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ABSTRACT We show that even in the complete absence of potential energies among the atoms in a protein-aqueous solution
system, there is a physical factor that favors the folded state of the protein. It is a gain in the translational entropy (TE) of water
originating from the translational movement of water molecules. An elaborate statistical-mechanical theory is employed to
analyze the TE of water in which a protein or peptide with a prescribed conformation is immersed. It is shown that if the number
of residues is sufficiently large, the TE gain is powerful enough to compete with the conformational-entropy loss upon folding.
For protein G we have tested over 100 compact conformations generated by a computer simulation with the all-atom potentials
as well as the native structure. A significant finding is that the largest TE is attained in the native structure. The translational
movement of water molecules is quite effective in achieving the tight packing in the interior of a natural protein. These results
are true only when the solvent is water whose molecular size is the smallest among the ordinary liquids in nature.

INTRODUCTION

One of the defining characteristics of a living system is

the ability of its component molecular structures to self-

assemble with precision and fidelity. Uncovering the mech-

anisms through which such processes occur is a central

subject for understanding life at the molecular level. The

most fundamental and universal example of the biological

self-assembly is protein folding, and investigating this

complex process will provide a new physical insight into

the other processes as well (1). However, the elucidation of

the folding mechanism is one of the most difficult tasks in

modern science, and despite an enormous amount of effort

devoted, the elucidation has not been achieved yet. It appears

that a breakthrough is not likely to be obtained unless a

unique concept, which is different from the conventional ap-

proaches, is employed. On the other hand, water is believed

to play critical roles in the living system and to be indis-

pensable in sustaining life. However, it has not yet been

made clear how water is critical in the concrete. In this article,

we are concerned about presenting a new view of protein

folding and highlighting an aspect of the critical importance

of water from an interesting standpoint.

A protein spontaneously folds into a unique native

structure from numerous denatured conformations. A feature

common to the native structures of proteins is that the

backbone and side chains are tightly packed and the interior

contains little space (2–7). This means that protein folding

undergoes a very large loss of the conformational entropy

(CE) of a protein molecule. Then a question arises: ‘‘What is

the major factor competing with the CE loss in the folding?’’

The formation of intramolecular hydrogen bonds, one of the

previously suggested factors, is accompanied by the serious

energetic penalty of dehydration (8–11). This is also true for

the formation of salt bridges, contacts of unlike-charged

atoms, in the interior. The prevailing view is that water adja-

cent to a hydrophobic group is entropically unstable due to

the ordering of water molecules with an increase in the

number of hydrogen bonds and that the folding is driven

mainly by the so-called hydrophobic effect through the

burial of nonpolar side chains (12,13). We note, however,

that a protein is characterized by the heterogeneity that

hydrophobic and hydrophilic atoms and groups are rather

irregularly distributed in the molecule. Hence, the burial of

nonpolar side chains is unavoidably accompanied by the

burial of polar and charged groups. Fig. 1 A compares the

folded, native structure and an unfolded conformation of

barnase. In the figure the polar backbone, nonpolar side

chains, polar side chains, positively charged side chains, and

negatively charged side chains are marked in different

colors. It is observed that none of the colors is appreciably

more buried or exposed to water upon unfolding or folding.

The database shows that when proteins fold, 83% of the

nonpolar side chains, 82% of the peptide groups, 63% of

the polar side chains, and 54% of the charged side chains

are buried in the interior (7,14). Thus, protein folding is in

contrast to the aggregation of surfactant molecules as

micelles illustrated in Fig. 1 B where the nonpolar groups

are almost completely buried whereas the charged groups are

all exposed (15). In protein folding the hydrophobic effect

works much less effectively than in the micelle formation.

Thus, none of the previously suggested factors is powerful

enough to compete with the very large CE loss. Actually, the

experimental and theoretical results are quite inconsistent

and controversial. For example, the salt bridges act both as

stabilizers (16) and as destabilizers (17), the exposed area of

the hydrophobic surface is not always correlated with the

conformational stability of a protein (18), and the polar

group burial contributes more to the stability of the native

structure than the nonpolar group burial (7,19). There must

be another powerful driving force in the folding.
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Most of the discussions concerning protein folding have

been focused on contributions to the free-energy change

upon folding from potential energies among the atoms in the

system including the solvent (1). A view lacking in earlier

studies is that the translational movement (the thermal

motion) of the solvent molecules should critically influence

the folding process. We start with the concept illustrated in

Fig. 2 A, which was first presented by Asakura and Oosawa

(20). Suppose that large particles are immersed in small

particles and the number density of the small particles is

much higher than that of the large particles. The small

and large particles are hard spheres with diameter dS and

those with diameter dL, respectively, and there are no soft

interactions (e.g., van der Waals and electrostatic interac-

tions) among the particles at all. In such a system, all allowed

configurations have the same energy and the system behavior

is purely entropic in origin. The presence of a large particle

generates the volume from which the centers of the small

particles are excluded. The excluded volume is the spheri-

cal volume with diameter (dL 1 dS) that is the sum of the

volumes of the large particle and of the envelope colored

in blue. When two large particles contact each other, the

excluded volumes overlap (the overlapped volume is

shadowed), and the total volume available to the translational

movement of the small particles increases by this amount.

