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ABSTRACT The effect of ergosterol on the electrochemical features of the phosphatidylcholine bilayer membrane was
investigated by impedance spectroscopy. The experimental impedance values obtained in the presence of different amounts of
ergosterol showed evidence of domain structures within the bilayer containing ,0.06 molar fraction of ergosterol. Based on
derived mathematical equations, the surface area of phospholipid/ergosterol domain was calculated; it amounts to 262 Å2. This
value is consistent, taking into consideration the presented measurements as well as ordering and condensation effects of
ergosterol, with a stoichiometry of such a domain equal to 3:1. The result of the investigation is the proposal of a new and simple
method for the determination of the surface area and description stoichiometry of domains formed in any two-component
system.

INTRODUCTION

Lipid lateral organization is an important issue in membrane

biology. There is increasing evidence that functional lipid

domains of micrometer sizes exist in biological membranes

under physiological conditions (1,2), but relatively less is

known about lipid organization at the molecular level inside

and outside those domains. Most of the techniques used to

characterize domains are based on fluorescence microscopy.

A limitation of fluorescence-based measurements is the in-

ability to provide information at the molecular structure level

and interactions of domain constituents. Furthermore, the

area of the domains detected is limited to .;106 Å2. Infrared

and Raman spectroscopies provide a means to overcome these

limitations. Direct molecular structure information is inherent in

vibrational spectroscopy. Certain infrared spectral parameters

are sensitive to domain formation in a size regime much smaller

than fluorescence-determined domains (3).

Because cell membranes are extremely complex, a molec-

ular understanding of membrane lipid lateral organization

must first come from simple model systems such as two-

component lipid bilayers. In such systems, the membrane

components can be domain-segregated (4), or randomly dis-

tributed (5), or regularly distributed (6). The distribution

depends on experimental conditions and may change with

temperature, pressure, lipid compositions, and mixing ratio,

and with the type of lipids (7).

Sterols are membrane components and as such regu-

late membrane fluidity and permeability. The paradigmatic

example from this group of compounds is cholesterol. It is

often found distributed nonrandomly in domains in bi-

ological and model membranes (8–12). These domains are

believed to be important for the maintenance of membrane

structure and function. Recent observations suggest that

cholesterol exerts many of its actions by maintaining a spe-

cialized type of membrane domain, termed a lipid raft, in a

functional state (8,13,14). Although cholesterol is the major

sterol present in plasma membranes of higher eukaryotes,

ergosterol is the major component present in lower eukary-

otes such as certain protozoa, yeast, and other fungi, and in

insects such as Drosophila (15). Although detailed bio-

physical characterization of the effect of cholesterol on

membranes is well documented, the effect of ergosterol on

the physical properties of membranes has not been studied in

detail and has never been studied by means of electrochem-

ical impedance spectroscopy. The effect of ergosterol on

membrane organization and dynamics assumes significance

in view of the recent reports about isolation of lipids rafts

from organisms such as yeast (16) and Drosophila (17).

In this article, we model biomembranes using a two-

component bilayer system. The lipids chosen are phospha-

tidylcholine from egg yolk and ergosterol. Egg phosphati-

dylcholine was selected mainly due to its acyl chain

composition, which resembles many biological membranes.

Ergosterol was used because its effect on the organization of

membranes is not very clear (18). We have monitored the

effect of ergosterol on the capacitance and resistance of the

phosphatidylcholine membranes utilizing electrochemical

impedance spectroscopy. Our results show the formation of

the phosphatidylcholine/ergosterol domains in lipid bilayers

containing ,0.06 molar fraction of ergosterol. The de-

termination of the area occupied by one phosphatidylcho-

line/ergosterol domain is the final research result. Equations

presented in this article can be used, e.g., for determination

of area and describe stoichiometry of domains formed in any

two-component system.
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THEORY

Any two-component system, regardless whether it is a monolayer or

a bilayer, can be described in terms of the presented equations here describ-

ing additivity of electric capacity and electric conductance,

Cm ¼ C1S1 1C2S2 (1a)

and

R
�1

m ¼ R
�1

1 S1 1R
�1

2 S2; (1b)

here

S1 1 S2 ¼ 1 (2)

S1 ¼ a1A1 (3)

