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ABSTRACT The singly flagellated bacterium, Vibrio alginolyticus, moves forward and backward by alternating the rotational
direction of its flagellum. The bacterium has been observed retracing a previous path almost exactly and swimming in a zigzag
pattern. In the presence of a boundary, however, the motion changes significantly, to something closer to a circular trajectory.
Additionally, when the cell swims close to a wall, the forward and backward speeds differ noticeably. This study details
a boundary element model for the motion of a bacterium swimming near a rigid boundary and the results of numerical analyses
conducted using this model. The results reveal that bacterium motion is apparently influenced by pitch angle, i.e., the angle
between the boundary and the swimming direction, and that forward motion is more stable than backward motion with respect to
pitching of the bacterium. From these results, a set of diagrammatic representations have been created that explain the
observed asymmetry in trajectory and speed between the forward and backward motions. For forward motion, a cell moving
parallel to the boundary will maintain this trajectory. However, for backward motion, the resulting trajectory depends upon
whether the bacterium is approaching or departing the boundary. Fluid-dynamic interactions between the flagellum and the
boundary vary with cell orientation and cause peculiarities in the resulting trajectories.

INTRODUCTION

The ability to swim is a fundamental requirement for

microorganisms to find prey or obtain soluble nutrition (1,2).

For small bacteria, swimming ability facilitates the search for

better environments and maintenance of proximity to such

sites for reproduction and biodegradation of waste from

other forms of life.

Bacterial cells are propelled by rotating, helically shaped

locomotive organs called flagella. Unlike the bending fla-

gella of eukaryotes, the bacterial flagellum does not change

its shape but is instead driven by a rotary motor embedded in

the cell body (3,4). The rotation of the flagellum propels the

cell body in the same way that a screw propels a ship. The

rotary motor is able to change its rotational direction and so

change the swimming direction of the cell. Some bacteria are

peritrichous, such as Escherichia coli or Salmonella enterica
serovar Typhimurium, possessing several flagella. Others are

monotrichous, such as Vibrio alginolyticus, possessing a

single flagellum. This study deals with the motion of the

latter.

The motions of peritrichous and monotrichous cells differ

(5). The flagella of a peritrichous cell, which are scattered

over the entire cell surface, form a bundle when the cell

swims in a straight line. The cell is able to tumble by

changing the rotational direction of its flagellar motors.

When the motors change their rotational directions, the

inverted torque induces the flagellar filaments to transform

from left-handed helices into right-handed curly forms. As

a result of the transformation, the filaments disband and are

spread. During this process, the cell alters its orientation

randomly. Then, when the motor rotation returns to the

original direction, they are again tied up in a bundle and the

cell swims in the new direction (6). The details of the fla-

gellar bundling and loosening process have been clarified

using the fluorescent technique (7). All the filaments do not

need to change their rotational directions simultaneously to

cause tumbling. The change in the flagellar waveforms re-

sulting from polymorphic transformations introduces a vari-

ety of tumbling processes.

A monotrichous bacterial cell also changes the rotational

direction of its flagellum; however, the shape of the flagellar

filament does not change. For instance, the filament of Vibrio
alginolyticus is covered by a sheath, which may prevent the

filament from transforming (8). Because of this geometrical

simplicity, the cell can move only backward and forward in

a straight line unless some disturbance is introduced. Here,

forward motion is defined as motion when the cell body

precedes the flagellum, as shown in Fig. 1. In reality, the

cells are observed to change direction and swim in a zigzag

pattern. There are several theories for the source of these

disturbances, which include Brownian motion, deformation

of the flagellar filament (9), and deformation of the part

(hook) connecting the filament to the motor. In addition, the

presence of a boundary should be included as a potentially

important factor.

This study presents a mechanical explanation for the

characteristic motions of V. alginolyticus YM4, as observed
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when the cell swims close to a wall. Because the size of the

cell is small, the inertial forces are negligible and the stream

lines around the cell are considered to be the same for for-

ward and backward motions irrespective of flow direction.

Thus, it is reasonable to expect that the forward and back-

ward motions would be symmetric. However, there are

differences in the trajectories of successive forward and

backward motions. The results of the numerical analyses

conducted here show that the stability in motion differs

between forward and backward directions.

