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ABSTRACT Dual-color photon counting histogram (PCH) analysis utilizes the photon counts in two detection channels to
distinguish species by differences in brightness and color. Here we modify the existing dual-color PCH theory, which assumes
ideal detectors, to include the non-ideal nature of the detector. Specifically, we address the effects of deadtime and afterpulsing.
Both effects modify the shape of the dual-color PCH and thus potentially lead to incorrect values for the brightness and number
of molecules if an ideal model is assumed. We use the modified theory to predict the effects of detector non-idealities on dual-
color PCH as a function of concentration and brightness. In addition, we introduce a method based on moment analysis to
determine the error in brightness due to non-ideal detector effects. We verify our theory experimentally by measuring a dye
solution as a function of concentration and brightness. We determine the deadtime and afterpulse probability of our detectors
and show that both effects play an important role in the analysis of dual-color PCH experiments. We demonstrate that resolving
a mixture of CFP and YFP requires taking non-ideal detector effects into account. These corrections are also crucial for cellular
measurements, as shown for GFP and RFP in mammalian cells.

INTRODUCTION

The resolution of species is of central importance in many

biological experiments. One technique capable of quantita-

tively characterizing a mixture of species is fluorescence

fluctuation spectroscopy (FFS). FFS utilizes the fluctuations

in light intensity produced by fluorescently-tagged biological

molecules diffusing through a very small observation volume

(;0.1 fL). Statistical methods such as fluorescence correla-

tion spectroscopy and photon counting histogram (PCH)

analysis are used to extract kinetic and structural information

about the biological system from the fluctuations in fluo-

rescence intensity. Fluorescence correlation spectroscopy

uses correlation functions, which capture the temporal as-

pects of the fluctuations, to resolve species while PCH uses

the amplitude distribution of the fluctuations to resolve

species. The FFS technique has been used extensively to

study the association and disassociation of proteins (1–3),

kinetics (4–6), diffusion in cells (7), and flow (8,9).

In standard FFS, all the light is collected by one detector.

Dual-channel FFS uses a dichroic mirror to separate the

emission of two spectrally distinct fluorophores into two dif-

ferent detectors. Dual-channel schemes offer increased

specificity when studying heterogeneous biological systems.

For example, consider the proteins A and B, which are

assumed to dimerize with themselves and each other. If both

proteins were labeled with the same fluorophore, then we are

able to distinguish monomers (A or B) from dimers (AA,

AB, or BB), but not between the three possible forms of

dimer or between the two monomers. However, if we were to

label protein A with a green fluorophore and protein B with

a red one, then in principle, we could clearly distinguish

between all five scenarios.

To detect hetero-interactions, dual-channel FFS looks for

coincident fluctuations in the two detectors. One may either

compare how the fluctuations in fluorescent intensity in one

detector (e.g., ‘‘red’’ channel) correlate in time with the

fluctuations in the second detector (e.g., ‘‘green’’ channel) or

one may compare the fluctuation amplitude in the red

channel to that in the green channel. The first approach is

termed cross-correlation analysis (10) and the second is

termed dual-color photon counting histogram analysis (11)

or two-dimensional fluorescence intensity distribution anal-

ysis (12). Cross-correlation analysis has been used to study

diffusion (13), enzyme kinetics (14), protein-protein inter-

actions (15), and to resolve species (16). However, cross-

correlation analysis is often hampered by spectral cross-talk

in which some of the green photons leak into the red channel

and some of the red photons leak into the green channel due

to the overlap of the fluorophores’ emission spectra. Cross-

talk amounts to false coincidences between the two detection

channels and thus must be corrected for or eliminated with

additional spectral filters (17). Dual-color PCH analysis, on

the other hand, can readily resolve species in the presence of

cross-talk (11). Both techniques are ultimately complimen-

tary and the same data set can be used for both analyses.

In our previous work on PCH analysis for a single

detector, we found that non-ideal detector effects cause

significant changes in the PCH (18). Based upon this ex-

perience, we decided to investigate the influence of these

effects on the dual-color PCH. The detector effects we are

specifically concerned with are deadtime and afterpulsing.

Deadtime is a fixed period of time after the registration of
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a photon in which the detector is unable to detect subsequent

photons. The deadtime of nonparalyzable detectors, such as

actively-quenched avalanche photodiodes (APD), is unaf-

fected by photons reaching the detector during the deadtime.

Afterpulsing is the generation of a spurious pulse after the

detection of a real pulse. The dual-color PCH theory de-

veloped so far has only considered the case of ideal photo-

detectors (11,12). We found that just as in the single-channel

case, non-ideal detector effects can produce significant

changes in the dual-color PCH. These effects, if not ac-

counted for, may lead to erroneous interpretation of ex-

perimental data and therefore severely limit the practical use

of this analysis method. To overcome these limitations, we

develop a new dual-color PCH theory that incorporates both

deadtime and afterpulsing effects. We validate our new

theory using a simple dye as a model system. In addition, we

resolve a mixture of CFP and YFP, which exhibit consid-

erable spectral overlap. We also present methods for de-

termining the deadtimes and afterpulse probabilities of

photodetectors. The qualitative effects of deadtime and

afterpulsing on the dual-color PCH are the same as in the

single-channel case. Both effects turn out to be important in

dual-color experiments and thus need to be incorporated into

the analysis. The modified dual-color PCH theory allows us

to study biological systems at conditions otherwise inac-

cessible to standard dual-color PCH. As we will show for

GFP and RFP, the new theory is particularly important in

cellular measurements where the number of molecules is

high and the brightness is low. To increase the sensitivity of

the dual-color PCH technique, we performed global analysis

of FFS experiments with the modified PCH theory.

THEORY

Dual-color PCH resolves species by differences in molecular

brightness in the two detectors (eA, eB) (11). The subscripts A
and B are used throughout this article to identify the detec-

tion channel. Molecular brightness is defined as the inte-

grated fluorescence intensity produced by a single molecule

in the observation volume and is usually measured as photon

counts per molecule per sampling period (cpm). Dividing the

brightness in cpm by the sampling period yields the bright-

ness in units of counts per molecule per second. We will

report brightness in cpm throughout this article. It should be

noted that the brightness depends on the properties of the

fluorophore itself and on the physical setup. Dual-color PCH

analysis also returns the average number of molecules �NN of

each species present in the observation volume.

We employ the same terminology and notation for dual-

color (or dual-channel) PCH as we employed for single-

channel PCH (18). Throughout this article, we use the terms

photon count distribution and photon counting histogram

(PCH). The first term is a generic theoretical description that

applies to any photon counting experiment and is denoted by

p(k) for single-channel and p(kA,kB) for dual channel. The

second term refers to photon count distributions particular to

FFS experiments. The experimental PCH will be denoted

p(k) for single-channel PCH or p(kA,kB) for dual-channel
PCH, and the theoretical PCH will be denoted either

P(k;e, �NN) orP(kA,kB;eA,eB, �NN ). The unprimed quantities refer

to those measured by an ideal detector (e.g., e). Primed

quantities refer to those measured by detectors with deadtime

(e.g., e9). Quantities denoted with an asterisk refer to those

obtained from detectors with afterpulsing (e.g., e*).

Model for deadtime

Consider a time-varying light intensity I(t) incident on a

photodetector. In the semiclassical description, the integrated

light intensity W(t) falling onto the detector surface during

the sampling time T is

WðtÞ ¼
Z t1T=2

t�T=2

IðtÞdt: (1)

Mandel’s formula relates the probability distribution func-

tion (pdf) of the integrated intensity p(W) with the pdf of the

observed photon counts p(k) (19),

pðkÞ ¼
Z N

0

Poiðk;hWWÞpðWÞdW; (2)

where Poi(k,Ækæ) is the Poisson distribution with expectation

value Ækæ and k is the number of photon counts observed in

a time interval T. The parameter hW describes the detection

efficiency of the photodetector.

We will assume that the sampling time T is chosen short

enough, so that the fluctuations in W track the intensity fluc-

tuations of interest. Thus the integrated intensity is given by

W(t)¼ I(t)T, and the pdf of the integrated intensity is propor-
tional to the pdf of the intensity, p(W)dW ¼ p(I)dI. Mandel’s

formula in the limit of short sampling times written as a func-

tion of intensity is

pðkÞ ¼
Z N

0

Poiðk;hIÞpðIÞdI ¼ ÆPoiðk;hIÞæ: (3)

The angular brackets denote the average of the Poissonian

shot-noise contribution over the intensity distribution p(I).
The parameter h is proportional to the detection efficiency

hW and takes the sampling time into account, h ¼ hWT.
If an optical filter is inserted into the emission path and the

light is split into two beams with each beam being detected

by its own photodetector, then the two-dimensional photon

count distribution is given by

pðkA; kBÞ ¼
Z N

0

Z N

0

PoiðkA;hAIAÞPoiðkB;hBIBÞpðIA; IBÞdIAdIB

¼ ÆPoiðkA;hAIAÞPoiðkB;hBIBÞæ: (4)

The function p(kA,kB) characterizes the joint probability of

detecting kA photons in channel A and kB photons in channel

B during the sampling time T.
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To obtain the dual-color PCH function, one must evaluate

Eq. 4 with the proper two-channel intensity probability func-

tion p(IA,IB) for FFS experiments. The distribution p(IA,IB)
depends on the point-spread function (PSF) and the physical

source of fluctuations, namely particles diffusing through

a small observation volume. As shown in Appendix A, the

dual-color PCH for a single species as measured by an ideal

detector is described by three parameters: 1), the molecular

brightness eA in channel A; 2), the molecular brightness eB in
channel B; and 3), the average number of molecules �NN in the

excitation volume. It is denoted P(kA,kB;eA,eB, �NN). For

multiple species, the dual-color PCH is obtained by suc-

cessive convolutions of the dual-color PCH function of each

species (11).

