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ABSTRACT Receptor-ligand binding is a critical first step in signal transduction and the duration of the interaction can impact
signal generation. In mammalian cells, clustering of receptors may be facilitated by heterogeneous zones of lipids, known as
lipid rafts. In vitro experiments show that disruption of rafts significantly alters the dissociation of fibroblast growth factor-2 (FGF-
2) from heparan sulfate proteoglycans (HSPGs), co-receptors for FGF-2. In this article, we develop a continuum stochastic
formalism to address how receptor clustering might influence ligand rebinding. We find that clusters reduce the effective
dissociation rate dramatically when the clusters are dense and the overall surface density of receptors is low. The effect is much
less pronounced in the case of high receptor density and shows nonmonotonic behavior with time. These predictions are
verified via lattice Monte Carlo simulations. Comparison with FGF-2-HSPG experimental results is made and suggests that the
theory could be used to analyze similar biological systems. We further present an analysis of an additional cooperative internal-
diffusion model that might be used by other systems to increase ligand retention when simple rebinding is insufficient.

INTRODUCTION

The cell membrane is composed of many different types

of lipid species. This heterogeneity leads to the possibility

of organization of different species into distinct domains

(1). Such domains are especially suited and designed for

specialized functions such as signal transduction, nutrient

adsorption, and endocytosis. They can link specific cellular

machinery and physical features and are equipped with mech-

anisms for maintenance (addition and removal of specific

molecules) for a certain period of time, during which the

domains may diffuse as single entities (2). Lipid rafts, which

are microdomains rich in sphingolipids and cholesterol,

represent one of the most interesting but insufficiently

understood lipid domains (3). Various estimates are available

for raft sizes, and diameters in the range 25–200 nm have

been reported using various methods (4). A limitation in this

area remains that the definition of lipid rafts is rather broad

and currently includes a wide range of what will likely prove

to be distinct domains that may be distinguished by the

particular protein and lipid compositions (2,4,5). Operational

definitions of rafts based on resistance to detergent solubi-

lization and sensitivity to cholesterol removal are limited by

artifacts of the various procedures used to define rafts and on

difficulties in relating model membranes to cell membranes.

Nonetheless, it is clear that cell membranes are not homo-

geneous and that protein-protein, protein-lipid, and lipid-

lipid interactions all participate in regulating raft size,

dynamics, and function. Consequently, a myriad of functions

have been prescribed to lipid rafts, one possibility being that

lipid rafts may serve as mediators of signal transduction for

several growth factors, including fibroblast growth factor-2

(FGF-2) (6–8).

Growth factors act as triggers for many cellular processes

and their actions are typically mediated by binding of ligand

to the extracellular domain of transmembrane receptor pro-

teins. For many receptors, signal transduction requires dimer-

ization or clustering whereby two or more receptors, after

ligand binding, interact directly to facilitate signal transduc-

tion. Although ligand binding is generally specific to members

of a family of transmembrane receptor proteins, heparin-

binding growth factors such as FGF-2 interact with both

specific members of the FGF receptor family and heparan

sulfate glycosaminoglycan chains of cell surface proteogly-

cans (HSPGs). HSPGs represent a varied class of molecules,

including the transmembrane syndecans, the glycosyl-phos-

phatidylinositol anchored glypicans, and extracellular pro-

teoglycans such as perlecan (reviewed in Bernfield et al. (9)

and Kramer and Yost (10)). The interaction of FGF-2 with

HSPGs is of a lower affinity than to the cell surface signaling

receptor (CSR) but has been shown to stabilize FGF-2-CSR

binding and activation of CSR (11,12). Moreover, HSPGs

have recently been demonstrated to function directly as sig-

naling receptors in response to FGF-2 binding, leading to the

activation of protein kinase C-a (12) and Erk1/2 (6).

There is evidence that cell surface HSPGs are not dis-

tributed uniformly, but are instead localized in lipid rafts

(6,14–16), and this association may be facilitated by FGF-2

binding and clustering (17). This localization and clustering

may further have a dramatic influence on signaling through

both persistence of signaling complexes and localization

with intracellular signaling partners. For example, FGF-2
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dissociation kinetics from HSPGs were significantly altered

when cells were treated with the lipid raft-disrupting agents

methyl-b-cyclodextrin (MbCD) (Fig. 1). Retention of FGF-

2, even at long times, was significantly greater in the un-

treated state, suggesting that rafts regulate this process.

These experiments suggest that clustering of HSPGs in lipid

rafts effectively slows down dissociation by increasing the

rebinding of released FGF-2. If this is indeed true, then the

localization of binding sites to microdomains on the cell sur-

face could be an important mechanism employed by receptors

to boost signal transduction via increased persistence.

The relation between the apparent association and disso-

ciation rates of ligands interacting with receptors on a

(spherical) cell surface with the corresponding intrinsic rates

has been studied previously by several authors (18–23). Berg

and Purcell (18) demonstrated that for ligands irreversibly

binding to N receptors on a spherical cell of radius a, the
effective forward rate constant becomes a nonlinear function

of N, assuming the form kf 5 4pDa[Nk1/(4pDa 1 Nk1)],
where k1 is the association rate for a single receptor in close

proximity to the ligands (i.e., the intrinsic binding rate). The

quantity in brackets was termed the capture probability, g, by

Shoup and Szabo (19). The effective dissociation rate was

analogously defined as the product of the intrinsic rate and

the escape probability, 1–g. This leads to (19,24)

kr ¼ k�
kD

kD 1Nk1

� �
; (1)

where k� is the intrinsic dissociation rate and kD (5 4pDa
for a spherical completely absorbing surface) represents the

diffusion-limited association rate, illustrating how increasing

receptor numbers lead, in general, to a decrease in apparent

dissociation rate. This result was later extended to include the

presence of solution receptors by Goldstein et al. (25). Asso-

ciation of ligands to a cluster of receptors on a planar surface,

which also includes the surface diffusion of ligands inside

the cluster, was investigated by Potanin et al. (26). This study

predicted a nonmonotonic variation of the forward rate

constant with cluster size that was found to fit better with

some experimental results.

Ingeneral, the effective dissociation rate of ligands froma set

of receptors depends on the frequency of rebinding, whereby

a dissociated ligand wanders around in the solution for some

time and reattaches to the binding surface upon contact. This is

only implicitly included in the above approaches. A systematic

mathematical study of the rebinding probability of a single

ligand was undertaken by Lagerholm and Thompson (27). An

independent self-consistent mean-field model of rebinding of

ligands bound to receptors in an infinite two-dimensional plane

was recently presented by us (28) in the context of analyzing

surface plasmon resonance (SPR) experiments.

In this article, we generalize our earlier discrete model (28)

to incorporate a continuum description for the receptor dis-

tribution as well as the ligand motion. The self-consistent

stochastic mean-field theory of rebinding thus developed is

then used as the basis for extending our investigation to

include nonuniformity in the spatial distribution of receptors.

In particular, we study how rebinding is affected by the pres-

ence of receptor clusters on the cell surface. Our broad con-

clusions from this study are as follows:

1. Receptor clustering dramatically reduces the effective

dissociation rate through enhancing rebinding, if the

overall receptor density is small enough that the effect

would have been negligible without clustering.

2. When the overall receptor density is high, the effect of

clustering is smaller, but the frequent rebinding events

render the dissociation nonexponential in the case of a

planar surface.

In the remainder of this article, we first develop the

theoretical formalism to study rebinding of ligands to an

infinite plane of uniformly distributed receptors. Motivated

by recent experimental observations of the effect of lipid

rafts on ligand rebinding (6), the formalism is then extended

to include receptor clusters. Subsequently, our theoretical

predictions are compared to Monte Carlo simulation data.

Finally, we comment on possible applications, including a

possible internal-diffusion model extension, and discuss

consequences for the analysis of experimental results. In

Table 1, we include a glossary of terms used.

