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ABSTRACT Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these
lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational
freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory.
Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive po-
tentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto
a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may
suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy
loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon
adsorption. Extending Rosenbluth’s Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we
argue that similar information could bederived fromabiasedsuperposition of quenchedmembranesimulations.Usingasimple cell
modelweaccount for surface concentration effects, andshow that theaverageadsorption probabilities onannealedandquenched
membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch
mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein.

INTRODUCTION

The lipid bilayer, constituting the central structural element

of biological membranes, is a two-dimensional fluid mixture,

composed typically of many lipid species. Owing to the

lateral mobility of lipids at physiological temperatures, the

membrane can respond to interactions with integral and pe-

ripheral macromolecules by mobilizing those lipids interact-

ing favorably with the macromolecule into the interaction

zone. This process leads to local changes in lipid composi-

tion around the guest molecules which, under certain condi-

tions, may evolve into larger-scale reorganization ofmembrane

components, resulting in domain formation. The molecular

composition and phase characteristics of the domains, as in

lipid rafts, are different from those of the surrounding mem-

brane (1–3).

The ability of integral proteins to induce local and global

changes in lipid composition has been extensively docu-

mented experimentally (4), and amply analyzed theoretically

(5,6). Similarly, experiments reveal that when charged macro-

molecules, such as certain kinds of proteins or DNA, are ad-

sorbed onto a mixed membrane containing a small amount

of oppositely charged lipids, the charged species migrate

toward the adsorbed macromolecule (7–9), tending to achieve

local electrical neutrality. Although lowering the electrostatic

(free) energy of the system, the segregation of charged lipids

induced by the peripheral macromolecule may involve a non-

negligible entropic penalty. Several recent theoretical studies

have carefully analyzed the energetic-entropic balance associ-

ated with electrostatic adsorption of rigid macromolecules

(e.g., DNA and globular protein) onto fluid membranes (10–

16). It was shown, for instance, that the extent of lipid

segregation, the corresponding entropy loss, and the interaction

free energy depend sensitively on the shape, charge, and

concentration of the adsorbing macromolecule (17,18).

This work focuses on the energetic and structural char-

acteristics of the interaction between flexible, electrically

charged, macromolecules (polyelectrolytes), and mixed, op-

positely charged, fluid membranes. We shall consider three-

component membranes composed of one electrically neutral

species and two differently charged lipids. Electrostatic ad-

sorption on suchmembranes may involve significant changes

in the spatial configuration of the adsorbing polyelectrolyte

and, consequently, a substantial loss of conformational en-

tropy. The two kinds of entropy loss, those associated with

lipid segregation and those which lower the macromolecule’s

conformational freedom, tend to offset the gain in electro-

static interaction energy between the oppositely charged

molecules. It should be noted, however, that both degrees of

freedom, namely, lipid mobility and macromolecule flexi-

bility, enable the interacting complex to select, with higher

probability, those mutual membrane-macromolecule config-

urations of lowest free energy.

A delicate balance between the energetic and entropic

contributions to the adsorption free energy on mixed fluid

membranes is exhibited in various biological processes (19,20).

One important example is the electrostatic-switch mecha-

nism underlying the operation of the myristoylated alanine-

rich C kinase substrate (MARCKS), and several other

proteins (21,22). MARCKS is a prominent protein C kinase

substrate, implicated in a variety of signaling pathways
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involving, for instance, the control of lipid second

messengers and the regulation of cytoskeletal actin. This

natively unfolded (and thus flexible) protein binds electro-

statically to anionic lipids in the inner leaflet of the plasma

membrane. Of special importance in this binding is the

multivalent (here z ¼ �4, but generally varying between �3

and �5) anionic lipid (phosphatidylinositol 4,5 bisphos-

phate, PIP2). The average membrane concentration of PIP2 is

typically;1%, yet it tends to localize in viral envelopes and

membrane rafts, as well as in the binding zones of various

proteins involved in signal transduction pathways. Among

these proteins is MARCKS, which binds to the plasma

membrane through its relatively small (25-residue) but

strongly charged effector domain that comprises 13 basic

residues. A 150-residue-long flexible polypeptide chain

separates the effector domain from the myristoylated

N-terminus, and a comparably long and flexible peptide

chain connects the effector domain with the C-terminus (for

more details, see e.g., Gambhir et al. (9)). The myristoyl

chain inserts into the hydrophilic core of the lipid bilayer,

serving to anchor MARCKS to the membrane.

Experiments reveal that the effector domain sequesters

approximately three PIP2 molecules (9,23,24), suggesting

that these multivalent (z ¼ �4) lipids provide most of the

negative charge required for neutralizing the 13 basic charges

of theMARCKS’ effector domain (25). Considering the small

average PIP2 concentration in the membrane (;1%), versus

the 10–30% abundance ofmonovalent acidic lipids (primarily

phosphatidyl-serine, PS), it is clear that the protein must

import the multivalent lipids from remote membrane regions.

Another significant observation is that upon lowering the net

charge of the effector domain from 113 to 17, MARCKS

detaches from the membrane, thereby exposing PIP2 to

cleavage by phospholipase C and initiating a series of signal

transduction events (26,27). The change in charge is generally

achieved through phosphorylation of three serine residues in

the basic domain by protein kinase C.

In addition to electrostatic interactions, MARCKS inter-

acts with the membrane hydrophobically as well, through the

myristoyl anchor at the N-terminus and via five phenylal-

anine side chains within the effector domain (28). A subtle

interplay between the electrostatic and hydrophobic interac-

tions, as well as the entropies associated with the long flexible

chains on both sides of the effector domain, governs the in-

tricate electrostatic switching process involving MARCKS

and PIP2. Motivated by this notion, our goal in this study is

to examine the coupling between electrostatic interactions,

membrane composition, lipid mobility, and polymer flexi-

bility, and elucidate its role in the adsorption of charged mac-

romolecules onto oppositely charged membranes. Although

inspired by the biological relevance of these interactions and

processes, our present calculations do not attempt to mimic

in detail the behavior of any particular biological system. In

fact, our simulations involve a rather short (20-segment) flex-

ible polyelectrolyte chain, interacting with a three-component

fluid membrane containing neutral, monovalent, and tetra-

valent lipids. More specific simulations, modelingMARCKS-

membrane interaction, are in progress.

To demonstrate the important role of lipid mobility, our

results for the fluid (i.e., annealed) membrane are compared to

those obtained for a frozen (i.e., quenched) membrane of the

same average lipid composition. The structural and energetic

characteristics of a polyelectrolyte interacting with a fluid

membrane are qualitatively and quantitatively different from

those pertaining to any specific quenched lipid membrane.

However, from the purely formal-computational aspect, as

argued in the next section, the statistical aspects of polymer

adsorption on a fluid membrane can also be derived using

a biased superposition of statistical averages corresponding to

polymer adsorption on an ensemble of quenched membranes.

We shall also show that, in the limit of vanishing polymer

concentration (in the bulk solution and hence also on the

membrane surface), the average adsorption probability on a

Boltzmann-weighted ensemble of quenched membranes

equals the adsorption probability on an annealing, fluid mem-

brane. Differences between the two kinds of membranes

appear at nonzero concentrations ofmacromolecules, andwill

be accounted for using a simple cell model.

In addition to the fluid and quenched lipid membranes,

some of our calculations describe polyelectrolyte adsorption

on uniformly charged surfaces, such as those of metal oxides

or metal electrodes (29,30). We shall see that, in general,

uniformly charged surfaces adsorb more weakly than either

a quenched or a fluid lipid membrane. Another limiting case

of interest is that of a stiff polyelectrolyte interacting with

a charged membrane. Contrasting the adsorption behavior of

such a molecule with that of a self-avoiding freely jointed

chain will emphasize the role of polyelectrolyte flexibility. As

we shall see, weak electrostatic interaction may not suffice to

overcome the loss of chain flexibility upon adsorption. This

will be demonstrated by considering the limiting cases of

a weakly charged polyelectrolyte and a membrane containing

only monovalent lipids.

In the next section we first describe the basic statistical-

thermodynamic background underlying the adsorption of a

flexible macromolecule onto the various types of lipid mem-

branes mentioned above. Later in that section we introduce

the model system and describe our extended version of the

Rosenbluth Monte Carlo (MC) simulation scheme (31,32),

which enables efficient simulation of polymer adsorption on

annealing, fluid, membranes.We then present and analyze the

results of the simulations and close with a brief summary of

the main conclusions.

THEORY

The lipid molecules comprising a fluid (annealed) membrane

are mobile and can thus diffuse into and out of the interaction

region with the adsorbing macromolecule. The statistical
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thermodynamics of macromolecule adsorption onto such

membranes involves simultaneous averaging over all the

polymer and lipid degrees of freedom. In a frozen membrane,

on the other hand, the lipids are immobile, and thermody-

namic averaging is obtained by tracing over many quenched

arrangements of the membrane lipids. Qualitative differences

between these two membrane types are reflected in various

structural and thermodynamic properties, such as the local

lipid composition around the adsorbed macromolecule, and

the average adsorption free energies. Formally, however, it

can be shown that the various characteristics of macromol-

ecule-lipid interaction on a fluid membrane, can be derived

by a biased averaging of the same property over a Boltz-

mann-weighted ensemble of quenched membranes. (This

suggests an indirect way of simulating adsorption onto the

fluid membrane using quenched membrane simulations.)