We have so far assumed ideal detectors when deriving the

dual-channel photon count distribution. However, detectors

are never ideal and the non-idealities of the detector need to

be accounted for in the theoretical description of the photon

count distribution. The effect of deadtime on the photon

count distribution for a single nonparalyzable detector has

been addressed in the literature (20,21) and is characterized

by the parameter d¼ ty/T¼ tyf, where ty is the deadtime of

the detector, T the sampling time interval, and f ¼ 1/T the

sampling frequency. A fluctuating light source measured by

a detector with deadtime leads to a photon count distribution

p9(k),

p9ðkÞ ¼ ÆKðk;hIÞæ ¼ Ægðk;hIð1� ðk � 1ÞdÞÞ
� gðk1 1;hIð1� kdÞÞæ; (5)

where g(k,x) is the incomplete g-function. In other words,

the effect of deadtime on photon count distributions is

described by replacing the Poissonian kernel of Eq. 3 with

the kernel K(k,hI ) of Eq. 5. It is convenient to express

K(k,hI ) as a series of Poisson functions (18),

Kðk;hIÞ ¼ +
k

j¼0

Poið j;hIð1� kdÞÞ

� +
k�1

j¼0

Poið j;hIð1� ðk � 1ÞdÞÞ: (6)

Equation 6 allows us to describe deadtime-affected PCH

functions as a mathematical series of ideal PCH functions

(18).

We now extend this approach to describe dual-channel

photon count distributions in the presence of deadtime by

replacing each of the Poissonian kernels of Eq. 4 with the

corresponding deadtime-corrected kernel of Eq. 6,

Evaluating Eq. 7 with the proper bivariate intensity

distribution function p(IA,IB) of dual-channel FFS experi-

ments (Appendix A) ultimately leads to an expression for the

deadtime-affected dual-color PCH,

We see that the dual-color PCH function with deadtime P9

is a summation over ideal dual-color PCH functions P

with modified brightnesses. The deadtime-affected PCH

function of multiple species P9ðkA; kB;~eeA;~eeB; ~�NN; dA; dBÞ
is obtained by replacing the ideal single species PCH

functions P jA; jB; eA; eB; �NN; dA; dBð Þ in Eq. 8 by the cor-

responding multiple species PCH function P jA; jB;ð
~eeA;~eeB; ~�NN; dA; dBÞ: We use vector notation to organize the

parameters of all species; for example, the brightness

vector ~eej ¼ ej1; ej2
� �

characterizes the brightness of species

1 and 2 in channel j (11).

p9ðkA; kBÞ ¼ +
kA

jA¼0

Poið jA;hAIAð1� kAdAÞÞ � +
kA�1

jA¼0

Poið jA;hAIAð1� ðkA � 1Þ dAÞÞ
" #*

3 +
kB

jB¼0

Poið jB;hBIBð1� kBdBÞÞ � +
kB�1

jB¼0

Poið jB;hBIBð1� ðkB � 1Þ dBÞÞ
" #+

: (7)

P9 kA; kB; eA; eB; �NN; dA; dBð Þ ¼ +
kA

jA¼0

+
kB

jB¼0

Pð jA; jB; eAð1� kAdAÞ; eBð1� kBdBÞ; �NNÞ

� +
kA

jA¼0

+
kB�1

jB¼0

Pð jA; jB; eAð1� kAdAÞ; eBð1� ðkB � 1ÞdBÞ; �NNÞ

� +
kA�1

jA¼0

+
kB

jB¼0

Pð jA; jB; eAð1� ðkA � 1ÞdAÞ; eBð1� kBdBÞ; �NNÞ

1 +
kA�1

jA¼0

+
kB�1

jB¼0

Pð jA; jB;eAð1� ðkA � 1ÞdAÞ; eBð1� ðkB � 1ÞdBÞ; �NNÞ: (8)
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Model for afterpulsing

An algorithm to correct for afterpulses in the photon count

distribution for a single detector was developed by Campbell

(22). For the single-channel PCH, we inverted this algorithm

to obtain afterpulse-affected PCHs in terms of ideal PCHs

(18). Here we extend this model to two detection channels.

The model assumes that a real event generates a single

afterpulse with probability qA for detector A and probability

qB for detector B, and that afterpulses cannot generate more

afterpulses. Applying this model to two independent

detectors determines the afterpulse-affected dual-channel

photon count distribution p*(kA,kB),

p
�ðkA; kBÞ ¼ +

kA

r¼0

+
kB

s¼0

BAðkA � r; r; qAÞBBðkB � s; s; qBÞ

3 pðkA � r; kB � sÞ; (9)

where p(kA,kB) is the dual-color photon count distribution

in the absence of afterpulsing and Bi(ki � n,n,qi) is the

probability of n afterpulses following ki � n real events in

detector i with an afterpulse probability qi. Bi(ki � n,n,qi) is
given by the binomial distribution,

Biðki � n; n; qiÞ ¼
ki � n
n

� �
q
n

i ð1� qiÞki�2n
: (10)

Note that Bi(ki � n,n,qi)¼ 0 for (ki � n), n; this ensures that
only single afterpulses are allowed. It is easy to verify that

the distribution p*(kA,kB) is normalized, +N
kA¼0

+N
kB¼0

p�ðkA; kBÞ ¼ 1: Eq. 9 is valid for any photon count

distribution. For FFS experiments, we replace p(kA,kB) in Eq. 9
by the ideal PCHfunctionP(kA,kB) todetermine the afterpulse-

affected PCH functionP*(kA,kB).

Implementation of models

The deadtime and afterpulsing models of Eqs. 8 and 9

require a double summation over all photon counts for each

value of the corrected distribution p9(kA,kB) or p*(kA,kB).
Such algorithms are time-consuming because they scale with

L4, where L represents the linear dimension of the array of

photon counts. Thus, we need a more efficient algorithm to

model large two-dimensional arrays of photon count dis-

tributions.

The afterpulsing probability qi of each detection channel is
�1. In other words, the binomial function Bi(ki � n,n,qi)
rapidly decays to zero with increasing number of afterpulses

n. This allows us to truncate the summation in Eq. 9 after

a finite number of afterpulses. We write the truncated after-

pulsing model as

p
�ðkA; kBÞ � +

t

r¼0

+
t

s¼0

BAðkA � r; r; qAÞBBðkB � s; s; qBÞ

3 pðkA � r; kB � sÞ; (11)

where t represents the maximum number of afterpulses

considered in each detection channel. We typically encoun-

ter experimental two-dimensional histograms with a maxi-

mum photon count of ,200 counts per sampling period.

After taking the afterpulsing probability of our detectors into

account, we found that t ¼ 5 is sufficient for modeling

experimental data.

To simplify the deadtime model, we expand the kernel of

Eq. 5 in a Taylor series, because the deadtime parameter di
of each detection channel is �1. We formally write the

kernel as

Kðn; xÞ ¼ Poiðn; xÞ+
N

j¼0

cjðn; dÞx j ¼ +
N

j¼0

ajðn; dÞPoiðn1 j; xÞ:

(12)

The coefficients aj are given by (see Appendix B)

ajðn; dÞ ¼
n1 j

j

� �
+
N

r¼0

n

r

� �
ð�1Þr

3
jn

r1j

r1 j
� dðn� rÞðn� 1Þr1j11

r1 j1 1

� �
d
r1j
: (13)

The deadtime-affected photon count distribution p9(kA,kB) is
determined by

p9ðkA; kBÞ ¼ ÆKðkA;hAIAÞKðkB;hBIBÞæ

¼ +
N

i¼0

+
N

j¼0

aiðkA; dAÞajðkB; dBÞÆPoiðkA 1 i;hAIAÞ

3 PoiðkB 1 j;hBIBÞæ: (14)

The averaged Poisson distribution above is related to the

ideal two-dimensional photon count distribution p(kA,kB) via
Eq. 4, and thus Eq. 14 becomes

p9ðkA;kBÞ ¼+
N

i¼0

+
N

j¼0

aiðkA;dAÞajðkB;dBÞpðkA1 i;kB1 jÞ: (15)

Since the deadtime parameter is �1, we can truncate the

series of Eq. 15 after a few terms. First, we transform the

coefficients aj by changing the summation parameter from

r to m ¼ r 1 j,

aãajðn; d; tÞ ¼
n1 j

j

� �
+
t

m¼j

n

m� j

� �
ð�1Þm�j

3 j
n
m

m
� d

ðn� m1 jÞðn� 1Þm11

m1 1

� �
d
m
; (16)

and truncate the series at m ¼ t. The truncated coefficient

aãajðn; d; tÞ includes the deadtime effect up to tth order of the
deadtime parameter d. Note that aãajðn; d; tÞ ¼ 0 for t , j. To
model the deadtime-affected photon count distribution to the

tth order in the deadtime parameters dA and dB, we write

Eq. 15 as

p9ðkA; kBÞ � +
t

i¼0

+
t

j¼0

aãaiðkA; dA; tÞaãajðkB; dB; tÞpðkA 1 i; kB 1 jÞ:

(17)
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Equation 17 is valid for any photon count distribution and

scales as L2 rather than L4. We found that t¼ 5 is sufficient to

model experimental dual-channel PCHs with a total intensity

of up to 2 3 106 cps. Modeling histograms with intensities

higher than this limit requires a higher order of t, while a lower
order of t is sufficient for histograms with lower intensities.