The most noticeable difference in the characteristic motion

of YM4 cells, for the forward and backward directions, was

the swimming speed (10). Also, a difference in the shape of

the trajectories was apparent (11). More specifically, for

forward motion, the trajectory tends to be straight, whereas

for backward motion, the trajectory tends to be circular, es-

pecially when the cell moves close to a wall. Experimental

investigation has shown that these phenomena are caused by

fluid-dynamic interactions between the cell and the rigid

boundary rather than by electrochemical or electrostatic in-

teractions (12). Further, numerical simulation has illustrated

that the asymmetry between the forward and backward mo-

tions is important for bacterial chemotaxis (12).

Fluid-dynamic simulations identifying those orientations

that dominate the interaction between the cell and the bound-

ary are expected to improve understanding of the observed

motion. Lighthill (13,14) considered the motion of a helical

thin film from the perspective of fluid dynamics and pro-

posed suitable resistance coefficients that should be adopted

by the resistive force theory for the flagella. The slender body

theory, in which a small segment of the flagellum is replaced

by a distribution of Stokeslets and dipoles, was used to de-

rive the coefficients. Higdon (15) developed a numerical

method based on the slender body theory and calculated the

swimming speed of amicroorganism consisting of a spherical

cell body and a helical flagellum. In this calculation, he took

into account the effect of the cell body using analytically

obtained image systems. The boundary element method

allows for the consideration of arbitrary cell body and

flagellum shapes. Phan-Thien et al. (16) calculated the

shapes of ideal microorganisms to produce the most efficient

swimming. Flores et al. (17) addressed flagellar bundling.

The elastic deformation of the flagellum was modeled using

a network of springs and the fluid dynamic interaction was

modeled using a distribution of the singularities. Fauci and

McDonald (18) applied the immersed boundary method to

calculate the motion of spermatozoa with beating flagella in

the presence of boundaries for a two-dimensional configu-

ration.

Ramia et al. (19) conducted a boundary element analysis

to examine the effect of fluid-dynamic interactions on the

motion of a microorganism swimming close to a rigid wall.

The results indicated that the swimming speed increases by

,10% when the microorganism moves closer to the wall and

also that the trajectory becomes circular. However, in their

calculations, the dimensions of the microorganism were

adjusted to ideal values optimized for efficient swimming

and consisted of a spherical cell body and a flagellum with

a radius of the helix larger than that of the cell body.

The YM4 cell is dissimilar to this ideal microorganism.

The cell body is actually a cylinder capped at both ends by

hemispheres and the radius of the flagellum helix is smaller

than that of the cell body. In this study, the motion of the

YM4 cell swimming close to a wall is examined using bound-

ary element analysis. The numerical results obtained reveal

that the orientation of the cell with respect to the wall is a

strong contributory factor to the difference between the

forward and backward motions.

In the sections that follow, the results of initial experi-

ments are summarized. Then, the numerical procedure used

to calculate the swimming speed is described and the results

detailed. The final section offers an explanation for the ob-

served bacterium motions based on these results.

Brief summary of observed results

Fig. 2 shows a schematic side view of the trajectories of the

cell in a suspension sealed between a glass slide and a

coverslip at a distance of;150 mm apart. The practical focal

depth of the microscope is only ;10 mm. Thus, we may

FIGURE 1 Schematic of a bacterium with a single polar flagellum. The

cell consists of a body and a flagellum. The cell body precedes the flagellum

in the forward direction.

FIGURE 2 Schematic side view of the paths of bacteria in a chamber. The

motion of cells within different focal depth ranges (shown by the gray areas)

were observed and the resulting trajectories are shown as thick lines.
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resolve different layers of interest within the suspension. Let

us define a ‘‘lower layer’’ near the slide boundary, an ‘‘upper

layer’’ near the coverslip boundary, and a ‘‘middle layer’’ at

the center distance between the slide and coverslip bound-

aries. When the focal point is set to the lower or upper layer,

it is expected that the observed motion of the bacteria should

be influenced by the boundary. However, for the middle

layer, this motion should be free of such influences.