We shall see that the differences between average macro-

molecule adsorption characteristics on fluid and quenched

membranes are substantial at nonzero concentrations of

macromolecules, but disappear in the limit of vanishing

concentration. We open this section with a detailed discus-

sion of the relevant thermodynamic background, and then

describe the model system and our method of simulation.

Adsorption thermodynamics

All our simulations involve one adsorbed macromolecule, as

formally appropriate to low surface concentrations. However,

using a simple cell model, the simulations can also be used to

account for the adsorption behavior at higher surface con-

centrations. In this model, the membrane area A is divided

into an array of A/a noninteracting cells, all with the same

area, a, and the same lipid composition. The cell area is large

enough to comfortably accommodate one adsorbed macro-

molecule. The model thus, approximately, accounts for

excluded area effects but ignores other intermacromolecule

interactions. Note that to contain a flexible macromolecule,

e.g., an unfolded protein, a membrane cell should typically

consist of several hundreds of lipid molecules. For the three-

component membranes of interest here, this implies an

enormous number of two-dimensional lipid arrangements.

Single molecule partition functions

We treat the quenched membrane as an ensemble of inde-

pendent cells, each characterized by a specific frozen lipid

configuration, m. To compare the quenched membrane with

a fluid membrane having the same lipid composition, we

equate the fraction, Pq(m), of quenched membranes in con-

figuration m, with the Boltzmann weight, P(m), of m in the

bare fluid membrane, i.e.,

PqðmÞ ¼ PðmÞ ¼ exp½�UðmÞ�
q
ð0Þ
f

; (1)

where q
ð0Þ
f is the partition function per cell of a bare fluid

membrane,

q
ð0Þ
f ¼ +

m
exp½�UðmÞ�: (2)

In these equations and below we use the subscripts q and f for
the quenched and fluid membranes, respectively. Also, the

potential energy U(m) of the lipids in configuration m, as

well as all other energies are hereafter expressed in units of

kBT, the thermal energy, where T is the temperature and kB is

the Boltzmann constant.

The partition function, per cell, of a fluid membrane

occupied by an adsorbed macromolecule is given by

q
ð1Þ
f ¼ +

m;p

exp½�Uðm; pÞ�

¼ +
m

fexp½�UðmÞ�+
p

exp½�UðpjmÞ�g

¼ q
ð0Þ
f +

m

PðmÞqð1Þ
m ¼ q

ð0Þ
f q

ð1Þ
m

D E
q
: (3)

Here U(m,p) ¼ U(m) 1 U(pjm) is the potential energy

corresponding to the membrane-polymer configuration m,p.
The term U(pjm) stands for the energy of a polymer in state

p, interacting with a membrane in a given configuration m. It

includes the self-energy of the polymer (i.e., the sum of its

intersegment potentials), and its interaction energywith amem-

brane in state m. By p ¼ a,r we refer to the polymer chain

conformation, a, and the position, r, of the polymer relative to

the membrane plane (see below). The sum over p thus (tacitly)

involves integration over r, implying that q
ð1Þ
f is a configura-

tional partition function, bearing the dimensions of volume.

As above, U(m) is the interlipid interaction energy.

The sum of Boltzmann factors,

q
ð1Þ
m ¼ +

p

exp½�UðpjmÞ�; (4)

introduced in the third equality in Eq. 3, is, of course, the

partition function of a macromolecule adsorbed onto a

membrane of a specific lipid configuration m. From Eq. 3 it

thus follows that the partition function of a macromolecule

interacting with a fluid membrane can be expressed as a

Boltzmann average of the partition functions corresponding

to the ensemble of quenched environments. Note that the

constant lipid energy, U(m), is not included in our definition

of q
ð1Þ
m ; i.e., the energy of the occupied m-cell is measured

relative to the ground state energy U(m). On this energy scale

we obtain q
ð0Þ
m ¼ 1 for the empty cell. The quantity q

ð1Þ
m

D E
q

introduced in the last equality of Eq. 3 may be interpreted as

the average partition function, per cell, in a Boltzmann-

weighted ensemble of quenched membranes.

From Eq. 3, it also follows that the average of any property

A (e.g., adsorption energy, polymer radius of gyration, etc.)

of a polymer adsorbed on a fluid membrane, can, in prin-

ciple, be evaluated as a biased average of A in the ensemble

of quenched membranes. Explicitly, let

ÆAðmÞæ ¼ +
p

Aðm; pÞ exp ½�UðpjmÞ�=q
ð1Þ
m (5)
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denote the average (over polymer conformations) of A, for
a polymer adsorbed on a quenched membrane in configura-

tion m. Using Eqs. 1–4, we find

ÆAæf ¼
+
m;p

e�Uðm;pÞAðm; pÞ

q
ð1Þ
f

¼
+
m

PðmÞqð1Þ
m ÆAðmÞæ

+
m

PðmÞqð1Þ
m

[AðmÞq:

(6)

Note that all quantities on the right-hand side of this equation

depend only on quenched membrane properties. The second

equality thus offers a way of calculating ÆAæf as a weighted

average of the polymer conformational averages, ÆA(m)æ, in
the ensemble of quenched membranes. In this biased

average, here denoted as AðmÞq; the weight, (}PðmÞqð1Þ
m ),

of the quenched membrane configuration m, is the product of

the fraction of such membranes (P(m)) with the statistical

weight (} q
ð1Þ
m ) of all polymer conformations on this

membrane. It will be shown below that this formal relation-

ship between fluid and quenched membrane averaging may

be given a physical meaning in the limit of vanishing

macromolecule concentration. In this limit the probability of

finding a macromolecule adsorbed onto a quenched mem-

brane m is proportional to q
ð1Þ
m ; and hence AðmÞq is the

average of A(m,p) in the ensemble of quenched membranes.

Note, however, that this average differs from the simple

average ÆAðmÞæq ¼ +
m

PðmÞÆAðmÞæ:

Membrane partition functions

To account for the adsorption behavior at nonzero surface

concentrations we should consider a many-cell membrane

in equilibrium with a solution of macromolecules. Suppose

the bulk solution is of volume V, and contains Nb macro-

molecules of chemical potential m. For simplicity we assume

dilute solution behavior, in which case m ¼ �ln qb 1 ln ub,

where ub ¼ Nb/V is the bulk density of macromolecules, and

qb ¼ +
a
exp½�UðaÞ� (7)

is the internal partition function of a macromolecule in the

bulk solution. Note that the summation here is over all

possible conformations of the macromolecule, ensuring that

its center of mass (or one of its segments) is kept fixed in

space. Note also that qb, like all partition functions in our

treatment, is a configurational partition function. The mo-

mentum factors in the partition function cancel out iden-

tically in all relevant expressions (33). Note, however, that

m refers here to the configurational part of the chemical

potential, also known as the excess chemical potential (32).

The cells comprising a fluid membrane are identical.

Treating the membrane as an open system with respect

to macromolecule exchange, the grand-canonical partition

function of the membrane is

Jf ¼ ðjfÞ
M ¼ ½qð0Þ

f 1 gq
ð1Þ
f �M; (8)

where g ¼ exp(m) is the absolute activity, and jf ¼
q
ð0Þ
f 1gq

ð1Þ
f is the two-state (i.e., empty and occupied) parti-

tion function of a membrane cell. Using Ns to denote the

number of macromolecules adsorbed on the membrane

surface, the fraction, uf ¼ Ns/M ¼ Nsa/A, of the membrane

area occupied by macromolecules (or, the surface coverage),

is given by uf ¼ gq
ð1Þ
f =jf : We thus obtain a Langmuir-like

adsorption equation

uf

1� uf

¼ gq
ð1Þ
f

q
ð0Þ
f

¼ ub

qb

q
ð1Þ
f

q
ð0Þ
f

¼ ũbe
�DFf ; (9)

where in the second equality we have used the dilute solution

limit of the activity, g ¼ ub/qb¼ exp(m). In the third equality

we have introduced the dimensionless bulk concentration

ũb ¼ ubn ¼ nNb=V; where v is a volume per macromole-

cule defined in more detail below. Thus, ũb may be regarded

as the volume fraction of polymers in solution.

The grand partition function of the quenched membrane

is given by

Jq ¼
Y
m

ðjmÞ
Mm ¼

Y
m

½11 gq
ð1Þ
m �Mm ; (10)

where Mm ¼ P(m)M is the number of membrane cells with

a two-dimensional lipid distribution m. The probability of

finding an m-cell occupied by a macromolecule is um ¼
gq

ð1Þ
m =jm; so that

um

1� um

¼ gq
ð1Þ
m ¼ ub

q
ð1Þ
m

qb

¼ ũbe
�DFm : (11)

Averaging over all the quenched configurations, m, and

using Eqs. 3, 9, and 11, we find

+
m

PðmÞ um

1� um

¼ um

1� um

� �
q

¼ uf

1� uf

; (12)

or, equivalently,

DFf ¼ �ln Æe�DFm æq: (13)

Actually, with the definitions of DFf and DFm given in Eqs. 9

and 11, the last equality follows directly from Eq. 3.

Both um/(1� um) and exp(�DFm) are convex functions of

their arguments. Using Jensen’s inequality of convex func-

tions (34), it thus follows from Eqs. 12 and 13 that

Æumæq # uf and Æ� DFmæq #� DFf ; (14)

for any probability distribution P(m). In other words, on

average, macromolecule adsorption onto an ensemble of

quenched membranes (whose lipid configurations appear

with probabilities P(m)) is always weaker (lower u and

smaller �DF) than adsorption onto a fluid membrane of the

same lipid composition.