FIGURE 1 Effect of the lipid raft disrupting agent MbCD and heparin

on FGF-2 dissociation from HSPGs. Bovine vascular smooth muscle cells

in tissue culture were treated with MbCD (0, i.e., untreated, or 10 mM

MbCD) for 2 h at 37�C before cooling to 4�C. 125I-FGF-2 (0.28 nM) was

added and allowed to bind to the cells for 2.5 h before initiation of

dissociation (t 5 0). After the binding period, unbound 125I-FGF-2 was

removed by washing the cells with cold binding buffer, and dissociation

was initiated in binding buffer without FGF-2 (6heparin, 100 mg/ml) at

4�C. The cells were allowed to incubate for the indicated time periods, at

which point the amount of FGF-2 bound to HSPG sites was determined by

extracting the cells with 2 M NaCl and 20 mM HEPES, pH 7.4 and

counting the samples in a g-counter. All data was normalized to the

amount of 125I-FGF-2 bound to HSPG sites at t 5 0 (100%) under each

condition. Mean values of triplicate samples, mean6 SE, are shown (data

replotted from Chu et al. (6)).
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THEORY

Rebinding on a planar surface

In this section, we present a generalization of our recently introduced lattice

random-walk-based theory of rebinding to a continuum distribution of re-

ceptors on a two-dimensional infinite surface. Let us consider a homoge-

neous distribution of receptors on an infinite planar surface with constant

mean surface density R0 per unit area. The intrinsic dissociation and asso-

ciation rates are denoted by k� and k1, respectively. We denote by R(t) the

density of receptors bound to the ligand at any time t, and its dynamical

equation has the form

dRðtÞ
dt

¼ �k�RðtÞ1 k1 rðtÞ½R0 � RðtÞ�; (2)

where r(t) represents the ligand density in the vicinity of the surface. Let us

now consider a dissociation experiment for which the density of receptors

that are bound to ligands at time t 5 0 is R(0)5 R*, and the ligand density in
the bulk volume is taken to be zero at t 5 0. It then follows that a nonzero

r(t) at time t . 0 is entirely due to ligands released from bound receptors at

previous times 0 , t , t. Taking this previous history carefully into

account, we may write down an expression for r(t) in the concise form of

rðtÞ ¼ R0k�

Z t

0

dtpðtÞCR0
ðt � tÞ

Z
d
2
rG2ðr; t � tÞ; (3)

where

1. CR0
ðtÞ denotes the (surface-integrated) one-dimensional probability

density (with dimension of 1/length) of a random walk returning to its

point of origin at time t, given that the origin constitutes a partially

absorbing barrier with a density R0 � R(t) of absorbing points per unit

area, and

2. G2(r,t) 5 [4pDt]�1 exp(�r2/4Dt) represents the (normalized) two-

dimensional probability density for finding a diffusing particle at dis-

tance r from the origin at time t.

To eliminate the time-dependence of the boundary condition in 1, above, we

choose R* � R0. Let p(t) 5 R(t)/R0 be the fraction of receptors bound to

ligands at time t, so that p(0) 5 R*/R0 � 1 (which also implies p(t) � 1).

When the spatial integration in Eq. 3 is extended to infinity, Eq. 2 is thus

reduced to

dpðtÞ
dt

¼ �k� pðtÞ � k1 R0

Z t

0

dtpðtÞCR0
ðt � tÞ

� �
: (4)

We note that the rebinding problem as defined by Eq. 4 is effectively one-

dimensional, i.e., the two in-plane dimensions have disappeared upon spatial

integration. This feature enables many important simplifications, as will be

obvious from the following discussions.

The quantity CR0
ðtÞ is now calculated from the frequency of first passage

events: Let q(t) denote the probability density of ligands that at time t return

to the surface for the first time after dissociation. At this point in time, the

ligands may be either absorbed or reflected back to the solution and subse-

quently return at a later time. The quantity CR0
ðtÞ could then be calculated by

summing over of all such events.

To proceed with our formalism, it is useful to imagine the available space

to be divided into cubic elements (i.e., coarse-grain the space), each with

volume l3. Here l is a coarse-grained length scale, which we assume to be of

the order of the size of a single ligand molecule. The ligand diffusion may

now be viewed effectively as transfer of its center of mass between such

elements. When a ligand occupies an element of volume adjacent to the

surface, it may become bound to a receptor, and the probability for this to

occur is denoted 1–g, so that g is the probability of nonabsorption of the

ligand upon encounter. The equation for CR0
ðtÞ thus satisfies the integral

equation

CR0
ðtÞ ¼ qðtÞ1 g

l

2d

Z t

2d

dtqðtÞCR0
ðt � tÞ: (5)

The factor 2d is the smallest time over which a rebinding event can take

place. Here d is a microscopic timescale, which is the interval between two

successive collisions of the ligand and the solvent molecule (which, for

simplicity, we assume to be a nonfluctuating constant), which cause the

ligand to move away from the surface. (In general, d is independent of the

coarse-graining length scale l. However, if we approximate the ligand

diffusion as a discrete random walk, as in simulations, then these are related

as d5 l2/2D.) To solve the integral equation (Eq. 5), we express it in terms

of the Laplace-transformed variables f̃ðsÞ ¼
RN
0

dte�stf ðtÞ; whence we

obtain, in the limits d / 0, l / 0, with l/2d held fixed,

C̃ðsÞ ¼ q̃ðsÞ

1� g
l

2d
q̃ðsÞ

: (6)

The calculation of q̃ðsÞ is outlined in Appendix A, with the result

q̃ðsÞ ¼ 1ffiffiffiffiffiffi
Ds

p
1

l

2d

: (7)

(Throughout this article, we will define D to be the diffusion coefficient of

the random walk projected onto the z-axis, perpendicular to the plane

TABLE 1 A glossary of the important quantities discussed in the article, along with the corresponding

units (m 5 meter, s 5 seconds, M 5 mole)

Quantity Symbol Typical units

Microscopic length scale l m

Diffusion coefficient D m2 s�1

Microscopic diffusion timescale dt 5 l2/4D s

Association rate k1 M�1 s�1

Dissociation rate k� s�1

Equilibrium dissociation constant KD ¼ ðk�=k1Þ M

Mean surface density of receptors R0 No. of molecules/m2

Surface density of receptors inside clusters R90 No. of molecules/m2

Bound receptor fraction at time t p(t) Dimensionless

Ligand density profile close to the surface at time t r(t) No. of molecules/m3

Return to origin probability density for a surface with R0 receptors per unit area CR0
ðtÞ m�1

Return to origin probability density for a perfectly absorbing surface q(t) m�1

Probability of nonabsorption upon contact g Dimensionless

Timescale of exponential decay (Eq. 11a) te s
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containing receptors. Its relation to the complete three-dimensional diffusion

coefficient D* is simply D 5 (1/3)D*.)

The Laplace-transformed version of Eq. 4 after all the above substitutions

reads

p̃ðsÞ ¼ pð0Þ
s1 k�½1� SðsÞ� with SðsÞ ¼ k1 R0C̃ðsÞ: (8)

The probability of absorption upon encounter (which we denoted 1–g) may

be computed as follows: Consider a ligand molecule very close to the

surface, occupying a cell of volume l3. The ligand density in its vicinity is

r 5 l�3. The probability that there is a receptor within the adjacent surface

area l2 is R0l
2. The ligand stays close to the surface for a time interval

2d(since no diffusion is possible through the surface), so that the probability

of binding during this time interval is 1 � g [ a 5 k1r 3 R0l
2 3 2d 5

2k1R0d/l. (Since the absorption probability a # 1, this implies that the

product k1d must be bounded from above. However, since d is sufficiently

small, i.e., 10�10–10�12 s, this is hardly ever an issue, even for very high

values of k1.)

After substitution of Eqs. 6 and 7 into 8, and employing the above result

to substitute for g, we arrive at

SðsÞ ¼ k1 R0=½
ffiffiffiffiffiffi
Ds

p
1 k1 R0�; (9)

and consequently

p̃ðsÞ ¼ pð0Þ

s1 k�

ffiffiffiffiffiffi
Ds

pffiffiffiffiffiffi
Ds

p
1 k1 R0

� �: (10)

Let us now seek to extract the time dependence of the fraction p(t) from this

expression. Clearly, at short times, i.e., when s is sufficiently large, namely s

� (k1R0)
2/D, p̃ðsÞ � pð0Þ=ðs1 k�Þ; and the decay is purely exponential

with the intrinsic rate constant k�: In this early time regime, rebinding does

not yet occur. On the other hand, in the very late time regime corresponding

to s � (k1R0)
2/D, we have p̃ðsÞ � pð0Þ=½s1 k�

ffiffiffiffiffiffi
Ds

p
=ðk1R0Þ�: The explicit

time dependence of p(t), therefore, exhibits the limiting behaviors after

Laplace inversion (29),

pðtÞ � pð0Þexpð�k�tÞ for t � D

ðk1
R0Þ2

[ te; (11a)

pðtÞ � pð0Þect
erfcð

ffiffiffiffi
ct

p
Þ for t � D

ðk1
R0Þ2

; (11b)

where c ¼ DðKD=R0Þ2 and KD 5 k�/k1 is the equilibrium dissociation

constant. Our self-consistent mean-field analysis thus yields that the ligand

dissociation curve for a planar surface is always nonexponential for

sufficiently late times. However, for small association rate or surface

coverage, the initial transient regime showing exponential decay could well

last for substantial durations.

The nonexponential decay in Eq. 11 was also predicted in a previous

lattice model of the problem developed to model SPR experiments (28).

Indeed, one can show that with the appropriate mapping, the time constants c

of the continuum and the lattice models coincide. In the discrete variant, the

receptors are distributed on a lattice (with unit length D) at a mean density

us, and upon hitting a receptor (the sizes of both ligand and receptor are

assumed negligible in comparison with D), a ligand is absorbed with

probability ua. The effective surface coverage is therefore given by u5 usua.

These parameters are related to the continuum variables through the relations

R0 5 us/D
2 and k1 5 uaDD. Upon making these substitutions in Eq. 11, we

find that the expressions corresponding to the continuum and lattice for-

malisms match perfectly.