The increase leads to a gain in the translational entropy (TE)

of the small particles. We remark that the resultant free-

energy change takes the same value in both of the isochoric

and isobaric processes. Within the framework of the Asakura

and Oosawa (AO) theory, the free-energy change is given as

�(DV/VS)hSkBT ¼ �3(dL/dS)hSkBT/2 (20,21) where hS is

the packing fraction of the small particles, DV the increase in

the total volume available to the small particles defined

above, VS the volume (size) of a small particle, and kBT
Boltzmann’s constant times the absolute temperature. In the

isochoric process, the TE gain exactly equals the free-energy

change divided by �T. In the isobaric process, there is

a slight decrease in the system volume accompanying

a corresponding decrease in the enthalpy. That is, part of the

TE gain is converted into the enthalpic gain. Irrespective of

the process, the free-energy decrease originates purely from

the TE effect in the model system considered (20,21). In

the original discussion by Asakura and Oosawa, the large

particles are colloidal particles and the small particles are

macromolecules. In colloidal mixtures (21,22) to which the

AO theory have been applied, the larger and smaller

FIGURE 1 (A) The folded, native structure (left) and an unfolded confor-

mation (right) of barnase. The constituent atoms are represented by the solid

model. The polar backbone, nonpolar side chains, polar side chains, posi-

tively charged side chains, and negatively charged side chains are marked in

gray, yellow, green, blue, and red, respectively. (B) Cartoon illustrating the

micelle formation by surfactant molecules in water.

FIGURE 2 (A) Illustration of the concept first presented

by Asakura and Oosawa (20). (B) Application of the con-

cept to protein folding occurring in solvent. In this exam-

ple, the three side chains are packed against one another.

We remark that the excluded volume generated by a solute

molecule is physically different from the partial molar

volume (see the text).
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colloidal particles are regarded as the large and small

particles, respectively. In general, the large particles can be

solutes immersed in solvent of the small particles.

An important point of the concept described above is

that the large particles are driven to contact each other for

increasing the TE and decreasing the free energy of the small

particles. Besides the highly specific interactions of steric

and chemical nature, this entropic effect is omnipresent in

a biological system. We apply the concept to protein folding

occurring in a dense solvent where the solvent molecules

energetically move round. In our application, the small

particles are from the solvent and the large particles cor-

respond to protein subunits. In Fig. 2 B, three side chains

are considered to illustrate an example of intramolecular con-

tacts. The excluded volume for the solvent molecules and the

overlapped volume are represented in the same manner as

in Fig. 2 A. The gain in the TE of the solvent arising from

the contact is dependent not on the absolute value of the

overlapped volume but on the overlapped volume scaled by

the size of the solvent molecules. The geometric features of

the side chains lead to a much larger overlapped volume than

in the case of simple spheres (compare Fig. 2, A and B). The
solvent in the biological system is water whose molecular

size is exceptionally small. For these reasons, the TE gain

occurring in this particular system is expected to be quite

substantial.

To exclusively investigate the TE effect in protein fold-

ing, we model solvent molecules as hard spheres and treat

a protein molecule as a set of fused hard spheres accounting

for the geometric features of the backbone and side chains at

the atomic level (23). We employ the three-dimensional (3D)

integral equation theory (24–26), an elaborate statistical-

mechanical approach, which allows us to calculate the

density structure of the solvent near a protein molecule in

a prescribed conformation and its solvation free energy

(SFE). Two peptides (Met-enkephalin and the C-peptide

fragment consisting of the 1–13 residues of ribonuclease A)

and two proteins (protein G and barnase) are treated and

a number of different conformations are considered. The

key quantity we analyze is the TE of the solvent in which

a peptide or protein molecule is immersed. The TE, which is

strongly dependent on the molecular conformation, can

readily be extracted from the SFE in our model system. The

TE gain upon folding is compared with the CE loss, and the

effects due to the number of residues of a peptide or protein

molecule, the temperature, the size of solvent molecules, and

the solvent packing fraction are investigated. We show that

when the number of residues is sufficiently large and the

solvent is water, the TE gain is a powerful driving force in

the folding and well competes with the very large CE loss.

Based on an exhaustive analysis for protein G, it is found that

the native structure allows the surrounding water to win

almost the largest TE, and the significance of this result is

discussed in detail. Last, it is argued that the formation of

ordered structures and the occurrence of self-assembling

processes in a living system, which are critical in sustaining

life, are made possible only in water.

MODEL AND THEORY

The integral equation theory is a statistical-mechanical theory that is pop-

ular in liquid state physics (27). It was originally developed for a spherically

symmetric system. The 3D integral equation theory we employ is an

extension to general systems described using the x-y-z coordinate system.