From Eq. 12 it follows that the equality Æumæq ¼ uf is

obtained only in the limit of vanishing surface coverage, i.e.,

when ũb/0: (ÆDFmæq / DFf requires that all DFm are

negligibly small, as can be seen from Eq. 13.) Underlying the
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limiting behavior Æumæq ¼ uf is the fact that although the lipid

molecules of a quenched membrane are, indeed, immobile,

the adsorbed macromolecules can nevertheless explore all

membrane states, m. This may be achieved via lateral dif-

fusion on the membrane surface and/or by desorption from

one local membrane region and adsorption into another.

Note also that in the limit ũb/0; we obtain um } q
ð1Þ
m (see

Eq. 11). Thus, in a Boltzmann-weighted ensemble of

quenched membranes, the number of macromolecules bound

to membranes of lipid configuration m, is proportional to

P(m)um and hence to PðmÞqð1Þ
m : If measured over an en-

semble of quenched membranes, the average of a physical

observable A(m,p) would then be given by AðmÞq ¼
+

m
PðmÞqð1Þ

m ÆAðmÞæ=+
m

PðmÞqð1Þ
m ; which, as noted in

Eq. 6, is equal to ÆAæf. Thus, in the u / 0 limit, both the

average surface concentration, and the u-weighted average of

A(m,p) over the quenched membrane ensemble, approach

the corresponding quantities in the fluid membrane.

A physical interpretation of the last conclusion can be

given in terms of the cell model, as follows. When u / 0

(and in the absence of kinetic constraints), each of the

adsorbed macromolecule can freely and independently visit

all membrane environments m, thereby sampling all possible

lipid-polymer configurations m,p. Furthermore, since none

of the cells is blocked, all m and hence all m,p are sampled

according to their Boltzmann weights, just like the states

sampled by a macromolecule on a fluid membrane. The

difference is, of course, that a macromolecule adsorbed on

a fluid membrane need not migrate from one cell to another

to sample the entire configuration space. Consequently, u¼ uf
is the same for all cells of the fluid membrane, whereas a

wide distribution of um values characterizes the ensemble of

quenched membranes. Note however, that in practice, even

this formal equivalence between a fluid membrane and an

ensemble of quenched membranes may not materialize, even

when u / 0, because of kinetic barriers to macromolecule

mobility.

Interestingly, it is possible that for some quenched mem-

brane states m, DFm # DFf (and hence, um $ uf). This may

appear surprising in view of the fact that the free energy, Ff

(not DFf), of a macromolecule interacting with a fluid

membrane is invariably lower than the free energy, Fm, of a

macromolecule adsorbed onto any quenched membrane, m.

(This is because q
ð1Þ
f involves summation over both m and p

and is therefore larger than any qð1Þ
m :) Hence, Ff ¼ �ln q

ð1Þ
f

,Fm ¼ �ln q
ð1Þ
m : After adsorption, however, the distribution

of lipid arrangements in the fluid membrane is no longer the

Boltzmann distribution before adsorption, implying a loss of

lipid-mixing entropy. Of course, no loss of lipid entropy is

involved upon adsorption onto a quenched membrane, which

explains why certain quenched states can be more attractive

to macromolecule adsorption than the fluid membrane.

Upon increasing the concentration of macromolecules

in solution, the more strongly adsorbing m-values of the

quenched membrane will be occupied first. Once these

favorable local environments (or cells) are populated, further

adsorption is necessarily suppressed. This implies Æumæq #

uf, because in the fluid membrane every cell can inde-

pendently anneal its lipid distribution, thereby enhancing

adsorption.

Our conclusions regarding the relationship between mac-

romolecule adsorption on quenched versus fluid membranes

agree with previous works pertaining to polymer statistics in

random media. Cates and Ball (35) have studied the behavior

of a single long polymer chain in a random medium and

concluded that, as long as the environment is infinite, the

quenched and annealed averaging will yield the same sta-

tistical chain properties. Our fluid and frozen membranes are

analogous to the annealed and quenched random potentials in

the treatment above. Inequalities valid for the multichain ad-

sorption, analogous to Eq. 12, have been obtained by

Andelman and Joanny (36,37) for neutral chains adsorbing

on annealed and quenched flat surfaces. The main conclusion

there is that the density of polymers on an annealed surface

(membrane) is always higher than in the frozen case.

The adsorbed state

The MC simulations presented in the following sections

enable evaluation of all the partition functions encountered

above, as well as a variety of relevant structural properties.

First, however, we have to clarify what distinguishes an

adsorbed macromolecule from a free macromolecule in

solution.

We noted above that the sumover p in Eqs. 2 and 3 involves
all possible chain conformations, a, as well as all possible

positions, r, of the macromolecule, relative to some arbitrary

point on the membrane. Identifying the membrane surface

with the (x,y) plane, the only relevant coordinate is the dis-

tance, z, of the macromolecule from the membrane surface.

This distance can be expressed in terms of the normal dis-

placement of any chain segment (or the center of mass) from

the membrane plane. In the simulations, we find it convenient

to measure this distance in terms of z1, the normal displace-

ment of the first (more precisely, terminal) chain segment (see

Fig. 1). Beyond a certain distance from themembrane surface,

comparable to the range of membrane-macromolecule inter-

actions, the macromolecule is not affected by the membrane.

This cutoff distance,l, may be defined in terms of z1, such that
for z1 # l, the macromolecule is considered adsorbed, and

otherwise as free in solution. An alternative, yet practically

equivalent definition of l can be given in terms of the average

segment density profile (see below).

With p [ z1, a, we find from Eq. 3 that the partition

function of a macromolecule adsorbed on a fluid membrane

is given by

q
ð1Þ
f ¼ a

Z l

0

+
m;a

exp½�Uðm;a; z1Þ�dz1 ¼ nq̂
ð1Þ
f ; (15)

with v [ la, and
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q̂
ð1Þ
f ¼ 1

l

Z l

0

qfðz1Þdz1 ¼
1

l

Z l

0

+
m;a

exp½�Uðm;a; z1Þ�dz1:

(16)

In the last equation we have introduced qf(z1), the partition

function of a macromolecule whose first segment is fixed at

z1. The factor a in Eq. 15 results from the fact that the

partition function per molecule must be proportional to the

cell’s area. The volume element, v ¼ al, may now be inter-

preted as the volume of a membrane cell. Thus, q̂
ð1Þ
f rep-

resents the (average) partition function per unit volume of

an adsorbed macromolecule, or, equivalently, the average

partition function per unit length along the membrane

normal. Note that for large z1 (practically for z1 $ l) we

have U(m,a;z1) ¼ U(m) 1 U(a), and hence qfðz1.lÞ ¼
qfðNÞ ¼ q

ð0Þ
f qb:

We may now rewrite Eq. 9 in the form

uf

1� uf

¼ ũb

1

l

Z l

0

qfðz1Þ
q
ð0Þ
f qb

dz1

" #
¼ ũbe

�DFf : (17)

Similarly, for the quenched membrane

um

1� um

¼ ũb

l

Z lm

0

qmðz1Þ
qb

dz1 ¼ ũbe
�DFm ; (18)

where qm(z1 . l) ¼ qm (N) ¼ qb. In Eq. 18, to enable

straightforward comparison with the fluid membrane, we

keep using the same concentration units, ũb ¼ alub:
For chain molecules composed of L segments, the seg-

ment density in the bulk solution is r(z ¼ N) ¼ rb ¼ Lub.

Near the membrane surface the segment density, r(z), is
different from rb and is given by

rðzÞ ¼
Z

dz1uðz1Þnðzjz1Þ; (19)

where u(z1) is the density of macromolecules whose first

segment is at z1, and n(zjz1)dz is the average number of chain

segments between z and z 1 dz due to chains originating at z1.

The surface excess of adsorbed macromolecule is, by

definition,

G ¼
Z N

0

½rðzÞ � rb�dz ¼ l½rs � rb�; (20)

where, in the second equality, rs [ ð1=lÞ
R l

0
rðzÞdz is the

average (three-dimensional) density of chain segments

within the surface layer. Note that the upper limit in the

integral defining G can be replaced by l (or any larger value).

The second equality may also be regarded as the definition of

the surface layer thickness l. Note that in the limit of

vanishing surface density, lars /L ¼ u.

A slightly different definition of l, useful in our numerical

calculations, can be given in terms of the ratio q(z1)/q(N) ¼
u(z1)/ub. Namely, we can choose l as the smallest value of

z1, beyond which this ratio is practically 1. In practice, the

two definitions are indistinguishable, because
R l

0
uðz1Þdz1

� ð1=LÞ
R l

0
rðzÞdz; so that the integral over r(z) in Eq. 20

can be replaced by the integral over u(z). The equality of the
two integrals follows from the fact that for practically all z1
within l, all chain segments will be found inside the surface

layer. For chains originating near l, say at z1 ¼ l � d (d �
l), some conformations will cross the z ¼ l surface, con-

tributing less than L segments to the surface layer density. By

symmetry, however, chains originating at z1 ¼ l 1 d will

compensate for the loss of segments from the z1 ¼ l � d

chains. The near-equivalence of chains originating at z1 ¼
l 6 d follows from the fact that these chains are hardly

affected by the membrane.