Extension to receptor clusters

In this section, we adapt the stochastic self-consistent mean-field theory for

ligand rebinding presented above to incorporate nonuniform spatial receptor

distributions. We consider receptors distributed in clusters of radius r0, such

that the density of receptors inside the clusters is R90 . R0, where the latter

represents the mean density of receptors on the surface.

To generalize the previous theory to incorporate receptor clusters, we

adopt the following approximation: Any rebinding event where the orig-

inating and the final points are separated by a distance r, j is assumed to take

place in a local environment with receptor densityR90, whereas any ligand that

travels a lateral distance r $ j to rebind is assumed to sense only a smaller

receptor density R*
0 that we assume to be of the order of the mean density R0.

For this approximation to be useful, we need to identify j with a physical

length scale: here we simply assume that j; r0. It must be noted that no strict

spatial segregation exists between the two classes of rebinding events in the

actual system. However, it will be seen later in comparison with numerical

results that this approximation is remarkably successful in predicting the

different temporal decay regimes in the presence of receptor clusters.

We shall now quantify these ideas using the previously developed for-

malism as a basis. The complete expression describing the dynamics of the

bound fraction, which obviously generalizes Eq. 4, becomes

dpðtÞ
dt

¼ �k� pðtÞ � k1

Z t

0

dt

Z N

0

d
2
rRðrÞG2ðr; t � tÞ

�

3CRðrÞðt � tÞpðtÞ
�
; (12)

where, according to our earlier assumptions, the distance-dependent coverage

function R(r) assumes the step function form R(r)5 R901 (R0� R90)Q(r � j),

whereQ(x) denotes the Heaviside step function, with the propertiesQ(x)5 0

when x , 0, and Q(x) 5 1 when x $ 0.

Let us consider two special cases of interest.

Case 1: Dense isolated clusters on a planar or spherical
surface—R0 � 0; R90 large

This situation is realized when the clusters are tightly packed with receptors, but

the number of clusters themselves is small, so that the mean surface coverage

of receptors is a negligible fraction. In this case, the homogeneous part of

the rebinding term in Eq. 12 is vanishingly small, and the equation reduces to

dpðtÞ
dt

¼ �k� pðtÞ � k1 R90

Z t

0

dtpðtÞCR90ðt � tÞ
�

3 1� e
� j

2

4Dðt�tÞ

� �
� OðR0Þ

�
: (13)

It is important to note that Eq. 13 is valid also for receptor clusters on a

spherical cell surface, provided the size of the cluster j is much smaller than the

radius of the cell itself. The Laplace transform of p(t) has the form of Eq. 8, with

SðsÞ � k1 R90

Z N

0

dte
�st

C9ðtÞ 1� e
� j

2

4Dt

� �
; (14)

where we have introduced the concise notation C9ðtÞ ¼ CR90 ðtÞ (and similarly

CðtÞ[CR0
ðtÞ in future calculations). To evaluate the Laplace transform of the

function C9(t)exp(�j2/4Dt), we apply the following trick: Using Eq. B2 in

Appendix B for the limiting forms of the function C9(t), we approximate it as

C9ðtÞ � Qðt0 � tÞðpDtÞ�1=2
1Qðt � t0Þ

ffiffiffiffiffiffi
D

4p

r
ðk1 R90Þ�2

t
�3=2

;

(15)

where t0 � D(k1R90)
-2, and Q(x) again is the Heaviside step function.

We now substitute this expression into Eq. 14, and use it to evaluate the

j-dependent term in the brackets. (The first term gives
ffiffiffiffiffiffi
Ds

p
1 k1R90

� ��1
;

see Eq. 9.) After inserting the result
RN
0

dtt�3=2e�j2=4Dt�st ¼
j�1

ffiffiffiffiffiffiffiffiffiffi
4pD

p
e�j

ffiffiffiffiffiffi
s=D

p
(29), we arrive at the expression
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SðsÞ
k1 R90

� 1ffiffiffiffiffiffi
Ds

p
1 k1 R90

�
Z t0

0

dt
1ffiffiffiffiffiffiffiffiffi
pDt

p
�

�
ffiffiffiffiffiffi
D

4p

r
ðk1 R90Þ�2

t
�3=2

�
e
�st�j

2
=4Dt

� D

ðk1 R90Þ2j
e
�

ffiffiffiffiffiffiffiffi
j
2
s=D

p
: (16)

In particular, we are interested in the long time limit t � j2/4D (i.e., times

much larger than the typical timescale for ligand diffusion across a cluster),

corresponding to s � 4D/j2. In this limit, the rebinding term has the form

SðsÞ � Sð0Þ1O
ffiffiffiffiffiffiffiffiffiffiffiffi
sj2=D

q� �
; with

Sð0Þ�1� 1ffiffiffiffi
p

p j

j0
G �1

2
;

j

j0

� �2
" #

�j0

2j
1� 1ffiffiffiffi

p
p G

1

2
;

j

j0

� �2
" #( )

;

(17a)

where we have defined the length scale

j0 ¼
2D

k1 R90
; (17b)

and Gða; xÞ ¼
RN
x

dyya�1e�y represents the incomplete gamma-function (30).

Let us now assume that the clusters are very densely packed with re-

ceptors, i.e., R90 is sufficiently large so that j � j0. In this case, the con-

tributions in Eq. 17a that involve incomplete gamma-functions are small

(G(a,x) ; xa�1e�x for x � 1, (30). Therefore, S(0) � 1 � j0/2j in Eq. 17a

when j � j0. After substitution in Eq. 8, we see that

p̃ðsÞ � pð0Þ
s1 k�j0=2j

; (18)

when s / 0. After Laplace inversion,

pðtÞ � pð0Þexp �k�
j0

2j
t

� �
(19)

for t � j
2
=D and j � j0:

From Eq. 19, the length-scale j0 (or, more precisely, j0/2) may be

understood as the threshold size that a cluster needs to have, to appreciably

affect the dissociation.

We thus reach an intriguing conclusion: When the mean surface density

is sufficiently small, clustering of receptors has (over sufficiently long time-

scales) the effect of reducing the effective dissociation rate of ligands by a

factor that is inversely proportional to the size of the cluster. It should also be

borne in mind that the very late time regime for any small but nonzero mean

density should display the nonexponential behavior of Eq. 11b. However,

the characteristic timescale for entry into this regime (for a uniform dis-

tribution) grows as R�2
0 ; and is likely to be masked by other effects (e.g.,

finite-size effects, nonspecific binding) in experiments.

To view this result in the context of the previous findings of Berg and

Purcell (18) and Shoup and Szabo (19), we may compare Eq. 19 with the

analogous result in Eq. 1 obtained via very different arguments. Let us imagine

that the density of receptors inside a cluster is so high (consistent with our own

assumptions in reaching Eq. 19) that the cluster effectively acts like an

absorbing disk, for which the diffusion-limited onward rate constant is kD 5

4Dr (31) where r is the radius of the cluster. Let N be the number of receptors

inside a cluster, which we assume to be so large that Nk1 � kD in the denom-

inator of Eq. 1. After re-expressing N in terms of the receptor surface density

R90 5 N/pr2, we find that, within this approximation, the reduction factor for

the association rate in Eq. 1 is identical to that in Eq. 19, with j 5 (p/4)r, an
aesthetically pleasing result. It should, however, be emphasized that the frame-

work of our theory is more general and provides a broader perspective.

When the radius j is sufficiently large (j � j0), there is also another

(intermediate) time regime D(k1R90)
�2 � t � j2/D, for which the last term

in Eq. 16 is small, and the first term dominates (since again the incomplete

gamma-functions vanish in the limit of large j specified above). In this

regime, we hence recover the nonexponential dissociation encountered

earlier in Rebinding on a Planar Surface in the context of a homogeneous

receptor distribution, see Eq. 11b:

pðtÞ � pð0Þec̃t
erfcð

ffiffiffiffi
c̃t

p
Þ when

Dðk1 R90Þ�2 � t � j
2
=D; c̃ ¼ DðKD=R90Þ2: (20)

In this intermediate time regime, the ligand behaves as if diffusing in the

presence of an infinite substrate with receptor density R90.

The preceding calculations, in particular Eqs. 17–19, show that the

clusters have to be of a minimum size (;j0 5 2D(k1R90)
�1) if they are to

produce a significant effect on the dissociation. It is, therefore, important to

know how this cutoff size compares with independent estimates for the size

of lipid rafts. The total number of proteins likely to be contained inside a raft

of area 2100 nm2 has been estimated to be in the range 55–65 (32), assum-

ing very close packing, or close to 20 (33), assuming the same density of

packing inside the raft and the surrounding membrane. The number of

specific proteins like HSPGs is possibly less. As a conservative estimate, we

assume that there are n ; 5–10 HSPGs inside a raft, which gives R90 5 n/pr2,

where r is the raft radius. The condition that clusters affect dissociation

substantially is j/j0 $ 1, from our previous analysis. Let us now make the

identification j � r, which, combined with the previous estimate for the

receptor density, gives the condition k1 $ 2pDr/n. Let us use r ; 25 nm as

a rough estimate for the size of a lipid raft (34), which then gives k1 $ 108–

109 M�1 s�1, if we assume a diffusion coefficient D 5 10�10 m2 s�1.

Our conclusion, therefore, is that rafts of extensions in the range 25–50

nm should be capable of producing a measurable effect on ligand disso-

ciation purely by a diffusion-controlled mechanism, provided the association

rate of the specific protein is large enough. It must, however, be remarked

that this conclusion strictly applies to monovalent ligands interacting with

a monovalent single receptor only. If, as in the specific case of FGF-2, there

is more than one receptor that can bind the ligand and the possibility of

higher order complexes exists, then the inclusion of surface biochemical

coupling reactions needs to be taken into account. In Comparison with

Experiments, we provide a more detailed discussion of these aspects in the

context of experiments with HSPGs.