We implemented Eqs. 11 and 17 in a computer algorithm

to model experimental PCH functions. The algorithm first

creates the ideal PCH function P(kA,kB) as discussed in

Chen et al. (11), and applies Eq. 17 to arrive at the deadtime-

affected distribution P9(kA,kB). The distribution P9(kA,kB)
is transformed by Eq. 11 to arrive at the deadtime- and

afterpulse-affected PCH function P9*(kA,kB). We have

found that applying the afterpulse operation first followed

by the deadtime operation results in only a very slight dif-

ference in the PCH function and this difference is less than

the experimental error. In other words, the order of operation

produces negligible differences in P9*(kA,kB).

Moment analysis

Upon inspection, Eqs. 8 and 9 do not give any insight into

the magnitude of deadtime and afterpulsing on dual-color

PCH. In particular, they do not provide analytical expres-

sions for predicting the severity of non-ideal detector effects

on the brightness. However, a simple analytical prediction

for the relative error in the dual-color PCH parameters due to

afterpulsing or deadtime is very useful to the experimentalist,

because it allows him/her to judge whether non-ideal detector

effects can be neglected or need to be accounted for in the

data analysis for a given set of experimental conditions.

In the single-channel PCH case, we used the ordinary

moments and cumulants of the PCH to derive analytical

expressions that describe the relative error in e and �NN due to

afterpulsing or deadtime (18). We take a similar approach for

dual-color PCH and derive equations from the bivariate

cumulants to determine the relative error in the brightnesses

eA and eB and number of molecules �NN: For the dual-color

PCH case, we are interested in the two first-order cumulants

k10 and k01 as well as the three second-order cumulants k11,

k20, and k02. We ignore the higher-order cumulants, since

these five cumulants are the most statistically significant. The

five ideal cumulants are given by (11)

k10 ¼ eA �NN

k01 ¼ eB �NN

k11 ¼ g2eAeB �NN

k20 ¼ g2e
2

A
�NN

k02 ¼ g2e
2

B
�NN: (18)

It is convenient to define two new parameters; the first

parameter is the total brightness e ¼ eA 1 eB and the second

parameter is the fractional brightness f ¼ eA/e. Using these

new parameters, the brightness in each channel is given by

eA ¼ fe and eB ¼ (1 � f )e. Expressing the first-order ideal

cumulants in terms of these parameters, we find

k10 ¼ f e �NN ¼ fk

k01 ¼ ð1� f Þe �NN ¼ ð1� f Þk; (19)

where k ¼ e �NN is the total photon counts in both channels.

In the presence of non-ideal detector effects, we measure

non-ideal cumulants k̃ij instead of ideal ones. Analysis of the

non-ideal cumulants assuming the ideal model shown in

Eq. 18 leads to biased parameters ẽA; ẽB; and ~�NN instead of the

true physical parameters eA, eB, and �NN: We now describe

a procedure to estimate the non-ideal parameters ẽA; ẽB; and
~�NN:Herewe specifically focus on the calculation of ẽA; because
once it is found the calculation of ẽB and ~�NN are straightfor-

ward. The first-order non-ideal cumulants are k̃10 ¼ ẽA~�NN and

k̃01 ¼ ẽB~�NN: Since the first-order cumulants are largely

unaffected by non-ideal detector effects and have the smallest

error, we make the approximation that k̃10 ¼ k10 and

k̃01 ¼ k01: We can therefore express the second-order non-

ideal cumulants in terms of ẽA; f ; and k,

k̃11 ¼ g2ẽAẽB
~�NN ¼ g2ð1� f ÞkẽA

k̃20 ¼ g2ẽ
2

A
~�NN ¼ g2 fkẽA

k̃02 ¼ g2ẽ
2

B
~�NN ¼ g2

ð1� f Þ2

f
kẽA: (20)

To obtain an expression for ẽA we must use least-squares

minimization because the system of equations is over-

determined. We have three cumulants and only one unknown

parameter. The corresponding x2-function of the three

second-order cumulants is

x
2 ¼

k̃11 � k
ðmÞ
11

h i2
Varðk11Þ

1
k̃20 � k

ðmÞ
20

h i2
Varðk20Þ

1
k̃02 � k

ðmÞ
02

h i2
Varðk02Þ

; (21)

where k
ðmÞ
ij is a model of the ij cumulant that includes

deadtime or afterpulses, and Var(kij) is the variance of the ij
cumulant. The expressions for the k

ðmÞ
ij and variances are

given in Appendix C and are expressed in terms of the ideal

parameters (eA; eB; �NN) and the non-ideal parameters

(dA,dB,qA,qB). We minimize Eq. 21 with respect to ẽA as

@

@ẽA
x
2 ¼ 0; (22)

and solve Eq. 22 for ẽA;

ẽA ¼
1

g2k
3

f

Varðk20Þ
k
ðmÞ
20 1

ð1� f Þ2=f
Varðk02Þ

k
ðmÞ
02 1

ð1� f Þ
Varðk11Þ

k
ðmÞ
11

� �
f
2

Varðk20Þ
1

ð1� f Þ2=f
� �2
Varðk02Þ

1
ð1� f Þ2

Varðk11Þ

" # :

(23)

Equation 23 allows us to calculate the deadtime- or

afterpulse-affected brightness ẽA from the ideal parameters
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since the parameters k and f are given by k ¼ ðeA1eBÞ �NN and

f ¼ eA/(eA 1 eB).
Evaluating Eq. 23 with the deadtime cumulants

k
ðmÞ
ij ¼ k9ijðeA; eB; �NN; dA; dBÞ given in Appendix C yields

an analytical expression for the deadtime-affected brightness

(ẽA[e9A). Equation 23 also allows us to calculate the

afterpulse-affected brightness (ẽA[e�A) by using the equa-

tions in Appendix C that model the afterpulse cumulants

k
ðmÞ
ij ¼ k�ijðeA; eB; �NN; qA; qBÞ: The resulting expressions for

ẽA in the presence of deadtime and afterpulses are lengthy

and cumbersome and are not shown here. However, these

expressions are easily implemented and evaluated using a

computer algorithm and thus can be used by the experimen-

talist to determine whether corrections for deadtime and/or

afterpulsing are necessary.

To obtain the relative error in brightness when both effects

are present, we simply calculate the relative errors due to

deadtime and afterpulsing separately and then add them

together. This is tantamount to assuming that the two effects

are independent of one another. Technically the two effects

are not statistically independent (e.g., each afterpulse gen-

erates a deadtime in the detector), but to first order they can

be treated as such. Afterpulses occur with a probability q and
the leading order of correction of afterpulsing to PCH is of

order O(q). Similarly, deadtime effects give rise to cor-

rections with leading order O(d). The corrections due to the

interdependency of afterpulses and deadtime is thus of order

O(qd). Since q and d are small numbers, the correction is of

higher order and is neglected because we are only interested

in first-order effects. Including the entanglement of the

effects in the model would require that the individual cor-

rections for deadtime and afterpulsing include second-order

terms as well as a more sophisticated model for afterpulsing.

None of these higher-order corrections appear to be necessary

to describe our dual-color PCHs as is shown below.

MATERIALS AND METHODS

Instrumentation

The instrumentation for dual-channel fluorescence fluctuation experiments

is similar to that described in Chen et al. (11) and consisted of a Zeiss

Axiovert 200 microscope (Thornwood, NY) and a mode-locked Ti:Sapphire

laser (Tsunami, Spectra-Physics, Mountain View, CA) pumped by intra-

cavity doubled Nd:YVO4 laser (Millennia Vs, Spectra-Physics). All experi-

ments were performed using a 63X C-Apochromat oil immersion objective

(NA ¼ 1.4). Alexa 488 was excited at 780 nm with an average power of

9.6 mW, CFP and YFP were excited at 905 nm with an average power of

2.4 mW, and GFP and RFP were excited at 995 nm with an average power

of 0.75 mW. All powers were measured after the objective. The fluorescence

emission was separated into two different detection channels by an optical

filter. A beam splitter was used for the Alexa 488 sample, a 515-nm dichroic

mirror for the CFP/YFP mixture and a 565 nm dichroic for the GFP and RFP

cellular measurements. All dichroic mirrors were from Chroma Technology

(Rockingham, VT). Photon counts were detected with an avalanche

photodiode (APD) (SPCM-AQ-14, Perkin-Elmer, Dumberry, Québec).

The output of each APD, namely TTL pulses, was directly connected to one

of two dual-channel data acquisition cards (Flex02-12D, Correlator.com,

Bridgewater, NJ or ISS, Champaign, IL). The sampling frequency was 100

kHz for the Alexa 488 measurements and 20 kHz for the CFP/YFP experi-

ments and for cellular measurements. The sampling frequencies chosen for

the Alexa 488 and CFP/YFP measurements introduce an undersampling

effect of;10%, which is neglected. No undersampling occurs in the cellular

experiments. The recorded photon counts were stored and later analyzed

with programs written for IDL (Research Systems, Boulder, CO).

Sample preparation

Alexa 488 was purchased from Molecular Probes (Eugene, OR) and

dissolved in water. The dye concentration of the stock solution (;10 mM)

was determined by optical absorption measurements using the extinction

coefficient provided by Molecular Probes. Alexa 488 was diluted in water to

a concentration of ;100 nM. Background counts were ;100 cps in both

channels.

Plasmids pRSET A ECFP and EYFP were a kind gift from Dr. Patterson

(Cell Biology and Metabolism Branch, National Institutes of Health,

Bethesda, MD). His-tagged CFP and YFP were prepared according to

Patterson et al. (23) using the Bug Buster protein purification kit (Novagen,

San Diego, CA). Stock protein solutions were diluted and measured in

phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO). Back-

ground counts were ;100 cps in both channels.

pEGFP-C1 plasmid was obtained from Clontech (Mountainview, CA).

This was amplified with a 59 primer that encodes a Nhe I restriction site and
a 39 primer that encodes a BspE I site for mammalian expression. The mRFP

pRSET B plasmid was a kind gift from Dr. Tsien (University of California,

San Diego). It was spliced into the above GFP plasmid.