Equations 19 and 20 are applicable to the fluid membrane,

as well as any quenched membrane state m. For small values

of u we can use u(z1) ¼ ubq(z1)/q(N) with q(z1)/q(N)

derived from our single-chain simulations. Approximate

density profiles for nonzero surface concentrations can be

derived by expressing r(z) as the product of the probability
(u) to find the cell occupied and the normalized density

profile corresponding to one adsorbed molecule. With the aid

of Eqs. 17–19 we then find that for z # l,

rðzÞ ¼ u

Z l

0

qðz1Þ
q
ð1Þ nðzjz1Þdz1 ¼

ũbð1�uÞ
l

Z l

0

qðz1Þ
qðNÞnðzjz1Þdz1:

(21)

For z . l we must require r(z) ¼ rb. Note that this equation

applies to the fluid membrane, as well as to any quenched

membrane in state m.

The model system

Our model system consists of a single polyelectrolyte

interacting with a finite size membrane, large compared to

the size of the polymer and the range of intermolecular

potentials. With the exception of several limiting test cases,

in all simulations we consider polyelectrolyte chains com-

posed of L ¼ 20 spherical segments of diameter d,

FIGURE 1 A schematic drawing of the simulation model. A 20-segment

long chain of spherical segments, each carrying a single point charge in its

center, interacts with a mixed membrane composed of neutral, singly

charged and tetravalent anionic lipids, which occupy the sites of a two-

dimensional hexagonal lattice. Lipid charges are concentrated in the centers

of the corresponding discs. The lipids can diffuse (exchange positions)

within the membrane plane. The polymer chain is flexible, but subjected to

electrostatic and short-range spatial repulsion between its constituent

segments. The diameters, d, of polymer segments and lipid disks are equal.
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interacting with a considerably larger two-dimensional mem-

brane cell consisting of M ¼ 2500 lipid headgroups. The lipid

membrane is modeled as a perfectly flat and impenetrable

two-dimensional hexagonal lattice, with lipid headgroups

occupying all its lattice sites. The lattice constant is set equal

to d. The membrane may thus be regarded as an hexagonal

array of closely packed disks of diameter d, as illustrated

schematically in Fig. 1. Using a typical lipid headgroup area

of 65 Å2 we find d ¼ 8.66 Å. We simulate three-component

membranes, composed of electrically neutral (z ¼ 0),

monovalent (z ¼ �1), and tetravalent (z ¼ �4) headgroups.

These may be regarded as representing, respectively, the

phosphatidyl-choline (PC), phosphatidyl-serine (PS), and

phosphatidylinositol 4,5 bisphosphate (PIP2) lipids men-

tioned in the previous section. The lipid charges are treated

as point charges residing at the grid points of the hexagonal

lattice, and the electrostatic repulsion between them is

modeled in the Debye-Hückel (DH) approximation. Explic-

itly, the interaction potential between lipids of valences z1
and z2 at distance r apart, and in units of kBT, is

uDHðrÞ ¼ z1z2lB
expð�krÞ

r
; (22)

where lB ¼ e2/e kBT is the Bjerrum length, and k�1 is the

Debye screening length; e denotes the elementary charge and

e is the dielectric constant. In all calculations we use lB ¼
7.14 Å, appropriate for water (e ¼ 78) at room temperature,

and k�1 ¼ 10 Å, which corresponds to typical physiological

conditions (monovalent ionic strength of;0.1 M). Note that

k�1 is comparable to the other relevant length scale in our

system, namely, the distance (d ¼ 8.66 Å) between adjacent

lipid charges, as well as between adjacent polymer charges.

In the simulations each polymer bead carries a unit

positive charge (z ¼ 11), localized at its center. Although

the polymer bond length d is fixed, there are no other

restrictions on bond angles, except for those implied by

electrostatic and spatial (excluded volume) repulsion be-

tween nonbonded segments. For the electrostatic interaction

between polymer charges we again use DH potentials. The

spatial repulsion is modeled using the shifted and truncated

Lennard-Jones potential:

uLJðrÞ ¼ 4ẽ½ðs=rÞ12�ðs=rÞ6�1 ẽ for r # 2
1=6
s

0 for r . 2
1=6
s
:

�
(23)

Note that only the short-range repulsion of the 6:12 Lennard-

Jones potential is retained. Setting 21/6 s ¼ d and ẽ ¼
0:1 kBT ensures the onset of steep repulsion as soon as r falls
below d (38).

The electrostatic attraction between the oppositely charged

polymer and membrane is also modeled using screened DH

potentials. In addition, the membrane surface is treated as an

impenetrable wall to the polymer, implying a minimal dis-

tance of d/2 between polymer and lipid charges. At this dis-

tance the electrostatic attraction between a polymer (z ¼11)

segment and a monovalent (z ¼ �1) lipid headgroup is 1.07

kBT. For comparison, the electrostatic repulsion between

neighboring monovalent lipids or adjacent polymer beads,

taking the distance of closest approach to be r¼ d, is 0.35 kBT.
Since the distances between charges in the system are

either comparable to or larger than the Debye length, i.e., r $
d � k�1, screening by counterions is expected to be ef-

fective. Under physiological conditions, when k�1 is small

(of the order of few Ångströms), the long-range character of

the electrostatic interactions is screened and DH potentials

offer a reasonable approximation. These potentials are

commonly employed in simulation and theoretical studies

of polyelectrolyte-surface interactions (see, e.g., (39,40)).

Henceforth, we shall measure all distances in units of d.
Recall also that energies are measured in units of kBT.

Simulation method

The Rosenbluth MC method (31), or its configurational-bias

variant, provides an efficient means for simulating polymer

statistics (32). In this approach, chain conformations are

generated, segment after segment, with preference for con-

formations of large statistical weight. Based on these ideas we

present below our extension of the Rosenbluth scheme for

modeling polyelectrolyte adsorption on fluid, as well as

frozen and uniform membranes.

Frozen membrane

Consider first a polymer interacting with a membrane of

quenched lipid configuration m. The simulation begins by

placing the first chain segment at distance z1 above the center
of the membrane cell, where its interaction energy with

membrane lipids is u(z1,m) (see Fig. 1). We then sample

k random directions (and hence positions, r2) for segment 2

and select one, say rj22 ; with probability exp½�uðr j22 ; z1; mÞ�=
w2; where uðr j22 ; z1; mÞ[ uðj2; z1; mÞ is the interaction

energy of segment 2 with segment 1 and the membrane, and

w2 ¼ +k

j2¼1
exp½�uðrj22 ; z1; mÞ� is a local partition function.

This procedure is continued until all segments of the chain

are generated. Repeated applications of this scheme (for the

given (m, z1)) yield an ensemble of conformations fa ¼
r2, . . . ,rL;z1,mg with probabilities

PRða;z1; mÞ ¼ exp½�U ða;z1; mÞ�=k
L
Wða;z1; mÞ: (24)

As above, Uða; z1; mÞ ¼ uðz1; mÞ1+L

l¼2
uðrl; rl�1; . . . ; z1;

mÞ is the total interaction energy of polymer segments with

each other and with the membrane. The partition function,

Wða;z1; mÞ ¼
YL
l¼1

ðwl=kÞ; (25)

with w1 [ k exp[�u(z1,m)], is the complete Rosenbluth

factor of the polymer-membrane configuration (a;z1,m).

Note that W becomes independent of k in the limit k /N. In

our calculations we generally use k ¼ 50. Note also that some
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of the k vectors pointing from segment l to l 1 1 may cross

the membrane interface, especially if segment l is near the
surface. Their probability, and likewise their contribution to

wl11 (and hence to W) is zero, reflecting the loss of entropy

associated with the presence of the hard membrane wall.

Since every possible conformation a is sampled with

probability proportional to exp[�U(a)]/W(a), proper Boltz-

mann averaging requires weighting each a by its Rosenbluth

factor W(a); i.e., the average (over a, for the given z1,m) of

any structural or energetic polymer property A is given by

ÆAðz1; mÞæ¼+
a
W ða; z1; mÞAða;z1; mÞ=+

a
W ða; z1; mÞ:

(26)

Note also that the partition function corresponding to all

polymer conformations originating at z1 is

qm ðz1Þ ¼ k
LÆW ðz1; mÞæ¼ k

L+
a
W ða;z1; mÞ=+

a
1; (27)

where it should be stressed that the sum runs over all the a

generated by the Rosenbluth scheme.

For z1 . l we have qm(z1) ¼ qm(N) [ qb. Averaging
ÆA(z1,m)æ over all z1 # l we obtain the average of A (over all

conformations) for molecules adsorbed on a frozen mem-

brane of lipid configuration m,

ÆAðmÞæ¼
Z lm

0

qmðz1ÞÆAðz1; mÞædz1=

Z lm

0

qmðz1Þdz1: (28)

Similarly,

q̂
ð1Þ
m ¼ ð1=lÞ

Z lm

0

qmðz1Þdz1 ¼ k
LÆW ðmÞæ (29)

is the partition function of the adsorbed polymer (see Eq. 18).

Fluid membrane

From Eqs. 3 and 6 we know that the thermodynamic and

structural properties of a fluid membrane can be modeled

based on simulating an ensemble of quenched membranes.

However, this procedure is rather indirect and often imprac-

tical. Alternatively, adsorption on the fluid membrane could

be simulated by combining the Rosenbluth and Metropolis

methods. That is, after generating a polymer in conformation

p ¼ (a;z1) for a given lipid configuration m, the membrane is

allowed to relax to a new configuration m9 through a series of

Metropolis moves. Another polymer conformation p9 can

then be generated for m9, letting the membrane relax to m$,
and so on. The problem here is that the relaxed membrane is

no longer the one which served to generate the last polymer

conformation. A retracing procedure (32) can be used to

improve this scheme, but not fully eliminate its inconsis-

tencies. We have adopted, therefore, an alternative simula-

tion method for the fluid membrane whereby, in the spirit

of the Rosenbluth sampling scheme, we generate simulta-

neously both polymer conformations p and membrane con-

figurations m, as follows.