The characteristics of the trajectories of YM4 cells re-

ported previously (11) are reproduced well by the indepen-

dent observations made here, shown in Fig. 3. For the middle

layer, the trajectory of YM4 is almost straight. In contrast,

for the upper and lower layers, the trajectories consist of

straight parts and circular parts. The trajectories of the

mutant strains, YM42 and NMB102, are also shown in Fig.

3. These strains lack the ability to change the rotational

direction of the motor. More specifically, the YM42 cells are

able to move only forward and the NMB102 cells only

backward. The YM42 cell swims in a straight line irre-

spective of the presence of the wall. In contrast, the NMB102

cell moves in a circular path when close to the wall and a

straight line when away from the wall. Given these char-

acteristics, it can be deduced that the straight and circular

parts of YM4’s trajectory correspond to forward and back-

ward motions, respectively.

In addition to differences in trajectory, differences in

swimming speed have been reported for forward and back-

ward motions near a wall. More specifically, the speed in the

backward direction is greater than that for the forward di-

rection by up to 50% (10,12). Also, in the vicinity of a wall

the residence time distribution in the backward motion is

broader than that in forward motion (12), which means some

of the bacteria tend to stay close to the wall for a longer time

when swimming backward than when swimming forward.

Numerical method

The swimming of a bacterium above an infinite plane rigid

boundary was treated here as a so-called ‘‘outer flow

problem’’ in low Reynolds number fluid dynamics. The nu-

merical method was based on boundary element analysis

consistent with those performed in previous studies (19,20).

Because the size of the bacterium is on the order of 1 mm,

and the Reynolds number of the associated fluid motion is

almost 10�5, the fluid motion is governed by the Stokes

equation:

FIGURE 3 Examples of trajectories for

V. alginolyticus as observed from the

positive z-direction (from the top; defined

in Fig. 2). The rows show the various

levels, i.e., upper, middle, and lower (see

Fig. 2). The columns show the various

strains, i.e., YM4 (wild type, able to move

forward and backward), YM42 (forward

only), NMB102 (backward only).
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=pðxÞ ¼ m=
2uðxÞ; = � uðxÞ ¼ 0; (1)

where p, m, u, and x denote the pressure, the viscosity, the

velocity vector, and the position vector, respectively.

Because the bacterium swims with no external forces, the

free-swimming condition holds:Z
S

tðxÞ dS ¼ 0 for net force; (2)

Z
S

r3 tðxÞ dS ¼ 0 for net torque; (3)

where t is the traction vector referring to the surface force per
unit area and r is the position vector with an arbitrary origin.

The Green function, used for configurations including

an infinite wall (21), is applied here to satisfy the nonslip

condition at the wall, i.e., the fluid velocity at the surface is

zero.

A nonslip condition is also applied to the surface of the

bacterial cell. Both the cell body and flagellar filament are

assumed to be rigid bodies. These two rigid bodies rotate

relative to each other at the rotary motor interface. The rotary

motor and the hook are not modeled here. For these con-

ditions, the velocity of each point on the surface of the cell

can be expressed as:

uðrÞ ¼ U1V3 r on the cell body;
U1 ðV1vÞ3 r on the flagellum;

�
(4)

where U is the translational velocity at the motor position,V
is the cell body angular velocity, v is the angular velocity of

the rotary motor, and the origin of the vector r is chosen at

the center of the motor.

The procedure to obtain U andV is as follows. First Eq. 1

was integrated using Green’s function methods to obtain a

boundary integral equation in terms of the velocity and

traction on the bacterial cell surface (see Appendix A). This

equation is subsequently discretized by expressing it in terms

of the velocities and tractions at nodal points on the surface

of the cell boundary element model using coefficient ma-

trices ½H� and ½G�:

Hi j uj ¼ Gi j tj: (5)

Next, the velocities in Eq. 4 are substituted into the left-

hand side of Eq. 5. Multiplying both sides by ½G��1
gives the

tractions as functions of U and V: These tractions are then

substituted into Eqs. 2 and 3 resulting in an equation with six

components corresponding to force (Eq. 2) and torque vec-

tors (Eq. 3), each consisting of three components in Cartesian

space. Solving the equation yields U and V for a given

angular velocity of the motor, v (see Appendix B).