Case 2: High mean surface density—perturbation
theory for small rafts

When the mean surface density of receptors is high, one might expect that

rebinding has significant effect on dissociation even without any additional

clustering mechanisms and that any effect of rafts on dissociation would be

confined to sufficiently small timescales. This argument is, in fact, supported

by numerical simulations that we present below. Yet here we aim to quantify

the effect of clustering on ligand rebinding in the case of high mean surface

density. For this purpose, Eq. 12 is conveniently rewritten in the form

dpðtÞ
dt

¼ �k� pðtÞ � k1 R0

Z t

0

dtpðt � tÞCðtÞ
�

� k1

Z t

0

dtpðt � tÞ 1� e
� j

2

4Dt

� �

3½R90C9ðtÞ � R0CðtÞ�
�
; (21)

where R90 $ R0. The second term inside the brackets is the homogeneous

rebinding term, whereas the third term is the correction term arising from

clustering. We observe that, for any fixed j, the latter term gets progressively

smaller at sufficiently large times, which implies that the late time behavior
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must be dominated by the homogeneous term. To make further analytic

progress, let us now focus on the regime of small clusters, with j � j0 5

2D(k1R90)
�1. We may then use the small time (surface-density independent)

form for the functions C and C9 from Eq. B2a in Eq. 21. It follows that the

effective equation for p(t) (over short times) has the form

dpðtÞ
dt

¼ �k�pðtÞ1 k�k1 R0

Z t

0

dtCðtÞpðt � tÞ
�

1 ðR90 � R0Þ
Z t

0

dt
1� e

� j
2

4Dtffiffiffiffiffiffiffiffiffiffi
pDt

p pðt � tÞ
�
; (22)

where the last term is the correction due to the presence of clusters. Note that

the correction term vanishes when R90 5 R0 and j 5 0. Equation 22 is valid

only for sufficiently small times t � j2/D, as the replacement of the

functions C and C9 by the surface density-independent form (Eq. B2a) gets

progressively more inaccurate at larger and larger times. This equation is

also solved using the Laplace transform technique, and the cluster correction

term (as defined in Eq. 8) is found to have the form

SðsÞ ¼ k1 R0C̃ðsÞ1
k1 ðR90 � R0Þffiffiffiffiffiffi

Ds
p 1� e

�j
ffiffi
s
D

ph i
; j � j0:

(23)

After substituting in Eq. 8, we obtain, for t � Dðk1R90Þ�2;

p̃ðsÞ ¼ pð0Þ
s1

ffiffiffiffi
cs

p � k�v
where v ¼ 2eðj=j0Þ; (24)

and e5 1� R0/R90. Equation 24 holds in the time interval where the last term

in Eq. 24 is small compared with the first, and the regime of validity thus

turns out to be t � t9 � (k�v)
�1. In accordance with our earlier assumption

on the cluster size, v is now a small (dimensionless) parameter, and this

enables the expression in Eq. 24 to be expanded as a perturbation series

(which would require that s is sufficiently large, or that, equivalently, we

need to restrict ourselves to sufficiently small times) of the form

p̃ðsÞ ¼ pð0Þ
s1

ffiffiffiffi
cs

p 1
pð0Þ

½s1 ffiffiffiffi
cs

p �2
k�v 1 Oðv2Þ: (25)

We may now write p(t) 5 p0(t) 1 p̂ðtÞ; where p0(t) is given by Eq. 11b

and p̂ðtÞ is the cluster-correction term that is determined by inverting the

second term in Eq. 25. The complete expression is

p̂ðtÞ ¼ k�vpð0Þ c
�1
1 ð2t � c

�1Þect
erfcð

ffiffiffiffi
ct

p
Þ

�
�2

ffiffiffiffiffiffiffiffiffiffi
t=pc

p �
1Oðv2Þ; (26)

where the constant c was defined following Eq. 11. Equation 26 provides the

first correction term in the bound fraction, for small clusters. As will be seen

in the next section, this expression reproduces the cluster correction term in

simulations approximately, but only at early times (which is consistent with

our own assumption that t should be sufficiently small).

To summarize this section, the theoretical formalism we have presented

predicts a number of interesting regimes for the effective dissociation of

ligand from receptors on cell surfaces. For a uniformly distributed set of

receptors on a plane, we find that the decay is exponential with the intrinsic

dissociation rate initially (Eq. 11a), but crosses over to a nonexponential

decay at later times (Eq. 11b) owing to multiple rebinding events. When the

receptors are clustered, the effects of rebinding depend on the mean receptor

density. When the mean density is low so that no appreciable rebinding

occurs with a uniform distribution, clustering is predicted to have the effect

of producing an exponential decay at intermediate times with a reduced

decay coefficient that is a function of the cluster size and the other pa-

rameters (Eq. 19). The very late time behavior is still presumably non-

exponential, although a full characterization of this crossover has not yet

been performed. When the mean density is sufficiently high, the effect of

clustering was found to be nonmonotonic, small at early and late times and

reaching a maximum at a certain intermediate time.

To check our analytical results, in particular Eqs. 19 and 26, we have

performed lattice Monte Carlo simulations, which will be the subject of the

next section.

RESULTS

Lattice Monte Carlo simulations

The hopping-between-elements picture of ligand diffusion

we presented in Rebinding on a Planar Surface is easily

implemented in numerical simulations. The substrate surface

is envisioned as a two-dimensional square lattice, with the

length scale l setting the lattice spacing. The unit timescale

is set to dt 5 l2/2D, the timescale of hopping between

elements. (We use a different symbol here to distinguish

from the more fundamental timescale d introduced in Re-

binding on a Planar Surface, above.) Using these units, all

quantities we discussed above may be expressed in dimen-

sionless form (see Table 2). The ligand motion is modeled as

a three-dimensional random walk between elements in the

space above the substrate.

In the simulations, we choose the association rate to be

k1 5 Dl. With this choice, the binding rate of the ligand

close to a receptor is p 5 l�3k1 5 Dl�2 and the probability

of binding over a single Monte Carlo time step for a ligand

close to the surface is k̃1 ¼ pdt ¼ 1=2; i.e., the binding is

purely diffusion-limited. In real units, this choice corre-

sponds to an association rate of ;10�13 cm3 s�1 ; 106

M�1 s�1. A smaller value of k1 involves only a trivial

modification of the algorithm: The probability of binding is

reduced to k̃1 ¼ k1=Dl (in simulations, this factor may be

simply absorbed into the dimensionless surface coverage,

while keeping the binding purely diffusion-limited), but a

larger association rate would require a more microscopic

simulation, and is not addressed in this article.

We next discuss our choice for the dissociation rate. A

realistic value of k� would fall in the range of 10–10�4 s�1,

which means that the dimensionless rate k̃� ¼ k�dt would be
a very small number (for l � 5 nm and D ; 10�10 m2 s�1,

we estimate dt ; 10�7 s), of the order of 10�6–10�11. Since

the timescale of measurement of dissociation would have

TABLE 2 A list of the dimensionless forms of various

quantities, scaled using the length scale l and timescale

dt 5 l2/2D, respectively

Quantity Dimensionless form

Surface density R0 u 5 R0l
2

Association rate k1 k̃1 ¼ 2k1dt=l2

Dissociation rate k� k̃� ¼ k�dt
Cluster size r0 r̃0 ¼ r0=l

Diffusion coefficient D D̃ ¼ Ddt=l2 ¼ 1

Typical numerical values are l � 1–5 nm, D ; 10�6 cm2 s�1, k1 ; 105–

108 M�1 s�1, k� ; 1–10�4 s�1, and r0 , 100 nm (estimates for lipid rafts,

reviewed in Simons and Vaz (4)).
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to be at least of the order of k�1
� ; this would require the

simulation to be run over k̃�1
� Monte Carlo steps. For com-

putational efficiency, therefore, we choose k̃� ¼ 10�4 in all

the simulations.

The surface density of receptors R0 is the next important

parameter in the model, and its dimensionless version is

denoted by u 5 R0l
2. Assuming that the ligands and the

receptor extracellular binding domains are not significantly

different in size, the range of allowed values for this pa-

rameter is u # 1. In the substrate lattice, therefore, u simply

represents the fraction of binding sites. Note that the sim-

ulations also could correspond to the case where the asso-

ciation rate k1 , Dl, where we would maintain the binding

to be diffusion-limited, but effectively reduce u to u9 5

u(k1/Dl) in the simulation runs.