Any joint polymer-membrane configuration p,m is fully

specified by the coordinates of K ¼ L 1 M(�1) 1 M(�4)

particles; that is, L polymer segments, M(�1) monovalent

lipids, and M(�4) tetravalent lipids (M(0)¼ M – M(�1) – M(�4)

neutral lipids occupy all other membrane sites). We now

generate a joint (p,m) configuration by randomly adding

either a polymer segment or a charged lipid, until all particles

have been placed. More explicitly, suppose the new

configuration is already partly grown, consisting of a polymer

chain of length l, and a partially charged membrane

containing m(�1) and m(�4) anionic lipids. One of the

remaining (K – l – m(�1) – m(�4)) particles is now randomly

selected and added to the system. If this is a polymer segment

it is added as the (l 1 1)th segment of the chain. As before,

this segment is placed in one of k possible positions, with

probability exp[�u(l11;l,m(�1),m(�4))]wl11, and u(l11;l,
m(�1),m(�4)) is the interaction potential of the added particle

with all those already placed, and wl11 is defined as usual. If

the new particle is, say, a monovalent lipid, it is placed with

probability exp½�uðmð�1Þ11; l; mð�1Þ; mð�4ÞÞ�=wmð�1Þ11 in

one of n randomly chosen membrane sites, where u(m(�1) 1

1;l,m(�1),m(�4)) is the interaction energy of this lipid with the

rest of the system, and wmð�1Þ11 is the sum of the Boltzmann

factors corresponding to the n membrane sites. (In the

simulations we usually sample n ¼ 1000 sites, some of

which are possibly occupied already and thus do not

contribute to w.) This procedure is repeated until all chain

segments and all charged lipids are placed, resulting in a sta-

tistical distribution of p,m configurations, whose probabil-

ities are

PRðp; mÞ ¼ k
�L

n
�½Mð�1Þ

1M
ð�4Þ�

exp½�U ðp; mÞ�=Wðp; mÞ;
(30)

where

W ðp; mÞ ¼
YL
l¼1

ðwl=kÞ3
YM

ð�1Þ
1M

ð�4Þ

i¼0

ðwi=nÞ; (31)

is the (generalized) Rosenbluth factor of configuration p,m.

As for the quenched membrane, we generally sample

many polymer-membrane configurations corresponding to

various z1 values and only then average over this variable.

The averaging procedure is analogous, e.g., the average of A
for a given z1 is

ÆAðz1Þæ¼+
a;m

W ða; m;z1ÞAða; m;z1Þ=qf ðz1Þ; (32)

where

qfðz1Þ ¼ ÆW ðz1Þæ¼+
a;m

W ða; m;z1Þ=+a;m
1 (33)

is the partition function introduced in Eq. 16. Similarly,

q̂
ð1Þ
f ¼ ð1=lÞ

Z l

0

qfðz1Þdz1 ¼ ÆWæf : (34)
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RESULTS AND DISCUSSION

From the simulations we have derived the basic thermody-

namic characteristics of macromolecules interacting with fluid,

quenched, and uniformly charged membranes. In parallel,

for every system considered we have calculated a variety of

structural properties, such as the two-dimensional distribu-

tion of charged lipids in the membrane plane, or the density

profile of chain segments along, as well as perpendicular to,

the membrane normal. Two membrane compositions were

analyzed in detail:

1. PC:PS:PIP2 ¼ 98:1:1 membrane, i.e., a membrane con-

taining 98% neutral (z ¼ 0, or PC) lipids, 1% monovalent

(z ¼ �1, PS) lipids, and 1% tetravalent (z ¼ �4, PIP2)

lipids.

2. PC:PS:PIP2 ¼ 89:10:1.

Note that the average charge, per lipid, corresponding to

these membranes (hereafter also referred to as the weakly-

charged and the strongly-charged membranes) is �zzw ¼ 0:01
ð�1Þ10:01ð�4Þ ¼ �0:05 and �zzs ¼ 0:1ð�1Þ10:01ð�4Þ ¼
�0:14; respectively.
For both compositions, simulations were performed for

fluid, quenched, and uniformly charged membranes. In the

uniformly charged membrane all lipids carry the same partial

charge, �zz:
We repeat the numerical values of the various parameters

in our model: The polyelectrolyte is a freely jointed homo-

polymer chain composed of L ¼ 20 spherical segments, each

carrying a z ¼ 11 charge (see Fig. 1). The membrane cell is

an hexagonal array of M ¼ 50 3 50 lipid molecules. The

headgroup diameter, d ¼ 8:66 Å; is equal to the polymer’s

bond length. The distance d also marks the onset of steep

excluded volume repulsion between nonbonded chain seg-

ments (see Eq. 23 where s ¼ d/21/6 � 7.72 Å and

ẽ ¼ 0:1 kBT). The Bjerrum and Debye lengths are lB ¼ 7.14

Å and k�1 ¼ 10 Å, respectively.

For the sake of comparison, we have also performed a

limited number of simulations for a stiff (rodlike) polymer,

as well as for a weakly charged ðz ¼ 11=2Þ polymer. Recall

that simulations are performed for varying values of the first

segment position, z1, and that z1 � l; corresponds to a free

polymer in solution. For the three-dimensional case of a poly-

mer in solution we have also carried out, for comparative

reasons, one set of simulations for an electrically neutral

polymer.

The number of chain-membrane conformations generated

for each z1 value of a polymer adsorbed on a fluid membrane

is ;106. The number of chain conformations generated for

each z1 value of a given quenched membrane m is;103, and

the number of membrane configurations is 104. The incre-

ments in chain origin positions are Dz1 ¼ 1. (Recall that

distances are measured in units of d.) The number of possible

bond directions when generating polymer conformations

is k ¼ 50. The number of possible positions for lipid ad-

dition in our simulation scheme of the fluid membrane is

n ¼ 1000.

A pictorial illustration of the polymer-membrane config-

urations generated by our simulations is given in Fig. 2. The

figure shows top and side views of two (rather arbitrary)

simulation snapshots of a polyelectrolyte interacting with

a fluid membrane of composition PC:PS:PIP2¼ 98:1:1. Only

part of the membrane is shown, yet it is apparent that the

local concentration of charged lipids in the vicinity of the

polymer significantly exceeds the membrane average.

Adsorption thermodynamics

Potential of mean force

Fig. 3 shows how DF(z1), the differential adsorption free

energy, and DE(z1), the differential adsorption energy, vary

with the distance (z1) of the chain origin from the surface of the

weakly charged (PC:PS:PIP2 ¼ 98:1:1) membrane. Fig. 4

shows the same quantities for the strongly charged (PC:

PS:PIP2 ¼ 89:10:1) membrane. The value DF(z1) is the free
energy change, or, the potential ofmean force, associatedwith

bringing the first segment of themacromolecule from the bulk

solution to distance z1 from the membrane. Then DE(z1) and
TDS(z1) ¼ DE(z1) � DF(z1) are the energetic and entropic

components of this free energy difference. More explicitly,

for the fluid and uniformly charged membranes DEf(z1) ¼
ÆU(a,m;z1)æf� ÆU(a)æb� ÆU(m)æf and DEu(z1)¼ ÆU(a,z1)æ�
ÆU(a)æb, respectively. For the quenched membrane we

FIGURE 2 Side and top views of two, rather arbi-

trary, simulation snapshots (left and right), of a poly-

electrolyte interacting with a weakly charged fluid

membrane (1%PIP2, and 1%PS). For visual clarity only

a section of the membrane is shown, and polymer

segments and lipid headgroups are depicted as small

spheres, (recall, however, that short range repulsions

keep these segments at distance$ d). PIP2 and PS lipids
are represented by blue and purple spheres, respectively.

Note the localization of the charged lipids in the vicinity

of the polymer.
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show here the average energy change corresponding to the

Boltzmann-weighted ensemble of quenched membranes,

ÆDEðz1Þæq[+
m

PðmÞDEmðz1Þ ¼+
m

PðmÞ½ÆUða;m;z1Þæ
� ÆUðaÞæb�UðmÞ�: (35)

The differential adsorption free energy onto the fluid mem-

brane is given byDFfðz1Þ ¼ �ln½qfðz1Þ=q
ð0Þ
f qb� ¼ �ln½uðz1Þ=

ub�; with a similar definition of DFu(z1). The corresponding

free energy change for the quenched membrane is defined

here as DFðz1Þh iq[�+
m

PðmÞln½qm ðz1Þ=qb�: It should be

noted that the net (or integral) adsorption energy of the

quenched membrane is not a simple integral of DEðz1Þh iq:
Similarly, the net free energy change of all membranes is not

a direct integral of DF(z1). These issues will be clarified after
analyzing Figs. 3 and 4.

Figs. 3 and 4 reveal, as expected, that the interaction

(potential of mean force) between the polyelectrolyte and all

three types of oppositely charged membranes is attractive,

i.e., DE(z1) , 0. In Fig. 3 we also show the results for

a weakly charged polymer (z ¼11/2) interacting with a fluid

membrane. This figure reveals that although in all cases

DE(z1) , 0, this attractive interaction may not suffice to

ensure adsorption. More explicitly, we note that in the case

of a z ¼ 11 polymer interacting with the uniformly

(�zzw ¼ �0:05) charged membrane, as well as in the case of

a weakly charged (z ¼11/2) polymer interacting with a fluid

membrane, the free energy change is positive, DF(z1) . 0.