The great advantage of the 3D version is that details of the polyatomic

structure of a solute molecule can explicitly be taken into account. Similar

approaches have been employed by several authors (28–32) to analyze the

solvation properties of a solute molecule. In our case, the 3D integral

equation theory is applied to the special model system described below.

Solute I, a protein molecule with a prescribed conformation, is immersed

in small spheres forming the solvent at infinite dilution. Solute I consists of

a set of fused atoms. In the 3D integral equation theory, the Ornstein-Zernike

equation in the Fourier space (24–26) is expressed by

WISðkx; ky; kzÞ ¼ rSCISðkx; ky; kzÞHSSðkÞ; (1)

and the closure equation (24–26) is written as

cISðx; y; zÞ ¼ expf�uISðx; y; zÞ=ðkBTÞgexpfwISðx; y; zÞ
1 bISðx; y; zÞg � wISðx; y; zÞ � 1: (2)

Here, the subscript S denotes the solvent, c is the direct correlation

function, h the total correlation function, w ¼ h � c, u the potential, kBT
Boltzmann’s constant times the absolute temperature, and rS the solvent

number density. The capital letters (C, H, and W) represent the Fourier

transforms. HSSðkÞ k2 ¼ k2x1k2y1k2z

� �
is calculated using the integral

equation theory for spherical particles and served as part of the input data.

In the hypernetted-chain approximation employed in this study, the bridge

function b is set at zero. The reliability of the hypernetted-chain closure

equation has already been verified (24,33).

Equations 1 and 2 are numerically solved on a cubic grid. The x-y-z
coordinates of the protein atoms in the native structure are taken from the

Protein Data Bank (PDB). As for the protein atoms in an unfolded con-

formation, the coordinates are obtained in the following manner. First, a

conformation is generated by randomly assigning dihedral angles of the

backbone. Second, to eliminate all the unreasonable overlaps, the constituent

atoms are moved to the locally optimized coordinates by employing a

standard energy-minimization method with the all-atom potentials. The

center of the protein molecule (xC, yC, zC) is calculated from

xc ¼ +
M

i¼1

xi=M; yc ¼ +
M

i¼1

yi=M; zc ¼ +
M

i¼1

zi=M; (3)

whereM denotes the total number of the atoms. The center is then chosen as

the origin of the coordinate system and the x-y-z coordinates of the protein

atoms are recalculated as (xi � xC, yi � yC, zi � zC) (i ¼ 1, . . . , M). The

numerical procedure is briefly summarized as follows.

1. Calculate uIS(x, y, z) at each 3D grid point.

2. Initialize wIS(x, y, z) to zero.

3. Calculate cIS(x, y, z) using Eq. 2.

4. Transform cIS(x, y, z) to CIS(kx, ky, kz) using the 3D fast Fourier

transform (3D-FFT).

5. Calculate WIS(kx, ky, kz) from Eq. 1.

6. Invert WIS(kx, ky, kz) to wIS(x, y, z) using the 3D-FFT.

7. Repeat steps 3–6 until the input and output functions become identical

within convergence tolerance.

The solvent molecules are modeled as hard spheres and solute I is treated

as a set of fused hard spheres. On grid points where the solvent particle and

at least one of the atoms overlap, exp{�uIS(x, y, z)/(kBT)} is zero. Otherwise,
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it is unity. The grid spacing (Dx, Dy, and Dz) is set at 0.2dS and the grid

resolution (Nx3 Ny3 Nz) chosen, which is dependent on the solute size and

the solute conformation, is in the range from 643 643 64 to 5123 5123

512. It has been verified that the spacing is sufficiently small and the box size

(NxDx, NyDy, and NzDz) is large enough.

The density structure of the solvent near solute I is obtained as gIS(x, y, z)

(g¼ h1 1). A great advantage of our theory is that the solvation free energy

of solute I, DmI, is obtained from the simple integration of the direct and total

correlation functions (25) expressed by

DmI ¼ rS

Z Z Z
fhISðx; y; zÞ2=2� cISðx; y; zÞ

� hISðx; y; zÞcISðx; y; zÞ=2gdx dy dz: (4)

The SFE is ‘‘the excess free energy of the solvent in which solute I is

immersed’’ minus ‘‘the excess free energy of pure solvent’’. In our system,

both the solvent particles and the fused atoms constituting solute I are

modeled as hard spheres, and there are no soft interactions at all. Moreover,

the solvent is a monoatomic fluid. Consequently, the excess energy of

solvent is zero and the SFE equals �TDSI where DSI is ‘‘the translational

entropy of the solvent in which solute I is immersed’’ minus ‘‘the TE of pure

solvent’’. (The most important quantity is the solvation free energy that is

independent of the solute insertion process. Here we conveniently consider

the isochoric process.)

As explained in the Introduction, the solvent drives solute particles to

contact each other, and this effect is physically described in terms of the

potential of mean force (PMF) between the solute particles (24). Earlier

analyses (33,34) showed that due to the density structure of the solvent

formed near the solute particles, the PMF reaches several solvent diameters.