S2 ¼ a2A2 (4)

x1 ¼
a1

a1 1 a2

; (5)

x1 1 x2 ¼ 1; (6)

where Cm [mF cm�2] is capacitance of the membrane; C1, C2 [mF cm�2] are

capacitances of the membrane built of components 1 and 2, respectively;

R�1
m ½V�1 cm�2� is conductance of the membrane; R�1

1; R
�1
2 ½V�1 cm�2� are

conductances of the membrane built of components 1 and 2, respectively;

S1, S2 are surface fractions of the membrane covered by components 1 and 2,

respectively; a1, a2 [mol m�2] are surface concentrations of components 1

and 2, respectively, in the membrane; A1, A2 [m
2 mol�1] are surface areas of

one mole of the membrane formed from components 1 and 2, respectively;

and x1, x2 are molar fractions of components 1 and 2, respectively.

After solution of the equations system above (Eqs. 1–6), the linear

dependencies are derived as

ðCm � C1ÞA�1

2 x1 1 ðCm � C2ÞA�1

1 x2 ¼ 0; (7a)

ðR�1

m � R
�1

1 ÞA�1

2 x1 1 ðR�1

m � R
�1

2 ÞA�1

1 x2 ¼ 0: (7b)

Spatial regionalization of components occurs in biological membranes.

It is due to specific interactions between membrane components resulting

in the appearance of membrane regions of diverse chemical character,

structure, and function. Such specialized structures of various sizes have

been called domains (19). The equilibrium of domain formation can be

described in terms of such physicochemical parameters as electric capacity

and electric conductance. Let us assume that, in the domain (denoted by

subscript 3) formation process in a two-component lipid membrane, every

molecule of component 2 is surrounded by a certain, possible to determine,

quantity of component 1. The equilibrium state of the discussed system is

described by

Cm ¼ C1S1 1C3S3 (8a)

and

R
�1

m ¼ R
�1

1 S1 1R
�1

3 S3; (8b)

in which

S1 1 S3 ¼ 1 (9)

S3 ¼ a3A3 (10)

x1 ¼
a1

a1 1 a3

(11)

x1 1 x3 ¼ 1; (12)

where C3 [mF cm�2] is the capacitance of the membrane built of a domain;

R�1
3 ½V�1 cm�2� is the conductance of the membrane built of a domain; S3 is

the surface fraction of the membrane covered by a domain; a3 [mol m�2] is

the surface concentration of a domain in the membrane; A3 [m
2 mol�1] is the

surface area of one mole of the membrane formed from a domain; and x3 is

the molar fraction of a domain.

Elimination of S1, S3, a1, and a3 yields the equations

Cm ¼ C1A1 1 ðC3A3 � C1A1Þx3
A1 1 ðA3 � A1Þx3

; (13a)

R
�1

m ¼ R
�1

1 A1 1 ðR�1

3 A3 � R
�1

1 A1Þx3
A1 1 ðA3 � A1Þx3

: (13b)

Equations 13a and 13b are quotients of polynomials. Dividing the

numerator of each quotient by its denominator yields a series of increasing

exponents of the power of molar fraction, x3. Further, taking into account the

two first terms of each series results in linear expressions that are correct at

low molar fractions (for x3 / 0):

Cmx
�1

3 ¼ C1x
�1

3 1 ðC3 � C1ÞA�1

1 A3; (14a)

R
�1

m x
�1

3 ¼ R
�1

1 x
�1

3 1 ðR�1

3 � R
�1

1 ÞA�1

1 A3: (14b)

MATERIALS AND EXPERIMENTAL DETAILS

Reagents and preparation of the forming solutions

Ninety-nine percent egg phosphatidylcholine was purchased

from Fluka (Neu-Ulm, Germany) and it had the following

fatty acid composition: 16:0# 33%, 18:0; 4%, 18:1; 30%,

18:2; 14%, and 20:4; 4%. Ninety-seven percent ergosterol

was also obtained from Fluka. The lipids were dissolved in

chloroform to prevent oxidizing and mixed in appropriate

proportions to achieve the desired molar fractions. The solvent

was evaporated under a stream of argon. Dried residues were

dissolved in a hexadecane-butanol mixture (10:1 by volume).