This is because the electrostatic attraction cannot counter-

balance the repulsive depletion interaction resulting from the

loss of conformational entropy experienced by any flexible

molecule near a rigid wall. The weakly charged quenched

membrane is, on average, nonadsorbing as well. Only the

fluid membrane appears attractive to the peripheral macro-

molecule, owing to its ability to recruit charged lipids into

the interaction zone. However, even this membrane is

repulsive when the polymer charge is reduced to z ¼ 11/2.

Fig. 4 reveals that, upon increasing the membrane charge (to

�zzs ¼ �0:14 per lipid), all membranes become attractive. The

strongest binding is to the fluid membrane and the weakest

corresponds to the uniformly charged one.

The entropy losses, TDS(z1) ¼ DE(z1) � DF(z1), asso-
ciated with polyelectrolyte adsorption are quite substantial.

In the quenched and uniform membrane cases these entropy

losses reflect the lower conformational entropy of the adsorbed

molecule, compared to that of a polymer in solution. The

entropy loss is even higher, reaching ;70% in the case of

the fluid membrane, see Figs. 3 and 4. The origin of the

enhanced entropy deficit experienced by this membrane is

the additional loss of lipid mixing entropy.

From Eq. 13 we know that expð�DFfÞ ¼ q
ð1Þ
f =nq

ð0Þ
f qb ¼

q
ð1Þ
m

D E
q
=nqb ¼ expð�DFmÞh iq: An analogous equality is

also valid for the differential partition functions, q(z1).
That is,

e�DFf ðz1Þ ¼ qðz1Þ
qðNÞ ¼

qfðz1Þ
q
ð0Þ
f qb

¼ Æqmðz1Þæq
qb

¼ Æe�DFmðz1Þæq ¼
uðz1Þ
ub

����
u/0

: (36)

The last equality here is a reminder that, in the limit of low

surface coverage, q(z1)/q(N) is equal to the ratio between the

density of chain molecules (more precisely, chain termini)

at distance z1 from the membrane, and the corresponding

density in the bulk solution. From Eq. 36 we also note that

DFfðz1Þ¼ �ln exp½�DFmðz1Þh iq; explaining why DFfðz1Þ 6¼
DFmðz1Þh iq in Figs. 3 and 4.

In Fig. 5 we show, for our three model membranes, how

the partition function (equivalently, the first segment density)

ratio defined in Eq. 36 varies with z1. It should be emphasized

that the partition functions corresponding to the quenched

and fluid membranes have been obtained using the two

different MC simulation schemes described in the previous

section. Apart from the small numerical noise, we indeed

find that the partition functions corresponding to the fluid

FIGURE 3 The differential energy of adsorption (a), and free energy of

adsorption (b), of a flexible macromolecule adsorbing on a membrane of

lipid composition PC:PS:PIP2 ¼ 98:1:1. The value z1 is the distance of the

first polymer segment from the membrane plane. The solid, dashed, and

dotted curves correspond to the fluid, frozen, and uniformly charged

membranes, respectively. The dotted-dashed curve in b is for a weakly

charged (z ¼ 11/2) polymer interacting with a fluid membrane. The free

energy change corresponding to this polymer is not shown because it very

nearly overlaps the dotted curve in a.

FIGURE 4 The differential energy of adsorption (a), and free energy of

adsorption (b), of a flexiblemacromolecule interactingwith a lipidmembrane

of composition PC:PS:PIP2 ¼ 89:10:1. The solid, dashed, and dotted curves

correspond to the fluid, frozen, and uniformly charged membranes, re-

spectively.
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and the ensemble of quenched membranes are essentially

identical, reassuring that the different simulation methods

indeed yield identical results.

The ratio q(z1)/qb ¼ u(z1)/ub reveals, as expected, the

stronger attraction of the polyelectrolyte to the strongly

charged membrane (Fig. 5 b). Similar behavior is shown by

the average segment density profiles, r(z), as defined in

Eq. 19 and shown in Fig. 6. Again we see that for u / 0,

the density profiles corresponding to the fluid and quenched

membranes are the same.

Figs. 5 and 6 convey similar information. Fig. 5 displays

the density profile of chain termini, whereas Fig. 6 shows the

average density due to all chain segments (see Eq. 19). In-

deed, apart from small differences at the very small (i.e., near

the membrane) and large (z1 � l) values of z1, the two

profiles are quite similar. Unlike u(z1) (} q(z1)), which de-

creases monotonically with z1, the maximum in r(z) occurs
slightly away from the membrane surface. This is probably

due to the fact that terminal segments can more easily attach

and detach from the surface. Comparing Figs. 5 and 6 we

also note that u(z1) (} q(z1)) decays slightly more slowly

than r(z), reflecting the fact that although one chain-end may

reside relatively far from the membrane, other segments are

attracted to the membrane (see Fig. 2). Of course, all end ef-

fects become negligible for very long chains and we then

expect similar density distributions for all chain segments.

In Fig. 6, we also show representative density profiles

corresponding to high surface concentrations of macro-

molecules (see Eq. 21). Under these conditions we expect

different adsorption probabilities on the fluid and quenched

membrane. Indeed, for a macromolecule bulk density of

ũb ¼ 0:034; Eq. 17 yields uf ¼ 0.5 for the strongly charged

fluid membrane, whereas Eq. 18 implies a much smaller

surface density for the quenched membrane, umh iq ffi 0:28:
Additional values are given in Table 1. Note that the average

free energy of adsorption in the ensemble of quenched mem-

branes is zero, indicating that some membrane environments

must be repulsive (see below). Also repulsive is the weakly

charged uniform membrane, as clearly seen in Fig. 3 b.
Indeed, the ratio uu=lu � ũs ðuu ¼ 0:01; lu ffi 2:5), which
may be interpreted as the three-dimensional density of mac-

romolecules very near the membrane, is � ũb ¼ 0:034:

Adsorption free energies

The adsorption free energy and related thermodynamic func-

tions are calculated using the partition functions appearing in

Eqs. 15–18 and 21, whose values depend on the cutoff dis-

tance l. We have determined l as the distance beyond which

r(z)/rb# 1.1 for attractive membranes (DF , 0), or.0.9 for

repulsive ones. (This criterion closely satisfies the second

equality in Eq. 20.)

Given the l-values we have calculated, the integral

adsorption energies, free energies, and surface concentra-

tions u for the fluid, quenched, and uniform membranes. Fig.

7 shows the distributions, P(DF) and P(DE), of adsorption
free energies, DFm, and energies, DEm, for the ensemble of

quenched membranes. The adsorption energies are defined

here by DEm ¼
R lm
0

qmðz1ÞDEmðz1Þdz1=
R lm
0

qmðz1Þdz1; and
their average is DEmh iq ¼ +

m
PðmÞDEm: The integral

adsorption energies for the fluid and uniformly charged

membranes are DE ¼
R l

0
DEðz1Þqðz1Þdz1=

R l

0
qðz1Þdz1

where DE(z1) are the differential adsorption energies shown

in Figs. 3 and 4. The adsorption free energies are given by

FIGURE 5 The partition function ratio, qðz1Þ=qðNÞð¼ ðuðz1Þ=ubÞju/0Þ
for a macromolecule interacting with weakly charged membranes of

composition PC:PS:PIP2 ¼ 98:1:1 (a), and strongly charged membranes

where PC:PS:PIP2¼89:10:1 (b). Solid, dashed, and dotted curves correspond

to the fluid, quenched, and uniformly charged membranes, respectively.

FIGURE 6 Segment density profiles along the membrane normal, r(z),

relative to the segment density in the bulk solution rb¼ r(N). Themembrane

composition is PC:PS:PIP2¼ 98:1:1 (a), and PC:PS:PIP2¼ 89:10:1 (b). The

solid, dashed, and dotted curves correspond to the fluid, quenched, and

uniformly charged membranes, respectively. Two curves are shown for each

type of membrane; the upper curve corresponds to the low density limit

ũb/0 (and hence u / 0), and the lower one is for ũb ¼ 0:034:

TABLE 1 Adsorption properties

PC:PS:PIP2 ¼ 89:10:1

(�zzf¼ �0.14)

PC:PS:PIP2 ¼ 98:1:1

(�zzf ¼ �0:05)

Fluid Quenched Uniform Fluid Quenched Uniform

DE �12.5 �7.4 �3.1 �5.0 �2.4 �0.7

DF �3.5 �1.4 �1.0 �0.7 0 1.3

u 0.5 0.28 0.09 0.06 0.05 0.01

Adsorption energies and free energies for the PC : PS : PIP2 ¼ 89 : 10 : 1
ð�zzf ¼ �0:14) and PC : PS : PIP2 ¼ 98 : 1 : 1ð�zzf ¼ �0:05Þ membranes. For

the quenched lipid membrane we list ÆDEmæq and ÆDFmæq. The surface

concentrations, u, in the bottom row (Æumæq for the quenched membrane) are

for a bulk concentration of macromolecules ũb ¼ 0:034:
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DFm [ � lnðq̂ð1Þ
m
=qbÞ; with q̂

ð1Þ
m ¼ ð1=lÞ

R lm
0

qmðz1Þdz1:
Their average is DFmh iq [+

m
PðmÞDFm: In Figs. 3 and 4

we have shown DFmðz1Þh iq [ �+
m

PðmÞln½qmðz1Þ=qb�:
Thus, as noted above, ÆDFmæq is not simply the integral of

ÆDFmðz1Þæq: The relationship between DF(z1) and DF of the

fluid membrane is different, namely, DFf ¼ �ln½q̂ð1Þ
f =q

ð0Þ
f qb�

¼ �ln expð�DFfðz1Þh i; with a similar relationship for the

uniform membrane.