Moreover, it is oscillatory (i.e., attraction and repulsion appear alternately)

and has multiple local minimums and maximums. A smaller excluded

volume or a smaller accessible surface area (ASA) does not always lead to

a lower value of the PMF. This feature of the PMF cannot be described by

the AO theory (20). Because a protein molecule has the polyatomic

structure, the SFE, which is dependent on the PMF between every pair of

protein atoms, exhibits complex behavior. The smallest excluded volume or

the smallest ASA does not always give the lowest SFE. Hence, neither the

simple treatment based on the ASA (35,36) nor the scaled particle theory

(37) is capable of evaluating the SFE correctly. This is particularly true for

a rather compact conformation in which many of protein atoms near the

surface are close together but not completely in contact with one another.

This is why an elaborate statistical-mechanical approach such as the 3D

integral equation theory is required.

We are especially interested in water as the solvent. The diameter dS of

a water molecule employed in earlier studies is in the range from 0.275 to

0.28 nm. The packing fraction hS ¼ prSd
3
S=6; where rS is the experimental

value for water at 25�C, is 0.3630 for dS ¼ 0.275 nm, and 0.3831 for dS ¼
0.28 nm. In this study, dS and hS are set at 0.28 nm and 0.3665, respectively,

as the reference condition. The diameter of each atom in the peptide or

protein molecule is chosen to be the Lennard-Jones sigma of ECEPP/2

(38,39) (for Met-enkephalin and the C-peptide) or AMBER99 (for the C-

peptide, protein G, and barnase). It is not easy to extract the TE for a real

system accurately in a quantitative sense. However, semiquantitative

evaluation of the TE can reasonably be made. We have performed many

test calculations using different values of the atomic diameters. Here, we

describe the TE or SFE difference between a fully extended conformation

and the a-helix structure of the C-peptide as examples. The TE difference

calculated using ECEPP/2 does not differ from that calculated using

AMBER99. When the atomic diameters are set smaller by 10%, for instance,

the TE difference decreases by ;24% but the a-helix structure still gives

much larger TE. When an attractive interaction is incorporated in the

solvent-solvent potential, the absolute value of the SFE decreases

considerably for both the extended conformation and the a-helix structure.

However, the SFE difference, which is much more important, does not

change significantly by the incorporation of the attractive interaction: The

change is always ,610% (as the attractive interaction incorporated

becomes stronger, the SFE difference first increases and then decreases).

Thus, for the peptides and proteins in the conformations tested, it has been

verified that our conclusions are robust regardless of the atomic diameters

and the solvent-solvent attractive interaction.

RESULTS AND DISCUSSION

We test Met-enkephalin, the C-peptide, protein G, and

barnase. The number of residues of these peptides and pro-

teins are, respectively, 5, 13, 56, and 110. ForMet-enkephalin,

some extended and compact conformations are considered.

One of the compact conformations is the lowest-energy

conformation in vacuum determined in an earlier work (38).

For the C-peptide, protein G, and barnase, we consider the

native structure taken from the PDB (the structure for the

C-peptide is the corresponding segment of the native protein

forming an a-helix structure) and an unfolded conformation

is generated in the manner described above. A fully extended

conformation is also considered for the C-peptide. It is ex-

perimentally known that the C-peptide has a high propensity

to form the a-helix structure and even for the isolated

C-peptide the a-helix partially (;30%) remains in aqueous

solution (40). We consider this peptide to study the feature of

the a-helix formation in terms of the TE effect. For protein G,

we consider a number of additional, very compact confor-

mations taken from the local-minimum and global-minimum

states of the energy function in computer simulations using

all-atom potentials (39).

Translational-entropy gain of solvent
upon folding

The values of DSI calculated under the reference solvent

condition, ‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’, for some rep-

resentative conformations of the peptides and proteins are

TABLE 1 DSI calculated under ‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’

for representative conformations of Met-enkephalin, the

C-peptide, protein G, and barnase

Peptide or protein (conformation) Parameters DSI/kB

Met-enkephalin (compact) ECEPP/2 �221 (10)

Met-enkephalin (extended) ECEPP/2 �231 (0)

C-peptide (native) AMBER99 �582 (54)

C-peptide (unfolded) AMBER99 �605 (31)

C-peptide (extended) AMBER99 �636 (0)

C-peptide (native) ECEPP/2 �577 (54)

C-peptide (extended) ECEPP/2 �631 (0)

Protein G (native) AMBER99 �2179 (207)

Protein G (unfolded) AMBER99 �2386 (0)

Barnase (native) AMBER99 �4128 (518)

Barnase (unfolded) AMBER99 �4646 (0)