Our strategy is as follows: Keeping the overall density

u constant, we arrange the receptors into N clusters of

(dimensionless) radius r̃0$1: Because of lattice constraints,

it is not possible to ensure that all the receptors are contained

in such clusters. Rather, our criterion is that, for a certain

value of r̃0; N be selected such that the number of receptors

outside clusters is kept at a minimum. The simulations are

done with reasonably large lattices (103 3 103) so that small

surface coverage could be explored. Fig. 2 shows two typical

receptor configurations used in our simulations. All data

were averaged over 100 different initial realizations of the

receptor configuration.

The ligand diffusion is governed by periodic boundary

conditions on the four borders of the lattice so that a ligand

that exits at one boundary reenters from the opposite side.

The direction perpendicular to the plane of the lattice shall be

referred to as the z-axis, and the surface itself is located at

z 5 0. The ligand diffusion in the z-direction is not upper-

bounded. We also neglect surface diffusion of the receptor

proteins, irrespective of their being clustered or isolated,

and treat them as static objects throughout this article (see,

however, the discussion at the end of this section). At the

beginning of the dynamics, a fraction p(0) of all the receptor
sites are bound to a single ligand each. Although the precise

value of p(0) is unlikely to have a large impact on the late

time decay, we chose p(0) 5 0.25 in all the simulations so

that we are not too far from the approximation p(0)� 1made

in the setup of the theory.

There are three main dynamical processes in the simu-

lation:

1. Dissociation of a ligand from a bound receptor takes place

with probability k̃� ¼ k�dt per time step dt. This move

updates the position of the ligand from z 5 0 to z 5 2, in

units of the lattice spacing. (We use z 5 2 instead of z 5 1

to prevent immediate rebinding to the same receptor.)

2. Diffusion of the released ligands in solution: A free

ligand moves a distance equal to one lattice spacing in

one of the six directions with probability 1/6 per time step.

3. Readsorption of free ligands to free receptors: A free

ligand at z 5 1 is absorbed by a free receptor below it, if

there is one, with probability 1.

Our initial simulations were done at two values of the sur-

face coverage (u 5 10�3 and u 5 10�1) and we find that

the surface density has a dramatic impact on the dissociation

rate (Fig. 3). The first case (u 5 10�3) corresponds to very

sparsely distributed receptors, while the distribution is quite

dense in the second case (u5 10�1). As shown, the decay at

the low density appears exponential and has a measured

decay constant of ;0.7 3 10�4, approximately reflective of

the true dissociation rate (k̃� ¼ 10�4). For the more dense

system, a distinctly nonexponential decay is evident. How-

ever, a closer look shows that at early times (t , 200 Monte

Carlo steps), an exponential decay for the high coverage

case, in accordance with Eq. 11a (Fig. 3, inset), can also be

found. The decay constant measured in the simulations by

fitting this early part (t # 400 Monte Carlo steps from Eq.

11a) to an exponential curve is close, but somewhat lower

than the intrinsic rate used for the simulations (;0.6k�),
which we believe is simply an artifact of the discrete

algorithm used in the simulations: In Appendix C, we show

that the effective decay constant in the case of even a single

isolated receptor and a ligand in a three-dimensional cubic

lattice (such as used in our simulations) is less than the

FIGURE 2 Two typical receptor configurations used in the Monte Carlo

simulations. The mean receptor density (in dimensionless units) in A is 0.001

and in B it is 0.1. The cluster radius is r̃0 ¼ 8:0 in A and r̃0 ¼ 10:0 in B. The
small dots are single receptors. The clusters are filled to saturation in both cases.
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intrinsic rate, on account of the nonzero return probability of

the lattice random walk. The nonexponential curve for the

high-density case fits well with the theoretical prediction in

Eq. 11b (which has also been supported by dissociation data

from surface plasmon resonance experiments in a recent

study (27). Note that in both the low and high mean density

cases, the simulations were set up so that the clusters were

completely full of receptors (i.e., with the highest density

possible in those regions). Also, as noted above, the low

mean surface density could also correspond to the case where

the association rate is low (k1 , Dl).

We next addressed how clusters might impact dissocia-

tion, focusing first on the low-coverage regime. The cov-

erage we chose was u 5 10�3 (in terms of distribution over

the cellular surface, this would roughly correspond to ;103

or 104 receptors per cell for an association rate of;109 M�1

min�1 or 108 M�1 min�1, respectively) and we compared a

homogeneous receptor distribution with a single cluster

(r̃0 ¼ 17) and multiple clusters (r̃0 ¼ 5) (Fig. 4). We chose

the clusters to be distributed randomly on the surface, but

simulations with smaller lattices have shown that the dis-

sociation curve is also not significantly different for a regular,

periodic arrangement of clusters. In the real system, these

clusters would have radii of ;25–90 nm, respectively.

Simulations were carried out with two levels of receptor

density inside clusters: In the first case, rafts were occupied

by receptors to saturation (R90 5 1/l2), and in the second

case, the packing density was lowered to 0.1 (R90 5 0.1/l2).

Clear differences, despite each system having the same

actual density of receptors and surface coverage, are evident

when clustering is present. In both the cases, there is clear

evidence of a significant intermediate exponential regime

(Fig. 4, A and B), which subsequently crosses over to a slower
decay at later times. However, the effect of clustering on the

dissociation rate is much more noticeable in the first case,

where the packing density of receptors is high (Fig. 4 C).
Moreover, we see that for the high packing density case, the

dependence of the effective rate (defined in Fig. 4’s legend)

on the cluster size observes the inverse linear relationship

predicted by the theoretical analysis, Eq. 19 (Fig. 4 D).

The numerical results for the effective dissociation rates

for the two cases discussed above may be put together in a

single plot, by expressing the effective dissociation rate as

a function of the ratio j/j0. Clearly, for the same value of j(;

raft radius), the threshold radius j0 is different for the two

cases (due to the inverse relationship to R90, Eq. 17b) In fact,

by substituting the numerical values of the simulation

parameters (k1 5 Dl), it is easily seen that j0 5 2l for

the case R90 5 1/l2 and j0 520l for the case R90 5 0.1/l2.

We may also use the equivalence with the Shoup-Szabo

result (Eq. 1) to express j in terms of the cluster radius r̃0 :
j ¼ ðp=4Þr̃0 from the previous discussion. In Fig. 5, we

plot the ratio of the effective dissociation rate, defined as

the exponential fit to the initial straight portion of the data

(t . 10), to the intrinsic rate keff� =k� (after correcting for the

lattice effects), which shows that this ratio is a smooth,

monotonically decreasing function of j/j0. The theoretical

prediction for the same is 1 � S(0) (Eq. 8), where S(0) is

given by Eq. 17b, and is plotted as the smooth line in Fig. 5.

It is clear that the data points agree very well with our theo-

retical prediction in the regime j/j0 $ 2 (which is also the

regime where clustering significantly alters the dissociation).

Fig. 6 shows the effect of clustering in the high mean

density case with u 5 0.1 (;105 receptors per cell) and

cluster radii of r̃0 ¼ 10:0 and r̃0 ¼ 50:0: A noticeable

upward shift (decreased dissociation/increased binding re-

tention) in the dissociation curve is observed, but the effect is

nonmonotonic and vanishes for small and large times, in

both cases. This is illustrated more clearly in Fig. 7, where

we plot the difference between the bound fractions for

clustered versus homogeneous receptor distributions as a

function of time for the two values of the cluster radii. For the

parameters used in the simulations b 5 k�(l
2/2D) 5 10�4,

R0 5 0.1/l2, and k1 5 0.1Dl, the threshold cluster size is

j0 � 20l (i.e., r̃0 ¼ 20 in simulations) from Eq. 17b. For

r̃0 ¼ 10:0 and r̃0 ¼ 50:0; respectively, the parameter v de-

fined in Eq. 24 takes values 0.9 and 4.5. For the first case

(since v , 1), therefore, we also compared the simulation

results with the approximate theoretical prediction in Eq. 26

(smooth line in Fig. 7), expected to be valid in the early time

FIGURE 3 (A) Receptor density impacts

ligand dissociation for a uniform distribu-

tion of receptors. The value p(t) versus

scaled time T 5 bt (t is measured in number

of Monte Carlo time steps) is plotted for

u5 0.001 and u5 0.1. The former displays

exponential decay, whereas the latter is

clearly nonexponential over the timescales

shown. The lines are theoretical fits: e�k� t

in the former case and the function in Eq.

11b in the latter case with c 5 0.08 (the

theoretical value from Eq. 11 is 0.06). The

early time behavior of the high-density case

(u 5 0.1) plotted in the inset does indicate

exponential decay (inset: t is the number of Monte Carlo steps), but the effective dissociation constant is;0.6k�, less than the theoretical value k�; see Eq. 11a,
also Appendix C. (B) The high-density (u 5 0.1) data plotted on a semilogarithmic scale, which shows more explicitly the strongly nonexponential nature of

the decay.
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regime. We observe that although the theoretical expression

approximates the observed difference rather well at early

times for small cluster size, it fails to capture the non-

monotonous behavior at somewhat late times. It is likely

that this dense mean receptor regime lies outside the ap-

plicability range of the expression in Eq. 26. Clearly, a more

systematic method to study the crossover from small to large

receptor density would be desirable, but eludes us at this

stage.