COS cells were obtained from ATCC (Manassas, VA) and maintained in

10% fetal bovine serum (Hyclone Laboratories, Logan, UT) and DMEM

media. Cells were subcultured into an eight-well cover-glass chamber slides

(Naglenunc International, Rochester, NY) and then transiently transfected

using Polyfect (Qiagen, Valencia, CA) according to manufacturer’s instruc-

tions. Before conducting measurements, the growth media was removed and

replaced with PBS.

Data analysis

PCH functions are calculated with respect to a three-dimensional Gaussian

PSF, whereas a Gaussian-Lorentzian PSF was used in Hillesheim andMüller

(18). The choice of PSF and its effect on the PCH parameters is discussed

in Chen et al. (11). The histogram of the experimental data is calculated

from the recorded photon counts and then normalized to obtain the experi-

mental probability distribution of photon counts p(kA,kB). To fit the experi-

mental PCH to the theoretical PCH, we must weigh each element of the

PCH with its standard deviation skA ;kB : The probability of simultaneously

observing kA and kB counts n times out of M trials is given by the bino-

mial distribution function, and its standard deviation is given by

skA ;kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mp kA; kBð Þ 1� p kA; kBð Þð Þ

p
: The theoretical PCH, denoted

P(kA,kB;eA,eB, �NN), is calculated and the reduced x2 is determined by

x
2 ¼

+
kA ;kB

M
pðkA; kBÞ �PðkA; kB; eA; eB; �NNÞ

skA ;kB

� �2

r
; (24)

where the sum is taken over all kA and kB where p(kA,kB) is.0. The degrees

of freedom r is determined by r0 � d where r0 equals the number of terms in

the sum and d is the number of free fitting parameters. Because a typical data

set contains;M¼ 106 data points, the resulting binomial distribution is well

approximated by a normal distribution. Thus the quality of the model can be

estimated by the reduced x2 and by the normalized residuals r(kA,kB) ¼
M pðkA; kBÞ �P kA; kB; eA; eB; �NNð Þ½ �=skA ;kB


 �
of the fit.

Background effects were included in all fits. The brightnesses and

number of molecules of the background species were obtained by fitting
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solvent-only histograms for the solution measurements. For cellular mea-

surements, the background is composed of both scattered light and auto-

fluorescence. Untransfected cells were measured and their histograms were

fit to determine the number of molecules and brightness in each channel.

Afterpulse effects were included in all background fits.

RESULTS AND DISCUSSION

Determination of ty and q

To quantitatively characterize the effect of deadtime and

afterpulsing on the dual-color PCH we first need to

determine the deadtimes (tyA,tyB) and afterpulse probabil-

ities (qA, qB) of our detectors. In Hillesheim and Müller (18),

we measured the deadtime and afterpulse probability of one

of our detectors using Mandel’s Q parameter. We have since

found that this technique of determining the deadtime and

afterpulse probability is highly sensitive to external sources

of fluctuations, and therefore great care must be exercised to

assure the validity of the fitted detector parameters. Thus, we

developed new methods for independently determining the

deadtime and afterpulse probability for each of our detectors.

Determining the deadtime of the detector is straightfor-

ward. We expose the APD to background light with an

intensity of ;10 kcps. The output signal from the APD is

connected to a fast digital oscilloscope (Tektronix TDS

3034, Wilsonville, OR) and the deadtime is determined by

the shortest time interval between consecutive pulses. The

experimentally determined deadtimes of our detectors are

shown in Table 1. The deadtime of the data acquisition cards

is less than that of the photodetectors and is therefore not a

determining factor.

We developed two methods for measuring the average

afterpulse probabilities of our detectors. The same data set

can be used for both methods. The APD is exposed to low

levels of light (;2000 cps) and data is collected in photon

mode (see Eid et al. (24)) with a clock of 24 MHz for

;30 min. The photon count rate is low enough that deadtime

effects are negligible. If the light incident on the detector is

uncorrelated, any correlations that arise between photon

counts are due to afterpulses. The number of afterpulses is

directly proportional to the average photon counts Ækæ and the
probability pa(t) to observe an afterpulse at time t after a real

event has occurred. Thus, the autocorrelation function due to

afterpulsing is written as

GðtÞ ¼ paðtÞÆkæ
Ækæ�2

; (25)

where the mean photon count Ækæ* in the presence of

afterpulsing is related to the ideal mean photon count by

Ækæ* ¼ Ækæ(1 1 q). The cumulative probability q that a real

photon event will trigger an afterpulse is given by

q ¼
Z N

0

paðtÞdt: (26)

We introduce the function

QðtÞ[ Ækæ�
Z t

0

GðtÞdt ¼ 1

ð11 qÞ

Z t

0

paðtÞdt �
Z t

0

paðtÞdt;

(27)

where the approximation introduced in Eq. 27 uses the fact

that q is �1. Note that for times larger than the timescale t0
of afterpulse generation the afterpulse probability goes to

zero, or pa(t) / 0 for t . t0. In this limit, Q(t) approaches
the afterpulse probability q. A plot of Q(t) vs. t is shown

in Fig. 1 A for detector B on instrument 2 (see Table 1). At

t � 1 ms, Q(t) becomes constant because nearly all of the

afterpulses occur within a few microseconds of their original

pulse. The value at which Q(t) stabilizes is 0.0046 and is

equal to the afterpulse probability q of the detector.

The second method utilizes the histogram of time intervals

between photon arrivals h(t), shown for the same detector

in Fig. 1 B. Since the background light is of nearly constant

intensity, we expect for an ideal detector a histogram of

exponentially distributed arrival times. For a non-ideal

detector we observe an excess of counts for time intervals

of ,1 ms. These excess counts are afterpulses and the hole

at the beginning of the histogram is due to deadtime. If we

subtract the exponential distribution due to constant light

from the histogram in Fig. 1 B, we are left with a histogram

ha(t) of only the afterpulses,

haðtÞ ¼ hðtÞ � Ae�t=Ætæ
; (28)

where A is the amplitude of the exponential distribution and

Ætæ the average time between photon arrivals. The total

number of events in the afterpulse-only histogram ha(t) is the
total number of afterpulses Na. The total number of detected

events Ne is the sum of the histogram h(t). We determine the

afterpulse probability by q ¼ Na/(Ne � Na). Using this

method, we obtained an afterpulse probability of 0.0046, in

excellent agreement with the result from the first method.

The afterpulse probabilities of our detectors are shown in

Table 1.

Modeling non-ideal detector effects on the
dual-color PCH

We first model dual-color PCH functions to better un-

derstand the influence of deadtime and afterpulsing on the

TABLE 1 Deadtime and afterpulse probabilities

of our detectors

Instrument 1 Instrument 2

Afterpulse probability qA ¼ 0.002 qA ¼ 0.007

qB ¼ 0.003 qB ¼ 0.0046

Deadtime tyA ¼ 50 ns tyA ¼ 50 ns

tyB ¼ 48 ns tyB ¼ 51 ns

Although the deadtime is comparable for all detectors, the afterpulse prob-

ability varies significantly from detector to detector.
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shape of the two-dimensional histograms. An ideal PCH

function with eA ¼ eB ¼ 0.021 cpm, �NN¼ 4.653, and a total of

M ¼ 1 3 108 photon events is displayed in Fig. 2 A. The
three-dimensional graph shows the number of events with kA
photons detected in channel A and kB photons in channel B.

Overlaying three-dimensional plots of deadtime- and after-

pulsing-affected PCH distributions onto the graph of Fig. 2 A
makes it difficult to read. Therefore, we project the three-

dimensional histogram onto two dimensions, so that changes

in its shape due to non-ideal effects are more apparent. In

Fig. 2 B, the histogram of Fig. 2 A is plotted row by row,

starting with kB ¼ 0 (squares with solid line). The top axis

specifies the photon counts of channel A, whereas the bottom

axis indicates the photon counts in channel B.

The dotted line of Fig. 2 B represents the same histogram

but with deadtime effects (dA ¼ dB ¼ 0.05), whereas the

dashed line represents the afterpulse-affected PCH (qA ¼ qB
¼ 0.02). The non-ideal PCH functions are generated using

Eqs. 8 and 9. Exaggerated values for the deadtime and

afterpulse parameters were chosen to more clearly illustrate

non-ideal detector effects. We expect that deadtime and

afterpulse effects show up primarily in the higher channels of

the PCH. Here the term ‘‘channel’’ refers to the number of

photons detected in a sampling period. At high count rates,

many photons are lost in the deadtime and thus higher

channels are more affected than lower channels. This leads to

an overall narrowing of the PCH function as observed in Fig.

2 B. The deadtime-affected PCH (dotted line) is less than the
ideal PCH and the deviation grows with increasing photon

FIGURE 2 (A) Three-dimensional representation of an ideal dual-color

PCH. The PCH value is displayed as a function of the photon counts (kA, kB)
in channels A and B. (B) Two-dimensional representation of the ideal three-

dimensional PCH shown in A by graphing it row after row starting with kB¼
0 (solid line, squares). The two-dimensional plot facilitates the comparison

of the shape changes between ideal and non-ideal PCH functions. Deadtime

preferentially decreases the counts of the PCH (dotted line) in the higher

channels leading to a narrowing of the function, while afterpulsing increases

the counts in the higher channels of the PCH (dashed line), thus broadening

the PCH. The data are modeled for eA ¼ eB ¼ 0.021 cpm and �NN¼ 4.653 and

for M ¼ 13 108 data points. We used large values of deadtime (dA ¼ dB ¼
0.05) and afterpulse probability (qA ¼ qB ¼ 0.02) for illustration purposes.