DSI is ‘‘the translational entropy of the solvent in which solute I is

immersed’’ minus ‘‘the TE of pure solvent’’. The number in the parenthesis

denotes the value relative to DSI/kB of the extended conformation (for Met-

enkephalin and the C-peptide) or of the unfolded conformation (for pro-

tein G and barnase). For example, the TE of the solvent in which barnase is

immersed is larger for the native structure by 518kB than for the unfolded

conformation.
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collected in Table 1. In the analysis on the TE, the solvent

under the reference condition is a good model of water. Rep-

resentative conformations of the peptides and proteins are

illustrated in Fig. 3. As observed from Table 1, for Met-

enkephalin the translational entropy of the solvent tends

to be larger for a more compact conformation. However, it

is not significantly dependent on the conformation and

the largest difference observed is only ;10kB. For the

C-peptide, the TE is the smallest for the fully extended

conformation and the largest for the a-helix structure, and

the difference is quite large (;54kB). The TE for the a-helix

structure is larger than that for the unfolded conformation by

;23kB. Thus, the formation of an a-helix structure involves

a large gain in the TE of the solvent, which has been

overlooked in earlier studies. The TE gain of ;23kB cor-

responds to the free-energy change of ;�14 kcal/mol at

25�C. Baldwin (11) argued that the enthalpy change in the

formation of an intramolecular hydrogen bond between ‘‘O’’

and ‘‘N’’ in –CONH– groups in water, CO���W 1 NH���W
/ CO���HN 1 W���W, is 0 6 1 kcal/mol. Even if the

enthalpy change was negative and as large as �1 kcal/mol,

the contribution to the a-helix formation would be ;�9

kcal/mol. This suggests that in the a-helix formation the

TE gain is more substantial as a driving force than the

intramolecular hydrogen bonding that unavoidably accom-

panies the dehydration penalty. This never means that the

intramolecular hydrogen bonding is unimportant. Suffi-

ciently many intramolecular hydrogen bonds must be formed

in the interior to compensate the dehydration penalty. As

argued in recent articles (26,41), the formation of the helical

structure by a long backbone, which features the a-helix

structure, leads to a significant decrease in the excluded

volume for the solvent molecules. The formation of the

b-sheet structure also results in the excluded-volume decrease

due to the lateral contact of backbones (26). The TE gain

arising from the formation of these secondary structures

should be dependent on the amino acid sequence, and the

examination of the sequence effects is an interesting task for

the future.

Our next concern is to check if the TE gain of the solvent

upon folding is large enough to compete with the confor-

mational-entropy loss that is quite large. Let DSN and DSD
be DSI for the native structure and DSI for the unfolded

conformation, respectively. (In the case of Met-enkephalin

whose stabilized conformation is extended (42), DSI for the
compact conformation andDSI for the extended conformation

shown in Fig. 3 are regarded as DSN and DSD, respectively.)
The CE change upon unfolding DSC,N/D (i.e., the CE loss

upon folding) can roughly be estimated as the sum of

(ln9)NRkB and 1.7NRkB, which, respectively, represent the
contributions from the backbone and the side chains (43).

Fig. 4 is prepared to compare (DSN� DSD) and DSC,N/D for

the peptides and proteins. The estimation of the CE change is

not quantitatively accurate. We can generate a number of

different unfolded conformations on a computer and the TE

gain calculated should be variable, depending on the unfolded

conformation chosen. For these reasons, the comparison

illustrated in Fig. 4 gives just an idea of the magnitudes of the

TE gain and the CE loss upon folding as functions of NR. The

values of the ratio (DSN� DSD)/DSC,N/D are;0.53,;0.45,

;0.95, and ;1.2 for Met-enkephalin, the C-peptide, protein

G, and barnase, respectively. It can be concluded that if NR

becomes sufficiently large, the TE gain is powerful enough to

compete with the CE loss.

Here, it is worthwhile to refer to the temperature

dependence of the CE loss and the TE gain. The experi-

mental measurements (44) have shown that the CE loss

increases considerably as the temperature increases. This

evidence can physically be interpreted as follows. The CE is

closely related to the torsion energy of a protein molecule.

The dihedral angle giving high torsion energy is not allowed

at a low temperature. As the temperature increases, the al-

FIGURE 3 Representative conformations of Met-en-

kephalin, the C-peptide, protein G, and barnase. The con-

stituent atoms are represented by the shaded model in

transparency. The backbone atoms are shown by the

ribbon model. The coil, a-helix, and b-strand are colored

in blue, red, and yellow, respectively. (A) Met-enkephalin.

An extended conformation (top) and a compact confor-

mation obtained as the lowest-energy conformation in

vacuum (bottom). (B) The C-peptide. An unfolded confor-

mation (top) and the native a-helix structure (bottom). (C)

Protein G. An unfolded conformation (top) and the native

structure (PDB code, 2GB1) (bottom). (D) Barnase. An

unfolded conformation (top) and the native structure (PDB

code, 1BNR) (bottom).
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lowed range of the dihedral angle becomes increasingly

wider, leading to larger CE of an unfolded conformation.

The CE of the native structure does not become significantly

larger due to its conformational constraints. It follows that

the CE loss becomes larger with increasing temperature. On

the contrary, the TE gain becomes smaller as the temperature

increases because the solvent packing fraction, which has

a large effect on the TE gain, becomes slightly lower upon

heating. In other words, the TE gain increases as the tem-

perature becomes lower, whereas the opposite is true for the

CE loss.