The resultant solution used to form the model membrane

contained 20 mg ml�1 of lipids in solution. During membrane

formation, the solvent mixture was removed and the mem-

brane created has the same proportion as in the resultant solu-

tion. The samples were stored for at least five days at 4�C
before examination.

The solvents were of chromatographic standard grade:

chloroform and butanol were fromAldrich (Milwaukee, WI);

hexadecane was from Fluka.

Potassium chloride solution of 0.1 mol dm�3 was used as

the electrolyte for experiments. KCl from POCh (Gliwice,

Poland) was analytical grade and was roasted before use at

400�C for 4 h to remove traces of organic material. Water

purified by Milli-Qll (18.2 M, Millipore, Billerica, MA) was

used to make the electrolyte, and in all cleaning procedures.

Preparation of the bilayer membranes

Bilayer membranes were obtained as bubbles at the Teflon

cap constituting a measuring vessel component. The use of

hexadecane as the solvent allows one to obtain membranes

of thickness and capacity values similar to those of mem-

branes formed of monolayers (20,21); there is almost no

solvent retained in the bilayer. A small quantity of butanol
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added has a negligible effect on the impedance parameters of

the bilayers created; however, it considerably accelerates the

formation of the membranes. The formation of the bilayers

was monitored visually and electrically by measuring the

membrane capacitance at low frequency (1 Hz). Capacity of

the membranes increased with time after bilayers formation

until a steady-state value was reached some 10–20 min later.

The measurements were begun only after the low frequency

capacitance was stable, increasing by ,1%/h. When the

capacitance had stabilized, it was assumed that diffusion of

solvent out of the bilayer was complete, although some hexa-

decane molecules would remain dissolved in the membrane

interior. The bilayers area were determined with a micro-

scope with a micrometer scale built into the lens, and were

between 4 3 10�2 � 8 3 10�2 cm2 (the values were given

for the bilayers area with subtracted margin).

Impedance analysis

Electrochemical impedance spectroscopy was performed

with an AC impedance system (Model 388; EG&G, Princeton

Applied Research, Princeton, NJ) that included a personal

computer, a two-phase lock-in amplifier (Model 5208) and

a potentiostat/galvanostat (Model 273), in which a four-

electrode input was applied within the preamplifier. The

electrochemical cell contained two identical reversible silver-

silver chloride electrodes and two identical current platinum

electrodes (described exactly in (22–24)). The use of the four-

electrode system in the studies of electric phenomena oc-

curring in membranes makes it possible to reduce, consider-

ably, the errors caused by electrode and electrolyte impedance

(25,26). A 4-mV amplitude sine-wave signal perturbation was

applied in the 0.1–10,000 Hz frequency range. Impedance

data were analyzed by using the nonlinear least-squares

(NLLQ) fitting to a model represented by an equivalent elec-

trical circuit. The NLLQ program used in this work was

EQUIVCRT.PAS (27). All experiments were carried out at

room temperature (20� 6 1�C).

RESULTS

The effect of ergosterol on capacitance and resistance

(reciprocal of conductance) of the phosphatidylcholine bi-

layer was examined in the presence of different amounts of

ergosterol using electrochemical impedance spectroscopy.

The ergosterol content was varied up to a 0.11 molar fraction;

above this, sterol induced disorder of the acyl chains of phos-

phatidylcholine, and we were not able to form a bilayer suf-

ficiently stable upon which to carry out measurements. It has

been reported before (28) that the solubility limit of ergosterol

found in egg phosphatidylcholine bilayers amounts to 0.25

molar fraction. The impedance technique was used in our

study to characterize the membrane features, since this method

has been shown to be able to measure the membrane capac-

itance and resistance on bilayer lipid membranes accurately.

The mean values of the measured parameters were obtained

from six independent measurements of the lipid bilayer. The

experimental impedance values presented here refer to the

bilayer surface-area unit.

Fig. 1 shows the results of impedance measurements con-

ducted on the phosphatidylcholine bilayers, pure and con-

taining different amounts of ergosterol. For the sake of clarity,

spectra for some molar fractions have been omitted (other-

wise the figure would be illegible by superimposed spectra

caused by too few differences in the impedance parameters

values). Very simple impedance diagrams were obtained for

all examined membranes; they had the form of impedance

semicircles in the entire analyzed frequency range. The cen-

ters of the semicircles lie on the real axis, provided that the

lipid bilayer is considered as a dielectric layer with leakage.