FIGURE 1 Determination of the afterpulse probability of one of the

detectors used in this study by (A) the integrated autocorrelation function

Q(t) (see Eq. 27) and (B) the histogram of the time intervals between photon

events. The detector was exposed to light whose intensity is constant on the

timescale of the afterpulsing (t ; 1 � 10 ms). Afterpulses generally arrive

within a few microseconds after the real pulse that generated them. There-

fore any correlations that arise at early times are due to afterpulsing. The

value at which Q(t) stabilizes (dashed line) corresponds to the afterpulse

probability, which for this detector is 0.0046. The dotted line in B represents

the fitted exponential decay due to a constant light source. The large peak

above the exponential decay curve at time intervals ,1 ms is due to

afterpulses.
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counts kA and kB. Afterpulses, on the other hand, broaden the
PCH, as shown in Fig. 2 B. The afterpulsing-affected PCH

function (dashed line) exceeds the ideal PCH and the

deviation grows with increasing number of photon counts in

each channel. With each real pulse, there is a chance that an

afterpulse is generated and thus higher channels are more

likely to contain afterpulses than lower channels. Afterpulsing

and deadtime have opposite effects on the dual-color PCH.

We are specifically interested in how the broadening or

narrowing of the dual-color PCH due to afterpulsing and

deadtime biases the brightness in each channel and the

number of molecules when the histogram is fit using an ideal

model. These experimental parameters are crucial for char-

acterizing biological systems and biased parameters would

lead to a misinterpretation of the experimental results. In

addition, we would like to compare non-ideal detector effects

in the dual-channel PCH with those in the single-channel

PCH. We earlier found for the single-channel case that

deadtime-affected PCH functions fit to the ideal PCH model

resulted in a reduced brightness and an elevated number of

molecules (18). We expect a similar behavior for dual-color

PCH analysis. To better characterize deadtime effects on the

dual-color PCH, we generated several deadtime-affected

histograms using Eq. 8. Identical brightness values (eA ¼
eB¼ e) and identical deadtime parameters (dA¼ dB¼ d) were

chosen to simplify the comparison with single-channel PCH.

The deadtime PCH functions P9 kA; kB; eA; eB; �NN; dA; dBð Þ
were fit to ideal PCH functions P kA; kB; e9A; e9B; �NN9Þ:ð
The biased brightness values e9A and e9B are identical (e9A ¼
e9B ¼ e9) since symmetric conditions were chosen for each

detection channel. This allows us to simply compare the

brightness e with the biased brightness e9. In Fig. 3 A we

graph the relative error in the brightness due to deadtime

(De/e)deadtime ¼ (e9 � e)/e for the dual-color PCH as a func-

tion of the number of molecules �NN for two different dead-

time parameters (solid symbols). We also analyzed the effect

of deadtime on single-channel histograms using the same

brightness and number of molecules as the dual-channel

histograms. The relative error in the single-channel histo-

grams is shown in Fig. 3 A as open symbols. The relative

error in the brightness of both single- and dual-channel PCH

increased as a function of concentration and with increasing

deadtime parameter d (Fig. 3 A).
We also used moment analysis to calculate the relative

error in brightness due to deadtime for each dual-channel

histogram according to Eq. 23. The error based on bivariate

moment analysis is shown in Fig. 3 A as solid lines and

agrees with the observed error of dual-channel PCH. We

found that moment analysis reproduces the error introduced

by deadtime in the dual-color PCH as long as Ækæ3 d, 0.05.

This limit is a consequence of the Taylor expansion of the

moment equation to first-order. The relative error in

brightness for the single-channel PCH by moment analysis

is shown as dashed lines and was calculated as previously

described (18).

We observed two significant differences between the

deadtime-affected dual-color PCH and its single-channel

counterpart: the relative error is smaller for dual-channel than

for single-channel (Fig. 3 A) and the reduced x2 of the fit to

an ideal model is much larger for the dual-channel than for

the single-channel case (Table 2). This latter result suggests

that, while single-channel PCHs with deadtime can be fit

within experimental error by the ideal model, the same is not

true for the dual-channel case. In fact, the ideal dual-color

FIGURE 3 Relative error in brightness introduced by non-ideal detector

effects. The PCH functions are modeled for identical parameters in both

channels, i.e., eA ¼ eB ¼ e. This simplifies the comparison with single-

channel data. (A) The relative error of e due to deadtime is shown for dual-

channel (solid symbols) and single-channel (open symbols) histograms as

a function of �NN for two different deadtime parameters. (B) The relative error

of e due to afterpulsing is shown for dual-channel (solid symbols) and single-
channel (open symbols) histograms as a function of e for two different

afterpulse probabilities. The relative error in e as a function of �NN for select

values of e is shown as an inset. (C) The relative error of e due to the

combined effects of afterpulsing and deadtime is shown for dual-channel

histograms as a function of �NN: We used e ¼ 0.21 cpm in A and C, while we
set �NN¼ 2.33 in B. The solid and dashed lines are the predictions of the

relative error of e based on moment analysis.
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PCH model fails to fit most of the dual-color PCH functions

that include deadtime.

The difference in behavior between single- and dual-

channel PCH is best understood in terms of cumulants. The

relative error of the cumulant kij introduced by deadtime is

calculated from (Dkij/kij)deadtime ¼ (k9ij � kij)/kij, where k9ij is

the deadtime-affected cumulant. The values and relative

errors for the first five cumulants are shown in Table 3 for

values of eA ¼ eB ¼ 0.21 cpm and �NN¼ 46.5. The relative

error of the first-order cumulants (k10, k01) is small and

identical to the relative error of the single-channel cumulant

k1. For the second-order cumulants of k20 and k02 the

relative error is much larger than for the first-order

cumulants, but again identical to the relative error of the

single-channel cumulant k2. There is, however, one other

important second-order cumulant for the dual-color PCH,

k11, and this cumulant is much less affected by deadtime

compared to k20 or k02. The reason for this lies in the fact that

the detection processes of both detectors are independent of

one another. In other words, the deadtime experienced by the

first detector due to a photon event is not preventing the

second detector from detecting a photon.

To understand the extent to which afterpulsing affects the

dual-color PCH, we generated several afterpulse-affected

dual-color PCHs using Eq. 9 as well as their single-channel

equivalents and then fit them to their respective ideal PCH

models. As we did for the deadtime modeling, we chose

identical parameters for both channels (eA ¼ eB ¼ e, qA ¼ qB

¼ q). The relative error in brightness due to afterpulsing

(De/e)afterpulse is given by (e* � e)/e, where e* is the biased

brightness returned by the ideal fit of the afterpulse-modified

histogram and e is the ideal brightness. We find that the

relative error due to afterpulsing becomes larger as the

brightness decreases, and larger afterpulse probabilities lead

to larger errors (Fig. 3 B); this is qualitatively the same

behavior as observed for single-channel PCH (18). As is the

case for deadtime, dual-color PCH is more robust against

afterpulsing effects than single-channel PCH as judged by

the approximately twice-larger error for the single-channel

PCH compared to the dual-channel PCH (Fig. 3 B). How-
ever, the error in brightness of dual-channel PCH, especially

at low brightnesses, is still large enough that it cannot be

ignored during data analysis. As judged by the reduced

x2-values, the ideal model fails to adequately describe dual-

channel histograms in the presence of afterpulsing (Table 4).

The relative error in the brightness introduced by after-

pulsing is independent of the number of molecules and thus

introduces a constant error in any dilution or titration ex-

periment (see inset of Fig. 3 B). We again used moment

analysis to calculate the relative error in brightness due to

afterpulsing for the histograms shown in Fig. 3 B (lines). The
result agrees very well with the error in brightness observed

by modeling PCH functions. The reason that the relative

error (De/e)afterpulse is smaller for the dual-color PCH than for

the single-channel PCH is essentially the same reason it is

smaller for the deadtime case; namely the relative error of k11
due to afterpulsing is less than the relative error in k20 and

k02 because photon detection in detector A is independent

from that in detector B.

In our previous work on single-channel PCH analysis we

concluded that afterpulsing is primarily a problem when the

brightness is low (e , 0.09 cpm for q ¼ 0.002) (18).

However, the afterpulse probability of some of our detectors

is over three-times larger and thus afterpulsing causes sig-

nificant errors (.10%) in the single-channel PCH even for

moderate brightnesses (e ¼ 0.21 cpm). Dual-channel experi-

ments split the brightness of a fluorophore into two detection

TABLE 2 Reduced v2-values obtained from fits of single- and

dual-channel deadtime-affected PCHs to their respective

ideal models

�NN x2
single x2

dual

0.1 0.0 0.0

0.5 0.0 0.4

1.0 0.0 1.0

5.0 0.0 6.2

10.0 0.0 13.0

The values correspond to the d ¼ 0.0025 curves in Fig. 3 A. The histograms

are generated from a model (Eq. 8) rather than experimentally obtained, so

a reduced x2 # 1 implies that the ideal PCH model describes the deadtime

modified PCH. A reduced x2 . 1 implies that the ideal PCH model does

not describe the deadtime PCH, which is the case for the more severely

affected dual-channel PCHs (i.e., those with the highest concentrations).

The number of data points used was 6 3 106.

TABLE 3 Values for the cumulants calculated from dual-color

PCHs with eA 5 eB 5 0.21, 5 46.53, and d-values given below

d ¼ 0 d ¼ 0.001 d ¼ 0.0025

k10 ¼ k01 10 9.90 (�1%) 9.75 (�3%)

k20 ¼ k02 0.76 0.53 (�30%) 0.22 (�71%)

k11 0.76 0.73 (�4%) 0.69 (�9%)

The number in parentheses is the relative error between the ideal PCH

(d ¼ 0) and deadtime-compromised PCHs (d ¼ 0.001 and d ¼ 0.0025).