Characteristics of native structure

For protein G, we have tested over 100 conformations

with great compactness, which were taken from those in the

trajectories of exhaustive computer simulations (39). Three

of them (structures 1, 2, and 3) are compared with the native

structure in Fig. 5. It has been found that there are sig-

nificantly many conformations giving lower intramolecular

energy than the native structure. Strikingly, we have found

no conformation giving larger TE than the native structure.

We now discuss the TE for the specific structures shown in

Fig. 5. The values of DSI calculated under the reference

condition, ‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’, for the four

structures are given in Table 2. The absence of the b-sheet in

structure 1 causes smaller TE. Although the a-helix for-

mation leads to a large stabilization as shown above, the TE

of structure 2 with four a-helices is smaller than that of the

native structure. This result indicates that the nonlocal

intramolecular contacts play important roles in the forma-

tion of the native structure. If a solute has a smooth surface,

for a fixed volume the spherical shape gives the smallest

excluded volume for solvent molecules and the largest TE.

However, this is not true for a protein with the complex

polyatomic structure. For example, the conformation of

structure 3 is more spherical than the native conformation as

FIGURE 4 Gain in the translational entropy (TE) of the solvent calculated

under the reference condition (‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’) and loss

of the conformational entropy (CE) of the peptide or protein molecule. The

TE gain and the CE loss upon folding are compared.

FIGURE 5 Bond representation of four example con-

formations of protein G. The ribbons of the backbone

atoms are colored in the same manner as in Fig. 3. (A) The

native structure. (B) A conformation in which the a-helix

in agreement with the native structure is formed but the

b-sheet is absent (structure 1). (C) A conformation with four

a-helices (structure 2). (D) A nearly spherical conforma-

tion with an incomplete b-sheet (structure 3).
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observed from Table 3 in which the parameters representing

overall shapes of the four structures and the unfolded

conformation are compared. Nevertheless, structure 3 gives

considerably smaller TE than the native structure. The tight

packing specific to the amino acid sequence of protein G

gives rise to the asphericity of the native structure. Thus,

among the conformations that are probable in terms of the

intramolecular energy, the native structure can be character-

ized as the structure allowing the surrounding water to win

almost the largest TE.

The tight packing in the interior of a protein molecule is

necessary to ensure that the native structure be stable and

that partially denatured, inactive structures have negligible

probability at ambient temperatures (5,45). Pace (7) claimed

that the tight packing in the native structure is ascribed to

the van der Waals interactions among protein groups in the

interior, which are more favorable than the interactions of the

same groups with water in an unfolded protein. To examine

his claim, we consider the oxygen atom in the –CONH–

group that has the largest value of the Lennard-Jones (LJ)

epsilon. In Fig. 6, the LJ interaction between oxygen atoms,

whose attractive part is the van der Waals interaction, is

compared with the interaction entropically induced in

solvent. The former is calculated using the AMBER99

parameters. The latter is theoretically calculated as the

interaction between hard spheres, the diameter of which

equals the LJ sigma of the oxygen atom (0.29 nm), immersed

in solvent hard spheres with diameter 0.28 nm. The integral

equation theory incorporating accurate bridge functions (46)

is employed in the calculation. The total interaction, the

sum of the two interactions, is also shown in the figure. It is

apparent that the solvent-induced interaction predominates

over the LJ interaction. The minimum of the LJ interaction

occurs at ;0.33 nm (the distance between two centers) with

the minimum interaction energy of �0.35kBT, whereas the
total interaction has the minimum of�1.26kBT at;0.30 nm.

We note that the incorporation of an attractive interaction in

the solvent-solvent potential causes a downward shift of the

induced interaction, even enhancing its predominance. Thus,

the induced interaction makes a dominant contribution to the

unexpectedly tight packing (2–7) leading to a very large

stabilization.

Effects due to molecular size and
packing fraction of solvent

The conformation of a protein is quite variable depending on

the solvent species. The TE effect, which plays essential

roles in the conformational stability, is governed by the two

key parameters, the molecular diameter dS and the packing

fraction hS of the solvent. Here, we make a quantitative

examination of the effects due to dS and hS. As for the TE

gain arising from the contact of spherical solutes, within the

framework of the AO theory (20), it increases in proportion

to hS and 1/dS. However, the TE gain upon folding calcu-

lated by the 3D integral equation theory for the polyatomic

TABLE 2 DSI calculated under ‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’

for representative conformations of protein G

Conformation Parameters DSI/kB

Native AMBER99 �2179 (207)

Unfolded AMBER99 �2386 (0)

Structure 1 AMBER99 �2225 (161)

Structure 2 AMBER99 �2212 (174)

Structure 3 AMBER99 �2255 (131)

The number in the parenthesis denotes the value relative to DSI/kB of the

unfolded conformation. For example, the TE of the solvent in which protein

G is immersed is larger for the native structure by 207kB than for the

unfolded conformation.