The spectra of phosphatidylcholine/ergosterol bilayers were

higher than that for pure phosphatidylcholine membranes,

confirming that ergosterol has been successfully incorpo-

rated into the phosphatidylcholine bilayer, and have an effect

on the membrane capacitance and resistance; it caused capac-

itance of the membrane Cm to decrease and resistance of the

membrane Rm to increase. The equivalent circuit used for

data analysis (inset in Fig. 1) consists of a parallel arrangement

of the capacitor Cm and resistor Rm, attributed to the electrical

properties of the bilayer, completed by a serial resistor R0 for

the conductivity of the bulk. The possibility of misinterpre-

tation of the recorded data is reduced by simplicity of the

circuit. This electric circuit is characteristic for an artificial

lipid membrane only when ionophore systems, specific

channels, pores, and adsorption are absent (29). Based on

this equivalent circuit, the nonlinear least-squares analysis

was used to simulate the impedance plots; then the values of

Rm and Cm were extracted from the fit. The NLLQ fits are

FIGURE 1 Dependence of an imaginary part (�Z$) on the real part (Z9)

over a frequency range of 0.1 Hz to 10 kHz for a phosphatidylcholine

membrane modified with ergosterol. A different content of ergosterol (ex-

pressed as a molar fraction) is illustrated by the different point’s shapes of

the impedance spectra. The solid lines represent the results of the fitting

procedure. The equivalent circuit used for impedance data analysis is shown

in the inset: R0 represents the resistance of the electrolyte, Rm the resistance

of the membrane, and Cm the capacitance of the membrane.
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represented by the solid lines in Fig. 1 and are in good

agreement with the data obtained.

Dependences of the capacitance and the conductance of

the phosphatidylcholine/ergosterol membrane on the molar

fraction of ergosterol are presented in Figs. 2 and 3, respec-

tively. The resulting curves deviate from linearity, indicating

that specific interactions between membrane components are

presented in the membrane. In these figures, points denote

experimental values, and the solid lines are calculated on the

basis of Eqs. 13a and 13b (describing the domain formation

process) using values whose determination will be presented

in further parts of this article. That the theoretical values

agree well with the experimental data in the 0.00–0.06

molar-fraction range of ergosterol suggests the existence of

phosphatidylcholine/ergosterol domains with a defined stoi-

chiometry and a constant area in this region. Ergosterol had

significant effect on the capacitance and the conductance

membranes up to 0.09 molar fraction; Cm and R�1
m reached

a plateau value when the ergosterol molar fraction was over

0.09. At a molar fraction of ergosterol in the range 0.06–

0.09, the lipid composition and physico-chemical properties

of phosphatidylcholine/ergosterol domains change in com-

parison with the domains formed in the range 0.00–0.06. Our

results are consistent with the studies indicating that the

effect of ergosterol on the rotational mobility of phospha-

tidylcholine membranes stabilizes after a certain concentra-

tion (;0.10 molar fraction) of ergosterol in the membrane

(18). The C1 and R�1
1 values obtained for a pure bilayer of

phosphatidylcholine are equal to 0.62 mF cm�2 and 4.35 3

10�6 V�1 cm�2, respectively. The C2 and R�1
2 values for

a pure bilayer of ergosterol (evaluated from plateau values)

are equal to 0.37 mF cm�2 and 5.12 3 10�7 V�1 cm�2, re-

spectively. It is clear that inclusion of sterol molecules into

membrane results in the increase of the membrane thickness

(as evident by examining the distance from the bilayer center

to phosphorus atoms (30)). The increase in the membrane

thickness results in decrease in its electrical capacity. Such

an increase represents a main manifestation of the sterol con-

densing effect on the membranes (31,32).

Figs. 4 and 5 present the dependences resulting from Eqs.

7a and 7b, respectively, expressed in the coordinate systems

in which the plots should be straight lines in the case when

they are lacking specific interactions between membrane

components. Their actual shapes prove that they do not corre-

spond to Eqs. 7a and 7b, suggesting that there are specific

interactions in the phosphatidylcholine/ergosterol bilayer.