The second-order cumulant k11 is much less affected by deadtime than the

other second-order moments, k20 and k02.

TABLE 4 Reduced v2-values obtained from fits of single- and

dual-channel afterpulse-affected PCHs to their respective

ideal models

e (cpm) x2
single x2

dual

0.1 1.3 23.2

0.3 1.0 14.8

0.5 1.1 10.9

0.8 1.1 7.7

1.0 1.2 6.8

The values correspond to the data shown in Fig. 3 B for q ¼ 0.006. The

histograms are generated from a model (Eq. 9) rather than experimentally

obtained, so a reduced x2# 1 implies that the ideal PCHmodel describes the

afterpulse-modified PCH. A reduced x2 . 1 implies the ideal PCH model

does not describe the afterpulse-affected PCH, as is the case for all the dual-

color histograms above. The number of data points used was 63 106.

3500 Hillesheim and Müller

Biophysical Journal 89(5) 3491–3507



channels with a dichroic filter. Because emission wavelength

is used to separate different fluorophores, the brightness of

a dye will usually be high in one channel and weak in the

other channel. The low value of the brightness in the weak

channel makes it very susceptible to afterpulsing effects.

Thus, afterpulsing plays a significant role in the analysis of

most dual-color PCH experiments even for detectors with

low afterpulse probabilities.

The non-ideal detector effects of deadtime and after-

pulsing work in opposite directions on the dual-color PCH:

deadtime narrows the distribution resulting in reduced

e-values and increased �NN-values, while afterpulsing broadens
the distribution leading to increased e-values and reduced
�NN-values. The combination of the two effects on the dual-

color PCH in a simulated dilution experiment is shown in Fig.

3 C. Again we use identical parameters for both channels

(eA ¼ eB ¼ e, qA ¼ qB ¼ q, and dA ¼ dB ¼ d). The relative

error in the brightness due to afterpulsing is independent of

concentration and introduces a constant error for each

dilution step while the error introduced by deadtime

decreases with each subsequent dilution. Thus for a given

brightness, afterpulse effects dominate at lower concen-

trations and deadtime effects dominate at higher concen-

trations. The concentration at which the two sources of error

cancel depends on the brightness, the afterpulse probability,

and deadtime parameter of each detector. Comparison of

Fig. 3 C with Fig. 3, A and B, shows that the relative error

in brightness for combined deadtime and afterpulsing effects

is just the sum of the relative error of the two effects

individually (i.e., (De/e)total¼ (De/e)deadtime1 (De/e)afterpulse).
We also predict the error using bivariate moment analysis,

where the relative errors due to deadtime and afterpulsing are

added together. The results are shown in Fig. 3 C as solid

lines. Moment analysis describes the error in brightness

obtained from modeling the dual-channel PCH.

Experimental verification: Alexa 488

The modeling provided both qualitative and quantitative

predictions about the behavior of the dual-color PCH and its

parameters in the presence of non-ideal detector effects. To

verify these predictions and also test the new theory’s ability

to describe real data, we performed a simple dilution experi-

ment. A solution of Alexa 488 in water was diluted se-

quentially by factors of 2. At the lowest concentration,

the sample was also measured with a neutral density filter

(30% transmission) inserted into the emission path to further

reduce the brightness. A 50/50 beam splitter was used to

separate the emission into the two detectors.

In our initial attempts to fit experimental histograms to the

non-ideal model, we found that a range of deadtimes and

afterpulse probabilities could fit the histograms equally well

when both effects are included. Since deadtime effects are

largely absent at low concentrations and afterpulsing effects

are always present regardless of the concentration and the

more severe the lower the brightness, we decided to focus

first on the low concentration sample with the additional

emission filter. Since afterpulsing causes large deviations

from the ideal dual-color PCH model (Table 4) we expect

that the q parameter for each detector can be accurately

determined from histograms obtained from samples with low

brightness and low concentrations. The dual-color PCH of

the lowest concentration sample ( �NN¼ 0.86 6 0.02) of our

dilution experiment was fit to both the ideal model and

a model that includes only afterpulses. These fits are shown

in Fig. 4. The ideal model fails to describe the data

(x2 ¼ 24.0), whereas the afterpulse model describes the data

within experimental error (x2 ¼ 1.5). The afterpulse

probabilities returned from the fit (qA ¼ 0.0070 6 0.0006,

FIGURE 4 Fits (lines) of the experimental dual-color PCH (diamonds) to

the ideal model (A) and to a model including afterpulsing (B) and their

normalized residuals. The sample is a dilute aqueous solution of Alexa 488

( �NN¼ 0.866 0.02) so deadtime effects are negligible. The ideal model fails to

describe the experimental dual-color PCH as evidenced by the large reduced

x2 (x2 ¼ 24.0) and residuals. Including afterpulses into the model improves

the fit significantly, yielding a reduced x2 of 1.5. The afterpulse probabilities

returned by the fit are qA ¼ 0.0070 6 0.0006 and qB ¼ 0.0049 6 0.0006,

in excellent agreement with our independent measurements (Table 1,

Instrument 2). A neutral density filter was used in the emission path to reduce

the brightness of the sample.
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and qB ¼ 0.0070 6 0.0006) are in excellent agreement with

our independent measurements of the afterpulse probabilities

for those detectors (see Table 1, Instrument 2). The

molecular brightnesses returned from the fit that includes

afterpulsing are eA ¼ 0.073 6 0.002 cpm and eB ¼ 0.082 6

0.002 cpm. Fits using the ideal model yielded eA ¼ 0.088 6

0.006 cpm and eB ¼ 0.099 6 0.006 cpm for the dual-color

PCH, and e ¼ 0.114 6 0.002 cpm for the single-channel

PCH from detector A and e ¼ 0.112 6 0.002 cpm for the

single-channel PCH from detector B. These results are in

agreement with our modeling, which predicts that the errors

for the single-channel histograms would be larger than for

the dual-channel histograms.

To adequately describe the entire dilution experiment both

afterpulsing and deadtime effects must be accounted for in

the dual-color PCH model. We first fit the dual-color and

single-channel histograms for each dilution step to their ideal

models (Fig. 5). As expected from the modeling, we ob-

served that the brightness returned by the ideal fit was too

large at low concentrations due to afterpulsing, whereas the

brightness was too low at high concentrations because of

deadtime. The errors for the single channel histograms were

also larger than the errors for the dual-channel histograms.

Next we performed a global fit of all the dual-color histo-

grams where the brightness of each channel is linked so that

it remains the same for all dilution steps. A global fit to an

ideal model fails to describe the data (x2 ¼ 29.9). Including

deadtime effects in the dual-color PCH model improved the

global fit (x2 ¼ 7.3) but this model was still insufficient.

The global fit only described all histograms within error

(x2 ¼ 1.1) when both deadtime and afterpulsing effects are

included in the model. The afterpulsing probabilities were

fixed during the global fit to the values obtained earlier by

our independent measurements (qA ¼ 0.0070, qB ¼ 0.0046),

while the deadtime parameters were allowed to vary. The

global fit determined values of dA ¼ 0.0047 6 0.0002 and

dB ¼ 0.0047 6 0.0002 for the deadtime parameters. These

values agree well with the expected value of 0.005 cor-

responding to a deadtime of 50 ns and sampling frequency of

100 kHz. The brightness for each channel from the global fit

for each channel is shown in Fig. 5 as a solid line. We also

refit each two-dimensional histogram individually using the

non-ideal model (deadtime and afterpulses). The resulting

brightness values are shown in Fig. 5 as solid triangles and

agree within error with the brightness determined by global

analysis.

Experimental verification: CFP and YFP
in solution

In Chen et al. (11), we resolved a mixture of CFP and YFP

using a 525-nm dichroic, although, as we pointed out, a

515-nm dichroic would provide the best signal/noise ratio for

separating the mixture. Because the brightness of YFP in the

‘‘blue’’ channel (l, 515 nm) is very weak, the strong effect

of afterpulsing in this channel prevented us from resolving

the mixture with the 515-nm dichroic. In addition, we were

unable to resolve mixtures at higher concentrations due to

deadtime effects. Now with a new PCH theory that includes

non-ideal detector effects, we repeated the experiments with

CFP and YFP but used a 515-nm dichroic. We prepared an

equimolar sample of CFP and YFP in PBS and diluted by

factors of 2 in five steps. All of the dual-color histograms

were first fit globally to the ideal dual-color PCH model and

then to our deadtime- and afterpulse-modified model. The

deadtime and afterpulse parameters were fixed to values of

dA ¼ dB ¼ 0.001, qA ¼ 0.007, and qB ¼ 0.0046. The bright-

ness in each channel was linked across the data sets since this

parameter should not change as a function of concentration.

Surprisingly, the reduced x2 of both global fits were ;1.

Based on our earlier modeling, we expected that the ideal

FIGURE 5 Alexa 488 was diluted in water by a factor of 2 several times

and the dual-color and single-channel PCHs of each sample were fit to their

respective ideal models. Shown is the molecular brightness in detector A (A)

and in detector B (B) returned from the individual fit of each sample to the

ideal model and the non-ideal model (dual-color PCH only). The solid lines

represent the brightness in each detection channel determined by global

analysis of all dual-color PCH histograms to the non-ideal model. The

number of molecules was also determined by the global fit. The ideal model

fails to provide a constant brightness. It yields a brightness that is too large at

low concentrations due to afterpulse effects, whereas, at high concentrations,

the value is too low because of deadtime effects. Since detector A has the

larger afterpulse probability of the two detectors, its difference between the

single- and dual-channel brightnesses is larger than that for detector B at the

lower concentrations. For each dilution step, the dual-channel histogram was

fit to the non-ideal model with deadtime and afterpulses. The non-ideal

model returned constant e-values as expected.
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model would have difficulty fitting the experimental histo-

grams. However, our result demonstrates that including

another species in the model provides enough flexibility to

account for the misfit due to afterpulsing and/or deadtime.

