 2 reveals an important argument of our theoretical

model that considers a process of overdamping of vibrational

modes of frequency v on a region of size ‘ðvaÞ: On random

strongly disordered fractals, this corresponds to the strong

localization model where ‘ðvaÞis defined as the localization

length. As the fractal is denser at the small length scales, it is

plausible that its elastic constants k‘ will also become scale-

dependent. In consequence, it will deform in a non-affine

way under external stresses. If we coarse-grain the fractal

protein by collapsing all portions of size ‘ðvaÞ to points and

construct a new network on this scale, this will eliminate all

modes with frequency v . va and one can ascribe a mass

m‘ðvaÞ to this point and express the frequency dependence

of the elastic constant k‘ðvaÞ relevant at this length scale as

k‘ðvaÞ ¼ m‘ðvaÞv2

a
} ‘ðvaÞdfv2

a
}v

2�ds
a

: (4)

To estimate the strain, we can estimate the frequency

dependence of the mean-square displacement Æ½ðuijÞ‘�
2æ due

to the ‘‘vibrations’’ on the size ‘ðvaÞ as

Æ½ðuijÞ‘�
2æ}

kBT

k‘ðvaÞ
}v

�ð2�dsÞ
a

: (5)

The frequency dependence of such mean-square displace-

ment is thus a power law that becomes Æ½ðuijÞ‘�
2æ}v�2=3

a

when substituting ds ¼ 4/3 into Eq. 5. This dependence is

very close to the one calculated by Doruker and co-workers

for a coarse-grained anisotropic network model (35). In other

words, this power law proves the reality of the density of

vibrational states given in Eq. 1.

Connections between MRD relaxation and force
constants or mean-square displacement data

To relate the MRD data to more conventional data concerned

with dynamics of proteins, it is tempting to connect the fre-

quency dependence of Rp(v0) given in Eq. 3 with the fre-

quency dependence of the force constants k‘ðv0Þ: A direct

comparison of the power laws given in Eqs. 3a and 4 thus

leads to

Rpðv0Þ} kBT=k‘ðv0Þb=ð2�dSÞ; (6)

where b is given into Eq. 3b. Finally, substituting Eq. 5 into

Eq. 6 permits comparison of the frequency dependence of

Rp(v0), which we measured with the frequency dependence

of the mean-square displacement that is calculated or mea-

sured by other techniques:

Rpðv0Þ} kBTÆ½ðuijÞ‘�
2æb=ð2�dSÞ: (7)

This relation shows that the frequency-dependence Rp(v0),

which we probe with MRD, may be related to that for the

mean-square displacements. We show, in Fig. 5, that the

relation between these two components is non-affine where

the exponent b/(2 � ds) varies between 0.9 and 1.2 in the

range of 2.5# df # 3. In the case of a fully hydrated protein

for which one has ðdsÞ=df � 1=2 and b � 2 � ds, Eq. 7
simplifies Rpðv0Þ} kBTÆ½ðuijÞ‘�

2æ and Rp(v0) becomes pro-

portional (and not equal) to the frequency dependence of

the mean-square displacements. The only difference is that

we probe, with the MRD measurements, very much lower

frequencies than those sampled by most other spectroscopic

techniques. Although the present theory does not yield a

precise value for the mean-square displacement, we believe

that this comparison is important and gives more physical in-

sight into the real dynamics probed by the MRD experiments.

CONCLUSION

We have presented proton MRD experiments from 10 kHz to

20 MHz of more or less hydrated proteins and proteins

FIGURE 5 The computed variation of the exponent of the mean-square

displacement of Eq. 7 versus the fractal dimension, df, is shown as a solid

line. The exponent is 1 for dS/df ¼ 1/2. The dashed line is a guide for the eye

and indicates a linear dependence.
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confined in gel by cross-linking. These MRD experi-

ments sense the very-low-frequency stochastic motions of the

protein that modulate the proton-proton dipolar couplings in

the structure.

The interpretation of the data has been made through an

extension to disordered protein systems of the well-known

quantum description of a direct spin-lattice relaxation pro-

cess coming from acoustical lattice vibrations (phonons) in

crystals. For a direct spin-lattice relaxation process only a

first-order expansion of the time-dependent spatial part of the

proton dipole-dipole interaction between spins is needed.

This supposes that the spin displacement vectors, expressed

in a normal mode coordinate system, always stay an order-

of-magnitude smaller than the equilibrium interspin vectors.

Such a direct spin-phonon process in a disordered solid

accounts quantitatively for experiments and depends on the

dynamical distribution of vibrational states, the localization

of the disturbances along and transverse to the peptide chains,

and the spatial distribution of protons in the protein structure.

In the very-low-frequency range explored, the localization of

the disturbance can extend over the whole protein.

We have shown through scaling relations that calculated

MRD frequency behavior of dry and hydrated protein is re-

lated to the frequency behavior of force constants and mean-

square displacements of the detected protons and is similar in

character to characterizations of protein dynamics at much

higher frequency ranges. We have also shown that the fractal

dimensionality of the proton distribution in space, which is

a very crude characterization of the protein structure, changes

continuouslywith hydration from the dry to fully hydrated state.

Last, it is shown that the dimensionality of the disturbance

propagation is reduced from 3 to nearly 1, and the strong con-

nectivity along the polypeptide chain dramatically increases

the density of stochastic motions in the low-frequency

regime, from 10 kHz to 20 MHz. A consequence of the

reduction of the effective dimensionality for the disturbance

propagation in the low-frequency region sampled by the

present experiments is a large increase in the density of low-

frequency modes. This permits the protein to sample func-

tionally critical conformations in the frequency range that is

most relevant for enzymatically critical fluctuations, much

more often than would be the case for a uniformly connected

three-dimensional solid.
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