Since Eqs. 7a and 7b do not describe the system under the

study sufficiently, we assume, on the basis of the literature

(7,18,33), that the creation of domains within the phospho-

lipids bilayer are enriched with respect to ergosterol, and that

all ergosterol is present in the phosphatidylcholine/ergosterol

domains. Consequently, Eqs. 8a and 8b, describing a domain

formed in the bilayer lipid membrane, complete the theo-

retical description. After simple modifications of Eqs. 8a and

8b, one can obtain information of great interest presented by

Eqs. 14a and 14b.

Fig. 6 presents the dependences illustrating Eqs. 14a and

14b in the entire analyzed molar fraction of the ergosterol

range. Provided that a domain is formed, the plots of Eqs.

14a and 14b show straight lines. The six points obtained for

FIGURE 2 Dependence of capacitance Cm of the phosphatidylcholine/

ergosterol membrane on the molar fraction of ergosterol x2. Experimental

points represent the mean6 SE obtained from six membranes. The solid line

represents the theoretical values calculated according to Eq. 13a.

FIGURE 3 Dependence of conductance R�1
m of the phosphatidylcholine/

ergosterol membrane on the molar fraction of ergosterol x2. Experimental

points represent the mean6 SE obtained from six membranes. The solid line

represents the theoretical values calculated according to Eq. 13b.

FIGURE 4 The dependence of (Cm�C1)x1 versus (Cm�C2)x2: Cm-

capacitance of the membrane, C1-capacitance of the phosphatidylcholine

membrane, C2-capacitance of the ergosterol membrane, x1-molar fraction of

the phosphatidylcholine, and the x2-molar fraction of ergosterol. The arrows

denote the direction of the increasing x2 values and the dashed line indicates
the order of points.
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the lowest concentrations of ergosterol lie on ideal straight

lines. These points correspond to the ergosterol content up to

0.06 molar fraction, and confirm that in this molar fraction

range there are created domains with a defined stoichiometry

and a relatively constant area.

The Eq. 14a and 14b can be written in the form of y ¼
ax 1 b. The a and b parameters were determined for six of

the least molar fractions of ergosterol using a linear

regression according to numerical recipes worked out by

Press et al. (34). These are equal to 0.619 and �0.715,

respectively, from capacitance measurements. We calculated

additional numbers to characterize the property of the

probable uncertainty for the parameters’ estimation: the

variances in the estimates of a and b amount to 5.56 3 10�8

and 1.00 3 10�4, respectively; the covariance of a and b is

equal to �1.883 10�6; and the coefficient of the correlation

between the uncertainty in a and the uncertainty in b is

tantamount to �0.80. The a and b parameters are equal to

4.49 3 10�6 and �1.27 3 10�5 from conductance

measurements (the variances in the estimates of a and

b amount to 7.91 3 10�17 and 1.34 3 10�13, respectively;

the covariance of a and b is equal to �2.693 10�15, and the

coefficient of the correlation between the uncertainty in a and
the uncertainty in b is tantamount to �0.83).

The parameters determined by the regression were applied

to present the agreement of the Eqs. 14 data (solid lines) with
the experimental data (points) in Fig. 6. The slope values

of the straight lines are equal to C1 and R�1
1 ; respectively,

and are in agreement (in deviation limits) with experimental

values obtained for a pure phosphatidylcholine membrane.

The intersections of the straight lines with y axes yield the

(C3 � C1ÞA�1
1 A3 and (R�1

3 � R�1
1 ÞA�1

1 A3; respectively,

which allow one to determine an area occupied by one

phosphatidylcholine/ergosterol domain (denoted by A3). The

surface area occupied by one phosphatidylcholine molecule

(A1) is also necessary for calculation of the A3 value. This

surface depends on the way the phospholipid is prepared,

because this affects the length, conformation, and degree of

unsaturation of the fatty acids chains. Therefore, the values

of the literature range between 54 Å2 and 99 Å2 (35–37).