We now present a theoretical argument, which suggests that,

over sufficiently long timescales, receptor clustering should

have no effect on ligand dissociation, as found for the high-

density receptor case. Let us consider two different scenarios:

1. A homogeneous receptor distribution with a mean

density R0.

2. A clustered configuration, where the clusters have mean

area density Q0 � R0/n, where n is the average number of

receptors per cluster.

The first case was already studied in the Theory section,

above, where we showed that the dissociation is character-

ized by a single timescale c ¼ ðD=R2
0Þ ðk�=k1Þð Þ2: Let us

now map Case 2 into Case 1, and imagine the clusters as

effectively single receptors with mean density Q0, and

effective association and dissociation rates k91 and k9�,
respectively. The effective rates may be expressed in terms

of the intrinsic rates using the Berg-Purcell-Shoup-Szabo

relations, which give k91 5 nk1(1–g) and k9� 5 k�(1–g),
where the escape probability 1–g has been defined earlier

(see Eq. 1 and above). We now define the time constant for

the clustered distribution as c9 ¼ ðD=Q2
0Þððk9�=k91ÞÞ2:

Upon substituting for the primed quantities and the cluster

density, we see that c9 5 c, i.e., the clusters have no effect on
the decay at all! This analysis, however, is not exact and

numerical simulations did show a significant effect of

clustering in the strong rebinding case, particularly at early

times (inset, Fig. 6). Thus, for the simple one-to-one ligand-

receptor binding case, it is conceivable that the effects of

clustering are only transient but could still have a significant

impact over a biologically relevant timescale.

FIGURE 4 Dissociation is impacted

by the degree of clustering when there is

low mean surface density (u 5 0.001).

(A) Shown is p(t) versus scaled time

where the curves correspond to uniform

distribution, r̃0 ¼ 5:0; and r̃0 ¼ 17:0

(a single cluster in the last case), when

the clusters are packed to saturation. The

decay is exponential except for very late

times. (B) Similar data as in A, but the
packing density inside clusters is only

0.1, on a semilogarithmic scale. (C)

Effective decay constant (exponential

fit to the early portion, i.e., straight

part, of the data) as a function of cluster

radius for cases A and B. (D) Effective

decay constant for A plotted against

cluster radius on a logarithmic scale.

The straight line is a fit function pro-

portional to r̃�1
0 ; and the good agreement

supports Eq. 19. The slope for the

uniform case (r̃0 ¼ 1:0) in A and B is

;0.67, which is less than the theoretical

value 1, presumably due to (unavoid-

able) lattice effects in the simulations

(for details, see Appendix C).

FIGURE 5 The effective decay constants (defined in the legend of Fig. 4)

plotted in C is plotted against the scaled cluster radius x 5 j/j0. The smooth

line is the theoretical fit function 1 � S(0), as defined by Eq. 17a.
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Comparison with experiments

Having compared the theoretical formulation in sufficient

detail with lattice simulations, we turn to the question: How

do the predictions of our simple model fit with experimental

observations? We focus on the results of FGF-2 dissociation

from HSPGs obtained by Chu et al. (6), shown in Fig. 1.

FGF-2 binds to a high-affinity receptor FGFR as well as the

HSPGs we discuss here, and higher-order clusters including

both FGFR and HSPGs are possible (12). Therefore, any

quantitative analysis of FGF-2 binding has to be done with

care, because of the presence of competing interactions.

Despite this and because of a lack of availability of exper-

imental dissociation data with other raft proteins, we choose

this system for our analysis.

The experiments reported in Chu et al. (6) were done with

intact cells either in the absence or presence of the lipid raft-

disrupting agents MbCD and filipin (filipin data is not shown

in Fig. 1). Both lipid raft-disrupting agents were demon-

strated to have a significant effect on the dissociation rate,

but we focus here on the MbCD data set since the mech-

anism of action is simpler and more straightforward. Briefly,

a k� value of 0.004 6 0.002 min�1 was obtained for the

control cells, while treatment with MbCD increased the

dissociation rate to ;0.023 min�1 (with simple exponential

fitting). If the MbCD treatment resulted in a completely

homogeneous HSPG distribution, we arrive at a ratio of

;5.75 for the reduction in the dissociation rate due to raft-

associated clustering.

The first question, then, is whether the present estimates of

the HSPG surface density in these cells would allow for a

significant exponential regime for the temporal decay of the

dissociation curve? Using Eq. 11b, we may compute the

length of this time interval, te, where the decay is expo-

nential. Let us use the following estimates: D � 10�11–10�10

m2 s�1, k1 ; 1.5 3 106 M�1 s�1, and R0 ; 105–106/l2,
where l;5 mm is a rough estimate for the cell radius. After

substitution in the expression in Eq. 11a, these values give

te � 0.1–10 s. This timescale is very small for typical disso-

ciation measurements and suggests that the observed mode

of decay in Fig. 1 is more likely to be the nonexponential

function predicted in Eq. 11b. More evidence for the pres-

ence of strong rebinding in the experiments shown in Fig. 1

is seen when rebinding was prevented by the addition of

heparin (Fig. 1), which acts as a solution receptor for the

released FGF-2. The dissociation in the presence of heparin

was found to be increased compared to both untreated and

MbCD treated and essentially the same with and without

lipid raft disruptors (Fig. 1). Further, although limited, the

data points suggest that dissociation could be exponential.

To summarize, the difference between MbCD treated and

untreated without heparin indicates an effect on dissociation

by clustering, and the heparin data suggests that rebinding is

still an issue even in the absence of rafts.

It is important to note that because of the slow, non-

exponential decay of the dissociation curve in the presence

of strong rebinding, this function cannot be accurately

FIGURE 6 (A) Effect of clustering on the

dissociation rate for the high mean surface

density case (u 5 0.1). The value p(t) versus
scaled time is shown for two values of asso-

ciation rates: k1 5 0.1Dl (main figure) and

k1 5 Dl (inset) for uniform distribution

(diamond), r̃0 ¼ 10:0 (plus symbol), and

r̃05 50.0 (square). The lower association

rate in the main figure was used to increase the

threshold cluster size (Eq. 17b) to verify the

theoretical predictions in Case 2 in Extension

to Receptor Clusters. The axis labels are

common to the main figure and the inset. (B)

The data in the inset of A is plotted on a semi-

logarithmic scale to show the nonexponential

nature of the decay more explicitly.

FIGURE 7 The difference Dp(t) in the bound fraction between uniform

distribution and clustered configurations when k1 5 0.1Dl, corresponding

to r̃0 ¼ 10:0 (main figure) and r̃0 ¼ 50:0 (inset) is plotted against the scaled

time T 5 k�t, along with the theoretical prediction from Eq. 26 (thin line in

the main figure). The theoretical curve agrees with the simulations in the

very early regime, but deviates at later times. The impact of clusters vanishes

at late times, in accordance with our arguments in Case 2 in Extension to

Receptor Clusters. The axis labels are common to the main figure and the

inset.
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characterized by a single rate valid over a well-defined time

regime (unlike the weak-rebinding case). Rather, the effective

rates obtained by fitting the experimental curves to expo-

nential functions are only a simplified characterization of the

decay valid over a limited timescale. Keeping these caveats

in mind, we tried to see whether the observed experimental

data, with and without raft disrupters, is reproduced by the

theoretical functions of Eq. 11b (homogeneous distribution)

and Eq. 26 (raft-correction). The curves that were judged to

be closest to the experimental data in Fig. 1 (by comparing

with the exponential fit functions used to estimate the

dissociation rates in Fig. 1) are shown in Fig. 8. The param-

eters c and k�v (Eq. 11b and Eq. 26) were tuned for the

best fit, and the optimal numerical values found were

c 5 1.1 3 10�4 s�1 and k�v 5 4 3 10�4 s�1. Let us now

substitute for the following parameters: D 5 10�11 m2 s�1,

k� 5 0.25 s�1 (obtained from the heparin data in Fig. 1), and

k1 5 1.5 3 106 M�1 s�1(11). We treat the surface densities

R0 � N/l2 (where l � 5 3 10�6 m is the typical cellular

dimension) and R90� 10/j2 as unknowns, where N is the total

number of HSPGs per cell and j is roughly the radius of

a raft. Upon solving for the unknowns N and j, we find N �
7.5 3 105 and j � 200 nm. Both values are within

reasonable limits of the known estimates of these parameters,

and the resemblance between Fig. 8 and Fig. 1 supports the

FGF2-HSPG system analysis under the strong rebinding

category discussed in Theory, Case 2. The implications of

this observation are:

1. The effective dissociation rate measured in experiments

with such high coverage receptors such as HSPGs is best

treated as a phenomenological parameter valid for a

limited time range.

2. The theory can be used with the experimental observa-

tions to determine the true dissociation rate.

3. The signaling events where rafts are expected to play a

role may be expected to occur over timescales where the

transient effects of clustering are still relevant.