The brightness values of the global fit to the ideal model are

shown in Fig. 6 A. We see that the compensation of non-ideal

detector effects by a two-species model leads to biased

brightness values that differ from the true brightness values

for CFP and YFP. We determined the brightness of CFP and

YFP individually by measuring them independently. In fact,

we had to include afterpulsing effects to describe the dual-

color histograms of CFP alone and YFP alone at low

concentrations. Fig. 6 A demonstrates that the ideal model

fails to provide the correct brightness values. The global fit

includes histograms that are both deadtime-dominated and

afterpulse-dominated, and the ideal model compromises

between these competing effects by adjusting the brightness

and number of molecules of each species. This compensation

leads to nonphysical parameters. The brightness values of the

global fit to the non-ideal model are shown in Fig. 6 B and

match the brightness values expected for CFP and YFP. In

other words, the non-ideal model successfully resolves the

protein mixture.

Experimental verification: GFP and RFP in cells

Deadtime and afterpulse corrections are vitally important for

PCH analysis of cellular measurements. The intrinsic

brightness of the commonly used fluorescent proteins

(FPs), such as GFP, is lower than that of most organic

fluorophores used for FFS experiments. In addition, the

excitation power in cell experiments is lower than in aqueous

solution, thus further reducing the brightness, and the con-

centrations of FPs are typically very high (N ; 10 � 100).

To demonstrate the utility of the dual-color PCH for analysis

of fluorescence fluctuation experiments in living cells, we

transiently transfected COS cells with GFP or RFP. In fitting

the histogram of each cell, we corrected for deadtime and

afterpulse effects (dA ¼ dB ¼ 0.001, qA ¼ 0.007, and qB ¼
0.0046) as well as for background. The results of the

experiment are shown in Fig. 7. We see that the brightness

values for each channel are constant for both GFP and RFP,

as expected. Without these corrections, the brightness values

in each channel would show a concentration-dependent

behavior similar to that shown for Alexa 488 in Fig. 5, but

FIGURE 6 A mixture of CFP and YFP in solution. The sample was

diluted by factors of 2 in five steps (Ntotal � 50 for the first histogram and

Ntotal � 5 for the fifth histogram with NYFP � NCFP for all histograms). (A)

The brightnesses and their standard deviation as determined by global

analysis of the dual-color histograms for the mixture fitted to an ideal PCH

model with two species (triangles). (B) The same histograms were then

globally fit to a PCH model for two species that included afterpulsing and

deadtime. The brightness in each channel for species 1 and 2 obtained from

the non-ideal fit are shown as triangles. The brightness values of a solution of

CFP alone (solid square) and of YFP alone (open square) were also

determined by dual-color PCH analysis and serve as a control. The non-ideal

model recovers the brightness of CFP and YFP of the mixture, while the

ideal model fails to return the proper brightness.

FIGURE 7 The brightness in channels A (triangles) and B (squares) of
GFP (A) and RFP (B) in vivo as obtained from dual-color PCH analysis with

deadtime and afterpulsing effects. Each data point represents the mea-

surement of a different cell. Background was also taken into account during

the fit. Since GFP and RFP are monomeric in the cell, their brightness

remains constant as the concentration increases.
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the deviations would be more severe because the total bright-

ness is lower and the concentration higher.

Summary of non-ideal corrections for the
dual-color PCH

In this article, we have developed a new theory for the dual-

color PCH that includes deadtime and afterpulsing (Eqs. 8

and 9). Although this new theory is exact, it is impractical

from an experimental point of view. Using Eqs. 8 and 9 to fit

large histograms individually or for global analysis often

took several minutes or even hours. Thus we developed and

implemented the approximations of Eqs. 11 and 17, which

have led to enormous gains in fitting time (;10 s). However,

neither the exact theories nor their approximations provide

insight into the magnitude of the errors in eA, eB, and �NN
introduced by deadtime or afterpulses. For the single-

channel PCH, we were able to provide a contour diagram

to illustrate these errors (18) but such a diagram is not pos-

sible for the dual-color PCH because there are three param-

eters instead of two. In addition, the afterpulse probability

varies considerably between detectors. Thus we developed

a simple approach based on moment analysis to predict the

severity of the errors in eA, eB, and �NN: Experimentalists can

use Eq. 23 to determine the effect of deadtime and after-

pulses on eA, for example, by inputting the ideal parameters

and detector properties.

CONCLUSION

We previously demonstrated that dual-color PCH is a

powerful tool for resolving mixtures. However, to take full

advantage of this analysis method, the effects of deadtime

and afterpulsing must be taken into account. These effects

complicate the resolution of species at high concentrations,

where deadtime effects dominate, or at low brightness, where

afterpulse effects dominate. We developed a new theory of

dual-color PCH that includes the effects of deadtime and

afterpulsing and verified it experimentally. The new theory

also allows us to perform global analysis of dual-color PCH

experiments, which increases the sensitivity for resolving

species. Using this modified dual-color PCH theory we were

able to resolve a mixture of CFP and YFP, a protein pair with

significant cross-talk. We also demonstrated that the

technique is suitable for analysis of cellular experiments by

characterizing the brightness of GFP and RFP in mammalian

cells.

APPENDIX A

The derivation of the dual-color PCH function presented here is slightly

different from that presented in Chen et al. (11). It closely follows the

derivation of the single-channel PCH function (25) and has the advantage

that it is straightforward to generalize this approach to the case of deadtime-

affected dual-color PCH.

We begin by considering a single diffusing particle at position r* within

the observation volume VPSF defined by the PSF. Throughout this derivation

we will use the normalized point-spread function psf ðr*Þ¼ PSFðr*Þ/PSF(0).
The proper dual-channel intensity distribution p(1)(IA,IB) for a single particle
enclosed in a sample volume V is

p
ð1ÞðIA; IBÞ ¼

Z
d IA � eA

hA

psfðr*Þ
� �

d IB �
eB
hB

psfðr*Þ
� �

3 pðr*Þdr*; (29)

where p r*ð Þ ¼ 1=V is the probability to find the particle at r*: Inserting this

into Eq. 4, we arrive at the dual-color PCH function P(1) of a single particle

diffusing within the sample volume V,

P
ð1ÞðkA; kB; eA; eBÞ ¼

Z
PoiðkA; eApsfðr*ÞÞ

3 PoiðkB; eBpsfðr*ÞÞpðr*Þdr*: (30)

The intensity distribution p(2)(IA,IB) for two identical, but independent,

particles is given by

p
ð2ÞðIA; IBÞ ¼

ZZ
d IA � eA

hA

ðpsfðr*1Þ1 psfðr*2ÞÞ
� �

3 d IB �
eB
hB

ðpsfðr*1Þ1 psfðr*2ÞÞ
� �

pðr*1Þ

3 pðr*2Þdr*1dr
*
2: (31)

Evaluating Eq. 4 using p(2)(IA,IB) returns the PCH function P(2) for two

particles,

P
ð2ÞðkA; kB; eA; eBÞ ¼

ZZ
PoiðkA; eAðpsfðr*1Þ1 psfðr*2ÞÞÞ

3 PoiðkB; eBðpsfðr*1Þ1 psfðr*2ÞÞÞpðr*1Þ
3 pðr*2Þdr*1dr

*
2: (32)

Since the particles are independent we also obtainP(2) by convolution of the

single-particle PCH functions P(1),

P
ð2ÞðkA;kB;eA;eBÞ ¼P

ð1ÞðkA;kB;eA;eBÞ5P
ð1ÞðkA;kB;eA;eBÞ:

(33)

The N-particle dual-color PCH function P(N) is obtained by convoluting the

single-particle function P(1) N-times.

We now transform from the closed volume V to the small observation

volume VPSF. The probability to have N particles in the observation volume

is p(N) ¼ Poi(N, �NN), where the average number of particles �NN is calculated

from the bulk concentration c of the sample and Avogadro’s constant NA

using �NN¼ cVPSFNA. The dual-color PCH function for an open volume is

given by averaging over all PCH functions with fixed particle number

weighted by the probability p(N),

PðkA; kB; eA; eB; �NNÞ ¼ +
N

N¼0

P
ðNÞðkA; kB; eA; eBÞpðNÞ: (34)

The average number of photon counts of detectors A and B is given by

ÆkAæ ¼ eA �NN and ÆkBæ ¼ eB �NN; respectively.
To obtain the dual-color PCH function (Eq. 8) in the presence of

deadtime we rewrite Eq. 7,
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Evaluating Eq. 35 with the dual-channel intensity distribution p(1)(IA,IB)
of a single diffusing particle (Eq. 29) yields the corresponding deadtime-

affected PCH function P(1)9,

where we introduced

Q
ðrÞ
eA ;eB;dA ;dB

ðkA; kBÞ ¼ +
kA

jA¼0

+
kB

jB¼0

P
ðrÞðjA; jB; eAð1� kAdAÞ

3 eBð1� kBdBÞÞ: (37)

Inserting the intensity distribution p(2) (IA,IB) into Eq. 35 determines the

deadtime-affected PCH function P(2)9 of two particles,

It is straightforward to generalize this approach to the case of N particles to

determine P(N)9.

Analog to Eq. 34, the deadtime-affected PCH function P9 is given

by averaging over all PCH functions P(N)9 weighted by their probability

p(N),

P9ðkA; kB; eA; eB; �NN; dA; dBÞ ¼ +
N

N¼0

P
ðNÞ
9ðkA; kB; eA; eB; dA; dBÞ

3 pðNÞ: (39)

Exchanging the order of summation of Eqs. 39 and 37 allows us to write the

deadtime-affected PCH function P9 in its final form of Eq. 8.