We chose the A1 value, determined in our laboratory (38),

equaling 85 Å2. Knowing the surface area per phosphati-

dylcholine molecule, the capacitance of the membrane built

of phosphatidylcholine C1 (0.62 mF cm�2) and the

capacitance of the membrane built of domain C3 (0.37 mF

cm�2), as well as the conductance of the membrane built of

phosphatidylcholine R�1
1 (4.35 3 10�6 V�1 cm�2) and the

conductance of the membrane built of domain R�1
3 (5.12 3

10�7 V�1 cm�2), the area occupied by one phosphatidyl-

choline/ergosterol domain could be determined. The result-

ing A3 values were 243 Å2 from capacitance measurements

and 281 Å2 from conductance measurements, which gave the

mean value amounting to 262 Å2.

DISCUSSION

The molecular interaction between ergosterol and phos-

phatidylcholine is specific, and as a consequence of this,

ergosterol-rich domains are formed in mixed bilayers hav-

ing a low concentration of ergosterol (18). In this study, the

effect of ergosterol on capacitance (Fig. 2) and conductance

(Fig. 3) of the phosphatidylcholine bilayer has been ex-

amined with respect to the formation of domains in bilayers.

The newly bilayer formed by our technique reaches stable

conductance and capacitance values within 30–40 min. The

reason that it takes 30–40 min until the new formed bilayer

displays stable R�1
m and Cm values can be attributed to the

fact that the hydrophobic interior has not yet reached its com-

pletely ordered configuration. Residues of organic solvents

(mostly hexadecane) must redistribute between the mem-

brane core and the lipid deposit on the Teflon rim (pre-

treatment procedure) forming the Gibbs-Plateau border.

Drainage of solvent residues to that border is accompanied

by an increasing order of the hydrocarbon chains forming the

hydrophobic interior of the bilayer.

FIGURE 5 The dependence of (R�1
m � R�1

1 Þx1 versus (R�1
m � R�1

2 Þx2 :
R�1
m -conductance of the membrane, R�1

1 -conductance of the phosphatidyl-

choline membrane, R�1
2 -conductance of the ergosterol membrane, x1-molar

fraction of the phosphatidylcholine, and the x2-molar fraction of ergosterol.

The arrows denote the direction of the increasing x2 values and the dashed

line indicates the order of points.

FIGURE 6 A plot illustrating Eqs. 14a and 14b, from which the surface

area of phosphatidylcholine/ergosterol domain can be determined. The value

Cm represents capacitance of the membrane, R�1
m conductance of the mem-

brane, and x3 molar fraction of the domain. Solid lines represent the the-

oretical lines calculated according to Eqs. 14a and 14b.
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The high capacitance values obtained for phosphatidyl-

choline membranes (Fig. 2) leave no doubts that the mem-

brane is really a bilayer. In our earlier article (23) we inferred

that gramicidin D causes the formation of trans-membrane

ion channels in the membranes created by us, which is an

ultimate proof for the bilayer status of the lipid membrane

(the gramicidin dimmer is too short to penetrate membranes

thicker than bimolecular ones (39,40). Based on our exper-

imental results and numerous literature data (20,30,41), we

assume that our membranes do not stay solvent. If some of

these quantities, which are not large in number, are contained

in the membranes, then one should treat them as traces of

impurities. Since it is impossible to determine the quantity of

these impurities, it is impossible to make a thorough qual-

itative determination of their nature and so one cannot take

them into account in quantitative considerations (except as a

possible qualitative indication). If quantitative analysis were

possible, we would take into account the possibility of

solvent’s presence in the derived equations.

We were able to form stable phosphatidylcholine bilayers

with the ergosterol content in the range 0.00–0.11 molar

fraction. Our results are similar to the studies indicating that

ergosterol only ordered acyl chains up to 0.15–0.20 molar

fraction; above this ergosterol induced disorder of the acyl

chains and disrupt the phosphatidylcholine bilayers instead

(42,43). Relatively recent data (44–48) indicate that in

Trypanosoma cruzi, a protozoan human parasite that requires

ergosterol and other 24-alkyled sterols for growth, the ste-

rol content of the plasma membranes, which are rich in

unsaturated fatty acids, is 0.23 molar fraction (of which

three-quarters are ergosterol or its 24-ethylated analogs). The

ergosterol content of the plasma membrane of ergosterol-

containing organisms such asDrosophila has also been shown
to be within this range (17).

From the experiments on model systems and natural

membranes it has been concluded that the interactions be-

tween phospholipids and sterols are complex, and depend on

the details of sterol structure and the types of acyl chains

present in the phospholipid molecules (e.g., 15,28,49–51).