TABLE 3 Overall shapes estimated for representative

conformations of protein G

Conformation l1/l3 l1/l2

Native 1.40 1.32

Unfolded 2.04 1.85

Structure 1 1.25 1.05

Structure 2 1.27 1.15

Structure 3 1.19 1.08

The overall shape of a protein molecule can be characterized by the three

principal moments of inertia, l1, l2, and l3. These moments are given as

the eigenvalues of the matrix of radii of gyration (15). The asphericity can

be measured by monitoring the parameters, l1/l2 and l1/l3 (l1 $ l2 $ l3),

where li is defined as li ¼ 1=l
1=2
i ; (i ¼ 1, 2, 3). For a complete sphere,

l1/l3 ¼ 1 and l1/l2 ¼ 1. For a cylinder with length greater than diameter and

for a prolate, l1/l3 . 1 and l1/l2 . 1. For a disk with length smaller than

diameter and for an oblate, l1/l3 . 1 and l1/l2 ¼ 1.

FIGURE 6 Direct Lennard-Jones interaction and solvent-induced in-

teraction between oxygen atoms. The solvent-induced interaction, which is

entropic in origin, is represented in terms of the potential of mean force. The

sum of the two interactions is also shown.
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structure exhibits more complex behavior. We have chosen

two additional conditions, ‘‘dS¼ 0.42 nm and hS¼ 0.3665’’

and ‘‘dS ¼ 0.28 nm and hS ¼ 0.3927’’ (the reference con-

dition is ‘‘dS ¼ 0.28 nm and hS ¼ 0.3665’’), and analyzed

the TE effect for the peptides and proteins. The values of DSI
calculated under ‘‘dS¼ 0.42 nm and hS¼ 0.3665’’ are given

in Table 4 that is to be compared with Table 1. The TE gains

upon folding (DSN � DSD) obtained from the three different

conditions are compared in Fig. 7. The ;7% increase in hS

leads to the TE gain that is larger by ;21, ;17, ;12, and

;17%, respectively, for Met-enkephalin, the C-peptide,

protein G, and barnase. The;33% decrease in 1/dS results in
the TE gain that is smaller by ;27, ;46, ;35, and ;46%,

respectively. The effects due to hS and 1/dS are much larger

than the AO theory predicts and significantly dependent on

the peptide or protein species. An impressive result is that for

barnase the TE gain under ‘‘dS¼ 0.42 nm and hS¼ 0.3665’’

is far smaller than the CE loss ((DSN � DSD)/DSC,N/D ;

0.65). We have found for barnase that the TE gain is much

smaller than the CE loss even when hS is increased to 0.4189

with dS ¼ 0.42 nm. The packing fraction of a pure solvent in

liquid phase at ambient temperatures and pressures does not

vary greatly from solvent to solvent, whereas the variation of

the molecular size is much larger: Whenever dS increases,

hS/dS becomes much smaller. Water exists, thanks to the

hydrogen-bonding network, in a dense liquid state despite its

exceptionally small molecular size. This feature of water is

crucially important in protein folding.

Comments on solute hydrophobicity

The hydration free energy (HFE) of a nonpolar solute has

a positive value. In a conventional interpretation, the phys-

ical origin of the positive value is the entropic loss arising

from the ordering of water molecules around the solute

(12,13). Hereafter, this is simply referred to as the entropic

loss. The entropic loss originates from the situation in which

water molecules interact through strongly attractive poten-

tial whereas the water-solute attractive interaction is much

weaker. However, the TE loss upon the insertion of the

solute into water, which arises from the restriction of the

translational movement of water molecules, also makes

a significantly large contribution to the positive HEF (47).

An important point to be emphasized is that the TE loss is

always present regardless of the physicochemical properties

of the solute, whereas the entropic loss is present only around

a nonpolar solute. The entropic loss increases roughly in pro-

portion to the accessible surface area. Therefore, when the

entropic loss dominates, the HFE can be scaled by the ASA

and this scaling is experimentally known to be valid for small

solute molecules. However, by employing a realistic molec-

ular model for water, Cann and Patey (48) showed for

sufficiently large nonpolar solutes that the TE loss, which

strongly depends on the excluded volume, makes a dominant

contribution to the HFE and that the scaling by the ASA does

not hold at all. We remark that the TE loss of water upon the

insertion of a solute must explicitly be included in the

interpretation of the solute hydrophobicity.

Even when the concern is just the free-energy change

associated with the conformational change of a protein, the

hydration properties of small solute molecules cannot be

extended to those of large proteins in a straightforward

manner as shown below. The solvation free energy DmS can

be decomposed into two terms. One of them is the con-

tribution from the molecular volume DmS0 and the other

is the contribution from the solute surface structure DmSA:

DmS ¼ DmS0 1 DmSA. Let us consider different structures of

FIGURE 7 TE gains of the solvent upon folding calculated under three

different conditions, ‘‘ds¼ 0.28 nm and hS ¼ 0.3665’’ (dark shaded), ‘‘dS ¼
0.42 nm and hS ¼ 0.3665’’ (light shaded), and ‘‘dS ¼ 0.28 nm and hS ¼
0.3927’’ (solid).