APPENDIX B

To obtain the coefficients cj in Eq. 12 we first rewrite the kernel in Eq. 5 as

(21)

Kðn; xÞ ¼ gfðn; x1 d1Þ
ðn� 1Þ! � gfðn1 1; x1 d2Þ

n!
; (40)

where x ¼ hI, d1 ¼ �x(n � 1)d, and d2 ¼ �xnd. In Eq. 40, gf(n,z) is the
incomplete factorial function. We then use the relationship (26)

gfðn; x1 diÞ � gfðn; xÞ ¼ e
�x
x
n�1 +

N

r¼0

x
�r ðn� 1Þ!
ðn� r � 1Þ!

3 ð1� e
�dierðdiÞÞ; (41)

where

erðdiÞ ¼ +
r

j¼0

d
j

i

j!
; (42)

to expand Eq. 40. We then obtain

Kðn; xÞ ¼ Poiðn; xÞgðdÞ; (43)

where

gðdÞ ¼ 11 +
N

r¼0

x
�r n!

ðn� rÞ! ð1� e
�d1erðd1ÞÞ

n� r

x

h
�ð1� e�d2erðd2ÞÞ

i
: (44)

We performed a Taylor expansion of the term in brackets in Eq. 44 and

found that this term can be expressed as

+
N

j¼0

d
r1j11ð�1Þr

j!ðr1 j1 1Þr! ðxnÞ
r1j11 � ðn� 1Þr1j11ðn� rÞxr1j

� �
:

(45)

Inserting this back into Eq. 44 results in an expression for g(d) of

p9ðkA; kBÞ ¼ +
kA

jA¼0

+
kB

jB¼0

ÆPoið jA;hAIAð1� kAdAÞÞ Poið jB;hBIBð1� kBdBÞÞæ

� +
kA

jA¼0

+
kB�1

jB¼0

Poið jA;hAIAð1� kAdAÞÞ Poið jB;hBIBð1� ðkB � 1ÞdBÞÞh i

� +
kA�1

jA¼0

+
kB

jB¼0

Poið jA;hAIAð1� ðkA � 1ÞdAÞÞ Poið jB;hBIBð1� kBdBÞÞh i

1 +
kA�1

jA¼0

+
kB�1

jB¼0

Poið jA;hAIAð1� ðkA � 1ÞdAÞÞ Poið jB;hBIBð1� ðkB � 1Þ dBÞÞh i: (35)

P
ð1Þ
9ðkA; kB; eA; eB; dA; dBÞ ¼ Q

ð1Þ
eA ;eB ;dA ;dB

ðkA; kBÞ � Q
ð1Þ
eA ;eB ;dA ;dB

ðkA � 1; kBÞ
� Q

ð1Þ
eA ;eB;dA ;dB

ðkA; kB � 1Þ1Q
ð1Þ
eA ;eB;dA ;dB

ðkA � 1; kB � 1Þ; (36)

P
ð2Þ
9ðkA; kB; eA; eB; dA; dBÞ ¼ Q

ð2Þ
eA ;eB ;dA ;dB

ðkA; kBÞ � Q
ð2Þ
eA ;eB ;dA ;dB

ðkA � 1; kBÞ
� Q

ð2Þ
eA ;eB;dA ;dB

ðkA; kB � 1Þ1Q
ð2Þ
eA ;eB;dA ;dB

ðkA � 1; kB � 1Þ: (38)
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gðdÞ ¼ 11 +
N

r¼0

+
N

j¼0

n

r

� �
d
r1j11ð�1Þr

j!ðr1 j1 1Þx
j11

n
r1j11

� +
N

r¼0

+
N

j¼0

n

r

� �
d
r1j11ð�1Þr

j!ðr1 j1 1Þðn� 1Þr1j11ðn� rÞxj: (46)

Let us look at the first double summation term in Eq. 46. Let j̃ ¼ j11; then

this term becomes

+
N

r¼0

+
N

j̃¼1

n
r

� �
j̃d

r1j̃ð�1Þr

j̃! r1 j̃
� � x

j̃
n
r1j̃
: (47)

We want to start the j̃ summation at zero, so we must evaluate the term

(Eq. 47) for j̃¼ 0. We see that the term is zero for r . 0 and one for r ¼ 0.

Thus Eq. 47 can be rewritten as

+
N

r¼0

+
N

j¼0

n
r

� �
d
r1jð�1Þr

j!ðr1 jÞ jx
j
n
r1j � 1; (48)

where we have let j̃/j: And thus

gðdÞ ¼ +
N

j¼0

cjðn; dÞxj; (49)

where

cjðn;dÞ¼+
N

r¼0

1

j!

n
r

� �
ð�1Þr jn

r1j

ðr1 jÞ�
dðn� rÞðn�1Þr1j11

ðr1 j11Þ

� �
d
r1j
:

(50)

APPENDIX C

The cumulants of the intensity distribution can also be related to the ordinary

moments of the photon count distribution and are given by

k10 ¼ ÆkAæ
k01 ¼ ÆkBæ
k11 ¼ ÆkAkBæ� ÆkAæÆkBæ

k20 ¼ Æk2Aæ� ÆkAæ
2 � ÆkAæ

k02 ¼ Æk2Bæ� ÆkBæ
2 � ÆkBæ; (51)

where the ordinary moments of the dual-channel photon count distribution

for the ideal case are calculated from

ÆkmAk
n

Bæ ¼ +
N

kA¼0

+
N

kB¼0

k
m

Ak
n

B pðkA; kBÞ: (52)

The deadtime- and afterpulse-affected cumulants (denoted with a prime and

asterisk, respectively) have the same form as the ideal, but are calculated

from the deadtime-affected ordinary moments (e.g., k910 ¼ ÆkAæ9) and

afterpulse-affected ordinary moments (e.g., k�10 ¼ ÆkAæ�), respectively.
The deadtime- and afterpulse-affected moments are obtained by replacing

p(kA,kB) in Eq. 52 with p9(kA,kB) and p*(kA,kB), respectively. We will first

consider the deadtime-affected moments. For the single-channel case,

O’Donnell (21) found that

Kðn;hIÞ � Poiðk;hIÞ 11 dðhIk � kðk � 1ÞÞ½ �: (53)

Therefore for the dual-channel case, the photon count distribution is

p9ðkA; kBÞ ¼ PoiðkA;hAIAÞ 11 dðhAIAkA � kAðkA � 1ÞÞ½ ��h
PoiðkB;hBIBÞ 11 dðhBIBkB � kBðkB � 1ÞÞ½ �i:

(54)

Simplifying the above and keeping only first-order terms (i.e., O(dA) or

O(dB)) yields

p9ðkA; kBÞ ¼ pðkA; kBÞ½1� dAkAðkA � 1Þ � dBkBðkB � 1Þ�
1 pðkA 1 1; kBÞ½dAkAðkA 1 1Þ�1 pðkA; kB 1 1Þ
3 ½dBkBðkB 1 1Þ�: (55)

We have also made use of Eq. 4 in deriving the above expression. Inserting

Eq. 55 into Eq. 52, we arrive at the following expressions for the deadtime-

affected moments in terms of ideal moments,

ÆkAæ9 ¼ ÆkAæ� dA Æk2Aæ� ÆkAæ
� �

ÆkBæ9 ¼ ÆkBæ� dB Æk2Bæ� ÆkBæ
� �

ÆkAkBæ9 ¼ ð11 dA 1 dBÞÆkAkBæ� dAÆk2AkBæ� dBÆkAk2Bæ

Æk2Aæ9 ¼ Æk2Aæ� dA ÆkAæ� 3Æk2Aæ1 2Æk3Aæ
� �

Æk2Bæ9 ¼ Æk2Bæ� dB ÆkBæ� 3Æk2Bæ1 2Æk3Bæ
� �

: (56)

For the afterpulse case, we insert Eq. 9 into Eq. 52 to calculate the afterpulse-

affected moments. Keeping only terms of O(qA) or O(qB), we find for the

five ordinary moments,

ÆkAæ
� ¼ ÆkAæð11 qAÞ

ÆkBæ
� ¼ ÆkBæð11 qBÞ

ÆkAkBæ
� ¼ ÆkAkBæð11 qA 1 qBÞ

Æk2Aæ
� ¼ Æk2Aæð11 2qAÞ1 ÆkAæqA

Æk2Bæ
� ¼ Æk2Bæð11 2qBÞ1 ÆkBæqB: (57)

To obtain the deadtime- and afterpulse-affected cumulants (i.e., k
ðmÞ
ij ), we

insert Eqs. 56 and 57, respectively, in Eq. 51. Before this is done, however,

the ideal moments in Eqs. 56 and 57 must be related to the ideal PCH

parameters eA, eB, and �NN: This is accomplished by equating Eqs. 18 and 51

(see also Hillesheim and Müller (18)). The final expressions for the k
ðmÞ
ij are

straightforward to derive but are too long to be presented here.

And, finally, the variances of the cumulants are (27),

Varðk11Þ ¼ k11 1 k12 1 k21 1 k22 1 k
2

11 1 k20k02 1 k20k01

1 k02k10 1 k10k01

Varðk20Þ ¼ 2k20 1 4k30 1 k40 1 2ðk20 1 k10Þ2

Varðk02Þ ¼ 2k02 1 4k03 1 k04 1 2ðk02 1 k01Þ2; (58)

where kij is calculated from

kij ¼ gi1je
i

AeB
j
: (59)

We use the ideal variances rather than the non-ideal variances above. This

approximation is sufficient for our purposes and results in simpler ex-

pressions.
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