Sterols such as cholesterol with a planar sterol nucleus, an

intact side chain, and a 3b-hydroxy group reveal strong

effects on the lipid bilayer membrane. These effects are

shown by reduction in the membrane permeability, which is

strongly influenced by a reduction in motional freedom of

the hydrocarbon region (ordering effect) and by decrease in

the surface area occupied by the phospholipid (a condensing

effect). Compounds sharing structural features with choles-

terol—e.g., cholestanol, lanosterol, 7-dehydrocholesterol,

and b-norcholesterol—induce a strong condensation and

ordering effect. Sterols with a different side-chain structure,

e.g., stigmasterol and ergosterol, cause smaller effects. Com-

pounds with no side chain (androstan-3b-ol) with a non-

planar sterol nucleus (coprostanol) or a 3a-hydroxy group

(epicholesterol) show no effect or increase the permeability

(28,50,51).

The types of acyl chains present in the phospholipid mol-

ecules are very important in the phospholipid-sterol inter-

actions. Studies using 2H-, 13C-, and 31P-NMR spectroscopy

show that ergosterol is less effective at increasing order and

restricting the mobility of 1-palmitoyl-2-oleoyl-phosphati-

dylcholine than is cholesterol, whereas the opposite is true

with dimyristoylphosphatidylcholine bilayers. The lanoster-

ol is less effective than ergosterol and cholesterol, with both

saturated and unsaturated lipids. A possible reason for these

complex effects is that the rigid and bulky ergosterol mol-

ecule (or the methylated a of lanosterol) is unable to interact

effectively with the phospholipid molecules when unsatu-

rated acyl chains are present (43).

The condensing and ordering effects are not limited to

specific phospholipids; they are also shown by phosphati-

dylcholines and phosphatidylethanolamines, as well as phos-

phatidic acid, sphingomyelin, phosphatidylglycerol, or other

derivatives of phospholipids (50).

The model of intermolecular interactions resulting from

complex formation or molecular realignment assumes that,

at a constant surface pressure, the area per sterol molecule is

also constant. The condensation effect of sterol is related

to the decrease of the area per phospholipid molecule (52).

The surface area per ergosterol molecule, reported in the

literature, varies from 32 Å2 (53) to 39.3 Å2 (51). Taking into

account the surface area occupied by one ergosterol mol-

ecule equaling 38.5 Å2 (49), the surface area occupied by one

phosphatidylcholine molecule (85 Å2), the mean experi-

mental surface area occupied by one phosphatidylcholine/

ergosterol domain determined by us (262 Å2) and the pos-

sibility of existence of condensation and ordering effects, we

suggest that the stoichiometry of phosphatidylcholine/

ergosterol domain is equal to 3:1. The mean experimental

A3 value is higher than the sum of areas per two phospha-

tidylcholines and one ergosterol molecule (208.5 Å2) but

lower than the sum of areas per three phosphatidylcholines

and one ergosterol molecule (293.5 Å2). Deviation of the

surface area calculated on the basis of experiments from the

theoretical value shows a negative value, which means that a

reduction in the surface area occurs as a result of component

mixing. This is thus a condensation effect observed between

the phosphatidylcholine and ergosterol, indicating that er-

gosterol can work as a reinforcer for phosphatidylcholine

bilayers. The condensation can be attributed to area changes

within the phosphatidylcholine when this lipid is mixed with

ergosterol, since ergosterol is a rigid molecule whose area

does not significantly change when a phosphatidylcholine/

ergosterol bilayer is formed. This is in agreement with the

model of intermolecular interactions. The surface area occu-

pied by one phosphatidylcholine molecule within the phos-

phatidylcholine/ergosterol domain amounts to ;75 Å2,

whereas the presence of cholesterol in the phosphatidylcho-

line bilayer can reduce the molecular area of the phospha-

tidylcholine to 56 Å2 (36).
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During the last few years, many research groups have

intensively studied the function of lipid rafts and micro-

domains in biological membranes and in models of

biomembranes. The concept of rafts or glycosphingolipid/

cholesterol domains, which are involved in protein and lipid

transport and in several signaling cascades, was first pre-

sented in 1997 (1). The raft hypothesis suggests that lipids

can form domains or aggregates in the plane of the mem-

brane and that these domains form due to interactions between

the lipid molecules. The existence of such rafts has been

disputed, but more and more evidence has been gathered

showing the important functions of such lipid domains in the

cellular membranes (54).