Suppose, however, as an aside, that Theory, Case 1 (low

surface coverage) would have applied to this experimental

system. From Fig. 5, we note that a reduction in the effective

dissociation rate by a factor ;5.75 (or a ratio of 0.17) for

a low density system would require that the ratio j/j0 should

be ;2.87. Let us now use Eq. 17b to express this result in

terms of the raft radius r by means of the substitutions

r 5 (4/p)j and R90 5 n/pr2 where n ; 5–10 is a rough esti-

mate of the number of HSPGs per raft. The condition that

j/j0 � 2.87 now demands that, for r ; 25 nm, the

association rate for FGF2-HSPGs should be nearly k1; 3.44

3 108(109)M�1 s�1 for D ; 10�10(10�11)m2 s�1, re-

spectively (we allow some flexibility in D, because by

definition, D is actually one-third of the real three-

dimensional diffusion coefficient). This value is an order-

of-magnitude or two larger than the available experimental

number for HSPGs: kexp1 ;1:53 106 M�1 s�1 (10). However,

it must be noted that although the above theoretical estimate

is somewhat high for FGF-2-HSPGs, it is still within the

range of association rates typically reported in the literature.

We believe that, therefore, there could well be other low-

density raft proteins that could use the enhanced-rebinding

mechanism to retain ligands longer near the surface and for

which our theory could be useful.

Let us now address the following question: Is there likely

to be a long-term effect of rafts on ligand dissociation for

FGF-2-HSPGs based on the analysis of the system? The

numerical simulations coupled with the theoretical argument

presented in the previous section showed that the effect of

clustering for our model system was present only in a limited

time range and vanished at late times. However, experiments

did not support this for the FGF-2-HSPG-lipid raft system.

This system is much more complex than the model system

upon which we based our theoretical and numerical analysis,

primarily due to the multiplicity of receptors (i.e., FGF

receptors and HSPGs competing for FGF-2 binding as well

as forming higher-order complexes). That being said, our

systematic study of diffusion-controlled rebinding in the

presence of receptor clusters indicates the limitations of this

mechanism: The surface coverage or the association rate of

the receptors have to be sufficiently large to have a measur-

able impact of clustering. It is therefore worthwhile to

explore alternative mechanisms that might be employed by

the cell to increase ligand retention inside rafts. In the last

FIGURE 8 The three smooth curves in the figure represent the best

exponential fits to the experimental data from Fig. 1, with time constants (in

units of 1/s) 0.25 (MbCD1Heparin), 0.023 (MbCD), and 0.004 (untreated).

The data points represent the best theoretical fits, using the function in Eq.

11b for MbCD, and with the added raft correction (Eq. 26) for untreated

cells. The fit parameters are c 5 1.1 3 10�4 s�1 in Eq. 11b and v 5 1.6 3

10�3 in Eq. 26. The corresponding values of the intrinsic variables are

discussed in the main text, in Results, Comparison with Experiments. Note

that, at late times, some of the data points for the clustered configuration

cross 1, which indicates that the limit of applicability of the perturbation

theory has been reached, and that higher-order terms in the perturbation

series have to be taken into account.
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part of this section, we will discuss one such plausible mech-

anism whereby the ligands may be retained longer inside a

cluster, i.e., internal diffusion of ligands inside a cluster of

receptors. We emphasize that the model is a theoretical idea,

and not strictly based on experimental observations.

Internal diffusion model

An alternative model for ligand dissociation in the pres-

ence of clusters is now proposed, by invoking a cooperative

rebinding mechanism for ligand retention inside a cluster.

For example, FGF-2 and other heparin-binding growth

factors bind HSPGs through the glycosaminoglycan (GAG)

side chains. In this model, we would propose that there might

be overlap of the GAG chains on neighboring HSPGs clus-

tered in rafts, resulting in a preferential path whereby a li-

gand, after its release from one GAG binding site, might find

it energetically more favorable to bind to a neighboring

binding site belonging to another HSPG. The ligand would

therefore perform a surface diffusion inside the cluster, and

likely be released into the solution only upon reaching the

edge of the cluster. Clearly, this internal diffusion would sig-

nificantly reduce the effective dissociation rate of the ligand,

as we show now more quantitatively.

For simplicity, let us imagine the binding site inside a raft

as occupying the sites of a lattice with spacing d, which is the
typical separation between two molecules. A cluster of ra-

dius r has n ; (r/d)2 molecules inside it. Let us now assume

that the hopping of the ligand from one site to another takes

place over a mean time interval t. Then, the diffusion coeffi-

cient for the surface diffusion of the ligand inside the cluster

is Ds � d2/t. The total time it takes the ligand to reach the

edge of the cluster by internal diffusion is, therefore,

T � r
2
=Ds ; nt: (27)

The ligand is likely to fully dissociate from the cluster once it

reaches the edge, since there is less likelihood of finding a

neighboring site to bind to. Thus, the mean effective dis-

sociation rate is given by

k
eff

� ; T
�1
; n=n; (28)

where we have also defined the internal hopping rate

v ; t�1.

Although it is difficult to have an independent estimate for

v, it appears reasonable to assume that this is of the same

order as the intrinsic dissociation rate k� for individual re-

ceptors. In this case, if the number of HSPGs per cluster is n,
then the dissociation rate is roughly reduced by a factor of

1/n, which could then account for the experimentally ob-

served ratio of ;1/6.

In Fig. 9 A, we show some numerical simulation results

done with this internal-diffusion model. These simulations

were done with a mean surface coverage of u 5 0.001. The

main figure shows the comparison between the dissociation

curves obtained with the rebinding model and the internal

diffusion model for cluster radius r̃0 ¼ 5; while the inset

shows the same for r̃0 ¼ 8: The figures show a much more

dramatic effect of clustering on dissociation as compared to

the purely diffusion-limited rebinding model, which has

been the main subject of this article. For instance, for r̃0 ¼ 5;
the rebinding model results in a reduction in the effective

dissociation rate by a factor of;0.21, whereas in the internal

diffusion model, the corresponding number is ;0.0019, i.e.,

lower by two orders of magnitude. Similar trends were seen

for other values of the cluster radii also. Fig. 9 B shows the

effective dissociation rate (found by fitting the data in Fig. 8

A to exponential curves) in the model plotted as a function of

the number of proteins n inside a cluster. In accordance with

our arguments, we see a sharp drop of the decay rate with n,
but the curve is nonlinear and does not fit completely with

the simple 1/n dependence predicted in Eq. 28. Nevertheless,

it is obvious that such cooperative mechanisms could greatly

augment the effect of receptor clustering, and we speculate

FIGURE 9 Clustering has amore significant effect on dissociationwith the

internal-diffusion model. (A) The value p(t) versus the scaled time comparing

the uniform distribution (diamond) with that of clustered configurations for

the internal diffusion model (plus symbol) and the rebinding model (square)

for clusters of radius r̃0 ¼ 5:0 (main figure) and r̃0 ¼ 8:0 (inset). (B) The
effective decay constant for various cluster sizes using the internal diffusion

model plotted on a log-scale as a function of the number of receptors in each

cluster for the internal diffusion model. The straight line has slope�1, and is

meant for comparison with the theoretical argument in Eq. 28.
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that lipid rafts possibly use a combination of both enhanced

rebinding as well as more specific ligand retention mech-

anisms to slow down the dissociation.

Although there is no direct experimental evidence for any

effective confinement of FGF-2 within the HSPG clusters, it

is possible that such additional mechanisms could be present

in this or other systems to enhance the purely diffusion-

controlled rebinding described earlier. Models of surface

diffusion of ligands on receptor clusters have been discussed

in the literature in other contexts as well, e.g., molecular

brachiation of CheR molecules on a cluster of its receptor

proteins (35). A later model of ligand association to a cell

surface containing receptor clusters, incorporating such an

internal diffusion mechanism (26) had been found to explain

experimental data (36) better than previous models (18,19)

that did not explicitly contain such mechanisms.

Finally, what could be the possible advantage of the in-

ternal diffusion mechanism, over simple enhanced rebinding

due to clustering? We believe that it is primarily the effect on

timescales. The increased rebinding due to clustering leads to

a significant effect on the effective dissociation rate, but only

over certain limited timescales, as we showed in detail in

the preceding section. By contrast, the internal diffusion/

trapping mechanism could cause a permanent reduction in

the dissociation rate, as long as clusters are present. The

limitation, of course, is that the receptors have to be packed

rather tightly inside a raft for this mechanism to take effect.

DISCUSSION

It is generally understood that lipid rafts are capable of

confining several kinds of large proteins inside them for

timescales up to several minutes (2). HSPGs are among the

proteins shown to localize to lipid rafts (and they are also co-

receptors for heparin-binding growth factors such as FGF-2).

We therefore sought to determine theoretically whether the

confinement and clustering of HSPGs inside lipid rafts could

affect binding of FGF-2, either via promoting rebinding of

dissociated ligands and/or via reduced dissociation through

some cooperative interactions between HSPGs in close prox-

imity to each other. Work by Chu et al. (6) indicated that

lipid rafts play a significant role in controlling the dissocia-

tion of FGF-2 from HSPGs, but the mechanism behind this

effect is speculative.