TABLE 4 DSI calculated under ‘‘dS ¼ 0.42 nm and hS ¼ 0.3665’’

for representative conformations of Met-enkephalin, the

C-peptide, protein G, and barnase

Peptide or protein (conformation) Parameters DSI/kB

Met-enkephalin (compact) ECEPP/2 �81 (7)

Met-enkephalin (extended) ECEPP/2 �88 (0)

C-peptide (native) AMBER99 �208 (30)

C-peptide (unfolded) AMBER99 �220 (18)

C-peptide (Extended) AMBER99 �238 (0)

C-peptide (native) ECEPP/2 �207 (28)

C-peptide (extended) ECEPP/2 �235 (0)

Protein G (native) AMBER99 �744 (135)

Protein G (unfolded) AMBER99 �879 (0)

Barnase (native) AMBER99 �1384 (280)

Barnase (unfolded) AMBER99 �1664 (0)

The number in the parenthesis denotes the value relative to DSI/kB of the

extended conformation (for Met-enkephalin and the C-peptide) or of the

unfolded conformation (for protein G and barnase). For example, the TE of

the solvent in which barnase is immersed is larger for the native structure by

280kB than for the unfolded conformation.
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a protein. Because the molecular volume is constant against

the structure change, DmS0 ¼ DmS � DmSA is independent of

the structure and the following equation holds: (DmS)I �
(DmS)J ¼ (DmSA)I � (DmSA)J (the subscripts I and J denote
values for two different structures, structures I and J). In
the ASA method applied to our model system, DmSA is

considered proportional to the ASA (the ASA is denoted

by A). If this consideration is valid, DIJ ¼ {(DmS)I �
(DmS)J}/(AI � AJ) takes the same value for any structures.

For the four structures of protein G shown in Fig. 5 and

explained in Table 3, we have calculated the ASA (49) and

DIJ (I ¼ 1, 2, 3) where the native structure is chosen as

structure J. The values of DIJ/(kBT) are ;�980, ;110, and

;�550 nm�3, respectively. DIJ is quite variable and even its

sign is changeable. Thus, the ASA method fails for a large

solute molecule like protein G for which the TE effect domi-

nates.

CONCLUDING REMARKS

We have pointed out the importance of the translational

movement of water molecules as a major driving force in

protein folding. Even in the complete absence of potential

energies among the atoms forming a protein-solvent system,

there is a gain in the translational entropy of the solvent,

which favors the protein folding. The TE gain upon folding

becomes the largest when the solvent is water that exists,

thanks to the hydrogen-bonding network, in a dense liquid

state at ambient temperatures and pressures despite its

exceptionally small molecular size. We note that the TE gain

is physically different from the entropic gain arising from the

burial of nonpolar groups followed by the release of highly

ordered water molecules adjacent to the groups. For

a sufficiently large peptide and a protein immersed in water,

the TE gain upon folding is powerful enough to compete

with the conformational-entropy loss that is quite large. In

another solvent whose molecular size is significantly larger,

the TE gain is no longer capable of competing with the CE

loss even for a protein.

The formation of an a-helix structure involves a TE gain

of water contributing to a significantly large free-energy

decrease. For the C-peptide, which has a high propensity to

form the a-helix, it has been shown that the contribution

is considerably larger than that from the intramolecular hy-

drogen bonding plus the dehydration penalty. For protein G

we have tested over 100 compact conformations generated

by a computer simulation with the all-atom potentials as well

as the native structure and have found that the largest TE of

water is attained in the native structure. Though this result

is to be examined in further studies for other proteins, it is

suggestive that the native structure can be characterized as

the structure allowing the surrounding water to win almost

the largest TE. Another finding is that the TE effect pre-

dominates over the van der Waals attractive interactions

among protein groups in the interior and seems to be the

most effective in achieving the tight packing in the interior

required for a protein to function.

Protein folding is the most fundamental example of the

biological self-assembly (1). A variety of ordered structures

are formed and self-assembling processes occur in a living

system. Good examples are the molecular recognition be-

tween guest ligands and host enzymes, which is often referred

to as the lock-key interaction (24,50,51), the association of

protein molecules, and the burial of protein molecules into

a membrane. The formation of amyloid fibrils (25,26) is no

exception though it is quite unfavorable and causes various

diseases. It is generally believed that these processes are

driven by a great energy gain at a large expense of the

entropy. However, we claim that the entropy of the whole

system including the surrounding water does not necessarily

decrease during the processes: even when it decreases, only

a moderate energy gain can overcome the total entropic loss.

(It has been shown in recent experiments that the amyloid-

fibril formation (52) and the lock-key interaction (53) are

entropically driven. We believe that the translational move-

ment of water molecules is a powerful driving force in these

processes though the authors in Ohtaka et al. (53) give a

different interpretation of their experimental results.) How-

ever, this is not true in solvents other than water. A con-

spicuous aspect of the crucial importance of water in

sustaining life can thus be understood.
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