The lipid rafts are enriched in cholesterol and saturated

fatty acids, and therefore are highly ordered as compared to

the surrounding lipid bilayer (55). In addition, sterol-rich

domains exist within the plasma membrane as structures

referred to as caveoli (56). Cholesterol is typically associated
with separate kinetic domains, and is thus considered to be

distributed nonrandomly within the plasma membrane (57).

Regulation of the size and physico-chemical properties of

these kinetic domains may influence extra- and intracellular

cholesterol transport (58). Investigators have proposed that

cholesterol domains may modulate the activity of membrane

proteins that localize specifically to cholesterol-rich and

cholesterol-poor domains (59). It has also been hypothesized

that sterol-rich regions play a crucial role in cellular function

that induces signal transduction, cell adhesion, motility, and

the sorting and trafficking of membrane components (1,9). In

the membrane, cholesterol tends to aggregate into clusters at

cholesterol/phospholipid mole ratios in excess of 0.3 (60)

and forms separate domains at ratios in excess of 1 (i.e., 0.5

molar fraction (61)). Numerous theoretical and model mono-

layer and bilayer studies have demonstrated that the system-

atic addition of cholesterol to biological membranes can

eventually yield to lateral phase separation and the formation

of membrane-restricted sterol domains (60–62). In well-

defined lipid monolayer systems, the addition of cholesterol

produces lateral sterol domains (62). The formation of these

domains appeared to correlate with the growth-promoting

capacity of the sterols in a Mycoplasma capricolum system.

Although cholesterol is the sterol preferred by most organ-

isms, it has been established that sterol analogs having

blocked 3 b-OH functions (e.g., cholesteryl methyl ether and

cholesteryl acetate) can support the growth ofM. capricolum
nearly as well as cholesterol can (63,64). Similarly, ergos-

terol methyl ether can support the growth of Saccharomyces
cerevisiae nearly as efficiently as the native yeast sterol er-

gosterol (64).

Although conventional techniques to purify rafts, e.g.,

detergent extraction of cell membranes, were first employed

to study raft lipid composition, they might be affected by

artifacts (2,65). Optical microscopy allows for a straightfor-

ward visualization of lipid domains in a noninvasive way

(66,67). By detecting fluorescence from lipid probes expected

to partition preferentially either into rafts or into nonraft

phase, raftlike domains could be visualized in monolayers

and supported bilayers (68–70). A systematic investigation

of the morphology of raftlike domains as a function of

cholesterol concentration has been also attempted (71,72).

Sizes of artificial rafts are consistently on the micrometer

scale (1–50 mm), in striking contrast to the putative raft size

in cells (;20–500 nm). This often raises the question whether

what we observe in bilayer or monolayer membranes actu-

ally corresponds to a good model for rafts in vivo (72). Our

impedance data clearly show that domains in bilayers com-

posed of phosphatidylcholine and ergosterol exist, and have

size close to the size of rafts in living cells. These data, to-

gether with the theoretical model proposed by us, indicate

that phosphatidylcholine/ergosterol domains represent an

accurate model for rafts and allow for investigation of raftlike

properties under controllable conditions.

CONCLUSION

Application of impedance spectroscopy to the study of

electrochemical behavior of lipid bilayers allows one to pro-

vide a quantitative description of equilibria in a two-compo-

nent membrane. Based on derived mathematical equations,

a new method for calculation of the surface area of the do-

main between phosphatidylcholine and ergosterol was pro-

posed. The domain formation is the main reason for which

deviation from rectilinearity of the parameters of the system

described by the additivity rule is observed.

Data presented in this work, obtained from the mathe-

matical derivation and confirmed experimentally are of great

importance for the interpretation of phenomena occurring in

lipid monolayers and bilayers. In our opinion, these results

can help in a better understanding of biological membranes

and with biophysical studies. A new, simple, and very inter-

esting method proposed by us can be used with success for

the quantitative determination of area and describe the stoi-

chiometry of domains formed in any two-component system.
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