The numerical values of DF and DE for the fluid,

quenched, and uniform membranes are listed in Table 1.

Again we note that the adsorption energy is largest for the

fluid membrane and smallest for the uniform membrane. In

fact, no adsorption takes place on the weakly charged uni-

form membrane, (DFu . 0), and the weakly charged quenched

membrane is, on average, nonadsorbing as well. Note,

however, that in this case P(DF) is bimodal. From Fig. 7 a,
we note that although DEm , 0 for all m values, the bimodal

distribution of DFm reflects two distinct classes of quenched

environments, corresponding to attractive (DFm , 0) and

repulsive (DFm . 0) membranes.

The distributions, P(u), of surface concentrations for the

ensembles of weakly and strongly charged quenched mem-

brane are shown in Fig. 8. Also mentioned there (and in

Table 1) are the average values of u for the fluid and uniform

membranes, confirming that adsorption onto the fluid mem-

brane is, indeed, the strongest of all. In accordance with the

results in Fig. 7 a, we note in Fig. 8 a that a large fraction

of the local environments comprising a weakly charged

quenched membrane are repulsive. On the other hand, a

weakly charged fluid membrane is everywhere attractive.

This is of course due to the ability of its charged lipids to

diffuse and localize at the macromolecule adsorption site. In

biological systems, where the interactions are often weak,

such subtle differences could be of crucial importance.

Structural properties

The structural and thermodynamic properties of the adsorbed

macromolecules are intimately related to each other. For

instance, the density profile of chain termini, u(z1), enters the
calculation of partition functions and free energies. In this

subsection we present additional information, pertaining to

the configurational statistics of the adsorbed polymer and the

concomitant changes in the two-dimensional distribution of

membrane lipids. Since changes in lipid distribution can only

occur in fluid membranes, the discussion in this subsection

involves only fluid membranes.

Polymer dimensions

In Table 2, we present the results of our simulations for some

of the basic conformational characteristics of the 20-segment

polyelectrolyte chain, when adsorbed onto the weakly and

strongly charged membranes. For the sake of comparison we

also list the corresponding values of the charged poly-

electrolyte, as well as for the corresponding neutral chain, in

an isotropic bulk solution.

Owing to the electrostatic repulsion between chain seg-

ments, R3D
g ; the radius of gyration of the polymer in solution,

is significantly larger than that of the neutral polymer (41,42).

We find R3D
g ¼ 2:97 vs: 2:50 for the neutral polymer; the

corresponding end-to-end distances are R3D
e ¼ 7:92 and 6.36,

respectively. The ratio R3D
e =R3D

g is close to the theoretical

value,
ffiffiffi
6

p
; for an ideal chain (43). Recall that R3D

g ¼ Æx2 1

FIGURE 7 Probability distributions of adsorption free energies P(DF) (a),

and adsorption energies P(DE) (b), for a Boltzmann-weighted ensemble of

quenched membranes. Solid and dashed curves correspond to membranes

with PC:PS:PIP2 ¼ 89:10:1 and PC:PS:PIP2 ¼ 98:1:1, respectively. See

Table 1 for more details.

FIGURE 8 The distribution of surface concentrations, u, for an ensemble

of quenched membranes of composition PC:PS:PIP2 ¼ 98:1:1 (a) and

PC:PS:PIP2 ¼ 89:10:1 (b). Also listed are the average surface coverages of

the fluid, quenched, and uniformly charged membrane. In a, the solid curve

is the overall distribution of u values, whereas the dashed and dash-dotted

curves correspond to the distributions of u-values for membranes with DFm

, 0 and DFm . 0, respectively. In all cases the volume fraction of

macromolecules in the bulk solution is ũb ¼ 0:034:

TABLE 2 Macromolecule conformational properties

R3D
g R2D

g ðx; yÞ R1D
g ðzÞ s(z) jp

Solution 2.97 (2.50) 2.42 (2.04) 1.72 (1.45) 1.72 (1.45) 4.70 (3.15)

�zzf ¼ �0:14 2.91 2.80 0.79 2.13 8.23

�zzf ¼ �0:05 2.91 2.63 1.25 4.00 5.37

Conformational properties of the polymer in solution and when adsorbed on

the weakly (�zzf ¼ �0:05) and strongly (�zzf ¼ �0:14) charged membranes.

The numbers in parentheses are for an electrically neutral polymer. The

value R3D
g is the three-dimensional radius of gyration of the polymer,

R2D
g ðx; yÞ is the two-dimensional radius of gyration in a plane parallel to the

membrane surface, R1D
g ðzÞ is the z-component of the radius of gyra-

tion (measured, as usual, with respect to the center of mass), s(z) is the

width of the segment density distribution along z, and jp is the persistence

length.
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y2 1 z2æ1=2; where Æx2æ ¼ ð1=LÞ+
a
PðaÞ+L

l¼1
½xiðaÞ2�xxðaÞ�2;

with xiðaÞ and �xxðaÞ denoting, respectively, the x coor-

dinates of segment l, and the center of mass of a polymer in

conformation a. In an isotropic solution R3D
g ¼

ffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ

p
R2D
g

¼
ffiffiffi
3

p
R1D
g : From Table 2 it is apparent that the polymer’s

three-dimensional radius of gyration, (R3D
g ), does not change

much upon adsorption. Yet, R2D
g ðx; yÞ ¼ Æx21y2æ1=2 (the

two-dimensional radius of gyration in a plane parallel to the

membrane surface) and R1D
g ðzÞ ¼ Æz2æ1=2 (the one-dimen-

sional radius of gyration along the membrane normal) are

quite different from the corresponding bulk values. As ex-

pected, upon adsorption, the polymer flattens parallel to the

membrane plane (see also Fig. 2), resulting in larger R2D
g

ðx; yÞ and smaller R1D
g ðzÞ; with enhanced anisotropy on the

strongly adsorbing membrane. We also note a substantial

increase in the persistence length, jp, upon adsorption, re-

flecting the stretching of the polymer chain along the mem-

brane plane.

In Table 2 we also list the width, sðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2h i2 zh i2

q
; of

the chain density profile along the membrane normal, where

Æzkæ¼
Z l

0

z
k
rðzÞdz=

Z l

0

rðzÞdz (37)

is the kth moment of the segment density rðzÞ ¼
RR

dxdyr
ðx; y; zÞ: Here r(r) is the same quantity defined in Eq. 19, and

rðx; y; zÞ ¼
R

dz1uðz1Þ nðx; y; zjz1) is the segment density at

x,y,z, where n(x,y,zjz1)dxdydz is the number of segments in

dxdydz around x,y,z, due to chains originating at z1. Note that
in calculating n(x,y,zjz1), and hence r(x,y,z), we average over
many chain conformations, ensuring that their centers of

mass reside on one z axis. With r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
denoting the

distance from the z axis, the function

rðrÞ ¼
Z l

0

dz

Z N

0

Z N

0

dxdyrðx;y;zÞdðx2
1y

2
2r

2Þ (38)

defines the integrated radial distribution of chain segments,

relative to the membrane normal, d(x) being the d-function.

Equivalently, r(r) is the projection of the segment density

distribution on the membrane plane. Note
RN
0

rðrÞ2prdr ¼R l

0
rðzÞdz:
It is not difficult to show that if the centers of mass of all

chain conformations are superimposed onto the same point

(say x,y,z ¼ 0), then

R2D

g ðx;yÞ ¼
Z N

0

r2rðrÞ2prdr=

Z N

0

rðrÞ2prdr

� �1=2

; (39)

and (because now Æzæ[ 0ÞR1D
g ðzÞ ¼ sðzÞ ¼ Æz2æ1=2: Eq. 39

remains valid if the centers of mass no longer reside at one

point, but are still restricted to the z axis. On the other hand,

R1D
g ðzÞ is no longer equal to s(z). We expect (see Table 2),

sðzÞ.R1D
g ðzÞ; since the width of the distribution is a con-

volution of the center-of-mass distribution and the distribu-

tion of chain segments around the center of mass (only the

latter contributes to the radius of gyration).

Fig. 9 shows r(r) for a macromolecules adsorbed on the

weakly and the strongly charged membranes, indicating a

radial span of approximately five segment diameters in both

cases. As noted already in Table 2, and as follows by

comparing Figs. 6 and 9, the lateral dimensions of the ad-

sorbed macromolecule are approximately twice-larger than

its extension along the membrane normal.

Lipid redistribution

The lateral dimensions of the adsorbed macromolecule are

expected to correlate with the lateral distribution of charged

lipids in the membrane. One important characteristic of the

two-dimensional lipid distribution is the enrichment factor

ciðrÞ=�cci: This is the ratio between the local concentration of

lipid species i at distance r from the (projection on the mem-

brane plane) of the polymer’s center of mass, and the average

(or bulk) concentration of this lipid in the membrane. The

enrichment factor thus measures the change in local lipid

composition after macromolecule adsorption.

In Fig. 10, we show the enrichment factor for two ternary

membranes, PC:PS:PIP2 ¼ 89:10:1, and 98:1:1 (left); and
two binary membranes, PC:PS ¼ 90:10 and 99:1 (right).
Comparing Figs. 9 and 10 we find that the range of the lipid

region enriched with charged lipids, namely, approximately

five lipid diameters, correlates closely with the lateral dimen-

sions of the adsorbed polymer.

Another view of the lipid density profile is shown in Fig.