In this article, we present a rigorous mathematical

formalism to study the rebinding of ligands to receptors on

an infinite plane, as an approximation of the surface of a

tissue-culture-plated cell. In contrast to work by Lagerholm

and Thompson (27), who employed partial differential equa-

tions to describe the time evolution of the space-averaged

ligand density, we have adopted a stochastic formalism, and

described the dynamics in terms of the return-to-the-origin

characteristics of the Brownian trajectories of the ligands.

However, the theory is constructed entirely in terms of

coarse-grained continuum variables, which constitutes an

improvement over our previous model (28), which was

based on a lattice random walk. We predict that the long

time decay of the bound fraction always assumes a non-

exponential form for the planar surface studied here, irre-

spective of any parameter values. However, the entry into

this regime depends on the association rate and the surface

density of receptors. The theory also recovers the existence

of an exponential regime at early times. We have checked

and confirmed these analytical results through numerical

simulations.

The principal aim of this article was to utilize this for-

malism to study the effect of large-scale receptor clustering

on the cell surface, as appears to occur, for example, inside

lipid rafts. We have quantified the reduction in the effective

dissociation rate due to such clustering in various cases of

interest. In the regime of low mean receptor density, our

predictions agree with earlier results obtained by means of

different arguments (19). Monte Carlo simulations provide

excellent support for our model. A direct comparison with

experimental results for the high mean receptor density case

was also done noting that there is a lack of experimental data

currently available in the literature for systems which might

better be described by our theoretical model (i.e., small

monovalent ligand interacting with a single transmembrane

receptor, which does not dimerize or form higher-order

complexes). With further refinements, our theory could pro-

vide an independent method to check for spatial nonuni-

formity in receptor distribution on the cellular surface. This

is intimately related to the much larger question of cell

membrane organization, a subject of much debate and dis-

cussion in recent times (3,37–38). Even so, as a first attempt

to explicitly study the impact of enhanced rebinding due to

large-scale assembly of receptors on the dissociation rate of

ligands, we believe that our findings are of value to both

experimentalists and modelers interested in lipid rafts and

their role in cell signaling.

Our theoretical formalism was developed for the case of

a planar substrate, and most of our results are specific to this

geometry (with the exception of Case 1: Dense Isolated

Clusters on a Planar or Spherical Surface—R0 � 0;R90 Large,
which also applies to other geometries, e.g., spherical cells,

provided the mean surface density of receptors is small).

Apart from the obvious suitability of this geometry to many

experimental situations, the calculations could be effectively

reduced to one dimension, which greatly simplified the anal-

ysis. It would be interesting, albeit challenging (on account

of the angular dependence of the probabilities), to extend the

theory presented in this article to the case of receptors on

a spherical cell surface. Numerical studies in this direction

are currently being carried out. A better characterization of

the different crossover regimes in the present theory is also

desirable.

We have assumed that receptors are stationary and do not

exit clustered zones. How stable is the association of a protein

to the raft? Single-particle tracking experiments have shown
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that the diffusion of a raft-associated protein is unchanged

over timescales of up to 10 min, indicating that the proteins

can remain with the raft during this period (32). However,

since the dissociation measurements typically extend con-

siderably longer (on the order of hours), the possibility of the

proteoglycans exiting the raft during this period cannot be

ruled out. It would be interesting to see, in a future study, if

such dissociation events could have any impact on the re-

binding process by rendering the surface coverage factor

time-dependent inside rafts. Other relevant issues that would

be worthwhile investigating in this context include the ef-

fects of raft diffusion and their stability. It is also straight-

forward to pose questions about noise within our formalism.

For example, characterization of fluctuations of receptor oc-

cupancy (including temporal correlations) would be relatively

easy to address in our model (being based on individual

ligand histories) and could provide insight into the much

broader question of how well the cell senses its environment.

In conclusion, we have presented a novel theoretical

framework to study the problem of ligand rebinding to

receptors on the cellular surface, and how the rebinding and

effective dissociation of ligands are regulated by the spatial

organization of receptor proteins. Although many specific

results in this article are restricted to ligand binding to a

planar surface, the framework itself is more general, and

could be generalized to other cases, e.g., isolated spherical

cells that are more suitable for some situations (e.g., the

immune system).

APPENDIX A

In this Appendix, we briefly outline the calculation of the probability den-

sity of first returns to the origin. As is conventional, we consider a one-

dimensional random walk starting from the origin at time t 5 0. Let Q(t) be

the probability density at the origin at time t, and let furthermore q(t) denote

the density of walkers that return to the origin for the first time at time t.
As in Rebinding on a Planar Surface, we compartmentalize the available

space into cells of volume l3 and approximate the continuum diffusion as

hopping between adjacent cells. Then, the first passage probability itself is

simply lq(t), and the two probability densities are therefore related in the

following way:

2lQðtÞ ¼ lqðtÞ1 l

2d

Z t

2d

dtqðtÞQðt � tÞ2l: (A1)

The l-factors are written explicitly for the sake of clarity. The difference

of 2 in the measure of length arises because the first passage events (by

definition) cannot cross the origin.

In terms of Laplace transforms (in the limit d/ 0), the relation becomes

q̃ðsÞ ¼ 2Q̃ðsÞ

11
l

d
Q̃ðsÞ

: (A2)

Given that Q(t) 5 (4pDt)�1/2, Q̃ðsÞ ¼ 1=ð
ffiffiffiffiffiffiffiffi
4Ds

p
Þ; it follows that

q̃ðsÞ ¼ 1ffiffiffiffiffiffi
Ds

p
1

l

2d

: (A3)

The explicit inversion of this transform gives (29)

qðtÞ ¼ 1ffiffiffiffiffiffiffiffiffi
pDt

p � affiffiffiffi
D

p ea
2
terfcða

ffiffi
t

p
Þ; (A4)

where a ¼ l=ð2d
ffiffiffiffi
D

p
Þ: The late time behavior of this quantity is given by

(30)

qðtÞ � 2D

t

d

l

� �2
1ffiffiffiffiffiffiffiffiffi
pDt

p ; t � d: (A5)

The t�3/2 behavior is consistent with the well-known result for the first

passage probability in the context of one-dimensional random walks (see,

e.g., (39)).

APPENDIX B

In this Appendix, we explore the temporal behavior of CR0
ðtÞ: From Eqs. 8

and 9, we infer its Laplace transform to be C̃ðsÞ ¼
ffiffiffiffiffiffi
Ds

p
1 k1R0

� ��1
: The

explicit inversion reads (29)

CR0
ðtÞ¼ðpDtÞ�1=2� k1R0

D
exp½ðk1R0Þ2t=D�erfc½k1R0

ffiffiffiffiffiffiffiffi
t=D

p
�;

(B1)

which have the limiting forms (30) of

CR0
ðtÞ ¼ ðpDtÞ�1=2

; when t � D

ðk1 R0Þ2
; (B2a)

CR0
ðtÞ �

ffiffiffiffiffiffi
D

4p

r
ðk1 R0Þ�2

t
�3=2

; when t � D

ðk1 R0Þ2
:

(B2b)

Clearly, two distinct time regimes may be identified here. When k1R0 is

small, absorption by the surface becomes rare, and the first term dominates

in the expression at sufficiently small times. In this case, the probability

density CR0
ðtÞ is the same as for a perfectly reflecting surface (39). In the

converse limit, absorption is dominant and the temporal behavior exhibits

the t�3/2-dependence characteristic of the probability density for a perfectly

absorbing surface (39).

APPENDIX C

In this Appendix, we estimate the effect of rebinding on ligand dissociation

from a single isolated receptor in an infinite cubic lattice. The ligand dis-

sociates from the receptor with probability b and performs a randomwalk on

the lattice, until the walk hits the (stationary) receptor again and binds to it.

We are interested in estimating the probability p(N) that the ligand is bound

to the receptor after N time steps. (One time step is the time required for the

ligand to move one lattice-spacing.)

The general equation for p(N) is

pðN 1 1Þ ¼ pðNÞ½1� b�1b +
N�2

2

pðkÞCðN � kÞ; (C1)

where C(k) is the probability of return to origin of a three-dimensional

random walk (Polya walk) after k time steps.

Let us now make the reasonable assumption that the function p(N) is
monotonically decreasing with N, in which case p(k)$ p(N) in Eq. C1. This

means that

pðN 1 1Þ � ½1� b�pðNÞ$bpðNÞ +
N�2

2

CðkÞ: (C2)

We next consider the limit of large N, in which case the sum in Eq. C2

becomes the probability that the random walk will ever return to the origin,
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which is nearly 0.3403 (39). In this limit, we may also treat N as a continuous

variable, and make use of the approximate replacement p(N 1 1) – p(N) �
dp(N)/dN, which gives

dp

dN
$ � 0:66bpðNÞ; (C3)

and which means that

pðNÞ$ pðN0Þexp½�0:66bðN � N0Þ� for N;N0 � 1:

(C4)

If the late time behavior is characterized by an effective exponent beff, Eq.

C4 shows that this exponent is bounded by the relation

beff # 0:66b: (C5)
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