11 a, which displays the distribution of tetravalent lipids

around the projection onto the membrane plane of the poly-

mer’s center of mass. Fig. 11 b, shows, for comparison, the

results corresponding to a stiff, rodlike polymer of the same

length and charge. For both cases shown the lipid compo-

sition is PC:PS:PIP2 ¼ 98:1:1, but it should be noted that the

PIP2 distribution in the PC:PS:PIP2 ¼ 89:10:1 membrane is

very similar. The interaction energy of the rod with the mem-

brane (Fig. 11 b) shows a very steep minimum near the

FIGURE 9 The integrated two-dimensional density, r(r), of chain

segments as a function of the radial distance from the membrane normal.

The solid and dashed curves are for the strongly and weakly charged fluid

membranes, respectively.
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surface, with DE(z ¼ 1) ¼ 210 and DF(z ¼ 1) ¼ 26. The

entropy loss here, TDS ¼ 24, is entirely due to lipid

demixing. For comparison, the results shown in Fig. 11 a
are for a flexible polymer whose first (or last) segment is at

z1¼ 1. In this case we findDE(z1¼ 1)¼27.8 andDF(z1¼ 1)

¼21.3, implying a substantially larger entropy loss, TDS ¼
26.3, which in this case involves a loss of polymer con-

formational entropy in addition to the loss of lipid mixing

entropy. (After averaging over all z1, we find for polymer

adsorption: DE ¼ 25 and DF ¼ 20.7, and hence TDS ¼
24.3.)

Figs. 10 a and 11 a reveal a rather dramatic enrichment of

the interaction zone by the tetravalent lipids, and essentially

no change in the local concentration of the monovalent lipids.

This phenomenon has been discussed and analyzed both

theoretically and experimentally (9,11,15). Qualitatively, its

origin involves two basic physical principles. The first is that

the electrostatic interaction free energy between a charged

macromolecule and a charged surface is minimal at isoelec-

tricity, i.e., when the net amounts of negative (in our case

lipid) and positive (in our case polymer) charges are equal

(44–46). Thus, when a highly charged polymer is brought

into contact with a weakly charged fluid membrane, oppo-

sitely charged lipids tend to migrate toward the polymer,

attempting to achieve the desired charge matching. In the

case of a flexible polyelectrolyte on a mixed membrane this

tendency is partly opposed by the entropic penalties asso-

ciated with the loss of polymer flexibility and lipid mixing

freedom. The second physical fact is that importing one

tetravalent lipid into the interaction zone involves a much

lower entropy loss as compared to that of bringing four

monovalent lipids.

The entropy change upon transferring one lipid molecule

of type i from a region where its molar fraction is �cci into

a region of local mole fraction ci(r) is, (for small ci),

DSi ¼2ln½ciðrÞ=�cci�: (40)

A crude estimate of the average lipid charge within the

interaction zone can be obtained by calculating the amount

of charge required to neutralize the charge of the adsorbed

polymer. Our simulations of a fluid membrane containing

1% PIP2 and 10% PS reveal that, on average, most of the 20

polymer charges reside within a rather thin surface layer (see

Fig. 6, and Table 2). The radius of the lipid interaction zone

is approximately five headgroup diameters, corresponding to

a membrane patch containing ;80 lipids. The simulations

show that the total lipid charge within this patch is ;220.

Approximately eight charges are provided by the mono-

valent lipids (corresponding to their average fraction in the

membrane) and the remaining 12 3 3 tetravalent lipids,

implying an average enrichment factor of 3 (see Fig. 10). The

entropic cost of bringing the three tetravalent lipids into the

interaction region is thus23 ln(0.03/0.01) �23.3 (which is

nearly one-half of the total entropy loss in adsorption; see

Table 1). In the absence of tetravalent lipids, effective charge

neutralization would require the import of 12 additional

monovalent lipids into the interaction region. In this case the

entropic penalty would be intolerably high, 212 ln(20/8) �
211, comparable to the gain in electrostatic energy (Fig. 7).

Supporting this conclusion are our simulations of polymer

adsorption on a binary membrane containing only neutral

and monovalent lipids, whose results are shown in Fig. 10 b.
Owing to the severe entropic penalty, PS enrichment in these

membranes is very small and the adsorption energy is small

for 10% PS and positive for 1% PS.

In the case of the weakly charged (1% PIP2 and 1% PS)

membrane, complete charge neutralization would require the

recruitment of five tetravalent lipids, implying a substantially

higher entropic penalty as compared to the strongly charged

membrane. Here we found that, on average, only 12 lipid

charges have accumulated in the interaction zone and that a

similar number of polymer charges reside within the narrow

surface layer (see Fig. 2). In other words, in this case, the

system settles on less than complete neutralization of all

FIGURE 11 Contour maps of PIP2 density in the membrane plane. The

area per square of the grid corresponds to one lipid molecule. (The square

grid is used here just for display; the simulations were carried out using

a two-dimensional hexagonal lattice.) The figure on the left, a, is for a

flexible 20-segment chain interacting with a fluid membrane of average

composition PC:PS:PIP2 ¼ 98:1:1. The figure on the right, b, is for a rodlike
polymer of the same length and charge. The rod is placed at distance z ¼ 1

from the membrane. The polymer’s first segment is fixed at z1 ¼ 1. The

numbers labeling the color code indicate the local mole fractions of PIP2.

The average membrane concentration is 0.01.

FIGURE 10 The enrichment factor of charged lipids associated with

macromolecule adsorption on a ternary lipid mixture of PC/PS/PIP2 (a), and

a binary mixture PC/PS (b), as a function of the radial distance from the

polymer’s center of mass. The bulk molar fraction of PIP2 in a is, in all cases,

0.01. Solid curves and dashed curves, in both figures, correspond to PS

molar fractions of 0. 1 and 0.01, respectively.
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polymer charges, thereby retaining more lipid translational

freedom and polymer flexibility. Finally, we note that a

membrane containing a large amount of monovalent lipids to

begin with, need not relocate lipids upon polymer adsorp-

tion. For our case, using the same, rather crude, estimates as

above, we conclude that a membrane containing ;20–25%

PS need not recruit additional molecules into the interaction

region. These qualitative conclusions appear consistent with

experiments, measuring the interaction between theMARCKS

effector domain (and similar peptides) andmixed PC:PS:PIP2
membranes (9,15).

CONCLUDING REMARKS

Our major objective in this work has been to study the role of

lipid mobility and composition in the nonspecific electro-

static adsorption of charged flexible macromolecules. Based

on computer simulations and qualitative theoretical consid-

erations we have shown that a fluid membrane, enabling lipid

lateral diffusion, is substantially more effective in mediating

macromolecule binding than a frozen or a uniform mem-

brane carrying the same average charge. We also found that

multivalent lipids, even if in small amounts, can substantially

enhance the electrostatic adsorption of flexible macro-

molecules. The crucial role of these lipids in mediating

membrane binding is a direct consequence of the fact that, in

the fluid lipid membrane, their localization in the macro-

molecule’s adsorption zone provides efficient electrostatic

binding at a minimal cost of lipid demixing entropy.

A strongly charged membrane can bind an oppositely

charged macromolecule even if all the charged lipids are

monovalent, because in this case there is no need for lipid

segregation, thus avoiding the entropic lipid demixing pen-

alty. On the other hand, previous theoretical studies suggest

that a fluid membrane containing relatively small (yet

biologically relevant) amounts, say 10–20%, of monovalent

lipids may effectively bind rigid charged macromolecules

(e.g., folded globular proteins) (13,18). In such cases the

electrostatic binding free energy outbalances the lipid entropy

loss. On the other hand, in the case of a flexible macro-

molecule, binding involves the additional loss of conforma-

tional entropy. Our calculations indeed suggest that in this

case, 10% of monovalent lipids hardly suffice to mediate

polymer binding and the presence of multivalent lipids in the

membrane, whose localization in the interaction zone in-

volves just a small entropy loss, thus appears critical. Our

conclusions regarding the ability of a medium-size macro-

molecule to sequester multivalent lipids upon membrane

binding appear consistent with recent experimental obser-

vations. Qualitatively, they also agree with more detailed,

atomic-level calculations—modeling, for instance, MARCKS

adsorption on several quenched environments of a mixed

membrane (15).

From the more technical-theoretical aspect, we have pre-

sented an extended version of the Rosenbluth Monte Carlo

sampling scheme, enabling the simultaneous generation of

polymer and membrane configurations. In addition, we have

shown that, in principle, the statistical aspects of polymer

adsorption on a fluid membrane can be obtained by biased

superposition of simulation data of an ensemble of quenched

membranes. An approximate cell model has been presented

to account for the different adsorption probabilities on fluid

and quenched membranes. In the limit of vanishing macro-

molecule concentrations, the average adsorption probabili-

ties become equal.

Notwithstanding the inherent approximations of our model

(e.g., the use of DH potentials), our results suggest that the

electrostatic binding free energies of flexible macromole-

cules onto lipid membrane are generally small and depend on

a subtle interplay of several factors. These include lipid

mobility and composition on the one hand, and macromol-

ecule charge, shape, and flexibility on the other hand. Finally,

as noted in the Introduction, the work presented here is cur-

rently being extended to model the adsorption of hetero-

biopolymers. As a specific model system we are studying the

adsorption of MARCKS on a fluid lipid membrane, with

particular emphasis on elucidating the roles of polymer chain

entropy, electrostatic and hydrophobic interactions, lipid

fluidity and composition, whose complex interplay underlies

the electrostatic switch mechanism.
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