U and V were calculated for various distances from the

wall, d, and pitch angles, u, using the Cartesian coordinate

system defined in Fig. 4. The dimensions of the bacterium

model were determined by averaging the dimensions of

100 YM4 cells (20). In this calculation, the total number of

boundary elements was 226 (see Appendix C). The con-

figuration between the bacterium model and wall changes as

the flagellum rotates due to the asymmetry of the helical

flagellum. Because the cell proceeds only a short distance

during one flagellar rotation, U andV were averaged for one

such rotation.

Numerical results

Fig. 5 shows the x component values of the velocity vector as

functions of the pitch angle, u, for various distances from the

wall. For small values of u, this x component dominates

the swimming speed. Note that, for the coordinate system

defined in Fig. 4, the forward swimming direction for the

bacterium cell is in the negative x direction. If the bacterium
cell swims at a distance from the boundary of ;10 times the

diameter of the cell, the swimming speed is unaffected by the

wall. However, as it swims closer to the wall, the swimming

FIGURE 4 Boundary element model of a bacterial cell with body width

(2b) swimming at a distance (d) from a wall. The coordinate systems xyz and
x9y9z9 are shown, as is the pitch angle, u.

FIGURE 5 Forward swimming speed of the bacterial model as a function

of pitch angle. The speed is normalized with respect to the swimming speed

in free space, jUNj: Parameter d/2b is a measure of the distance from the wall

(see Fig. 4). These data should be inverted with respect to the abscissa for the

case of backward motion.
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speed varies with u. When the cell swims parallel to the wall,

namely u ¼ 0, the closer to the wall the cell is, the slower it

swims. When the cell swims in an orientation such that the

flagellum is close to the wall and the cell body is away from

the wall, namely u. 0, the speed increases. Thus, the swim-

ming speed increases when either the cell swims at a sig-

nificant distance from the wall or the flagellum interacts with

the wall.

For forward motion, the angular velocity about the y axis,
i.e., the pitching rate, is shown in Fig. 6. If the cell swims at

a significant distance from the wall, the pitching rate is

independent of u and is negligible. However, if the cell in-

teracts with the wall, the pitching rate is almost proportional

to the pitch angle. The proportional constant is negative for

forward swimming and increases as the cell swims closer to

the wall. Because pitching rate is the time derivative of pitch

angle, the negative sign for the proportional constant in-

dicates that the pitching motion for the forward direction has

positive damping and is stable. For backward motion, all

data are inverted with respect to the horizontal axis, i.e.,

negative becomes positive and vice versa. It follows, there-

fore, that the proportional constant becomes positive. Con-

sequently, the pitching motion for the backward direction

has negative damping and is unstable.

For forward motion, the relationship between the angular

velocity about the z axis, the yaw rate, and the pitch angle is

shown in Fig. 7. The yaw rate is sensitive to the pitch angle

only when the cell swims close to the wall and is oriented

with the flagellum close to the wall. In such cases, for

forward swimming motion, the yaw rate becomes negative

and the resultant trajectory will curve in a clockwise direc-

tion when the motion is observed from above. For backward

motion, similar to the pitching rate data, the signs of all data

are inverted with respect to the horizontal axis. Thus, the yaw

rate becomes positive and the resultant trajectory will curve

in a counterclockwise direction when the motion is observed

from above.

Fig. 8 compares the averaged velocity vectors around the

bacterium model between cases in which the bacterium

model is in free space and when the model is close to a wall.

The vectors are in the x-z plane, and for forward motion with

a pitch angle u ¼ 8�. It is clearly shown that when the fluid

motion around the flagellum flows backward, the cell body

is propelled in the forward direction. In Fig. 8 b, the

magnitudes of the velocity vectors on the wall (z ¼ 0) are

zero due to the nonslip condition. The effect of the presence

of the wall is small except for the velocity vectors close to the

wall.

To extract the difference due to the presence of the wall,

the velocity field without the wall was subtracted from the

velocity field with the wall. The results for the bacterium

model with u¼�8� and u¼ 8� are shown in Fig. 9. In Fig. 9

FIGURE 6 Pitching rate in forward motion as a function of pitch angle.

The rate is normalized using the angular velocity of the cell body in free

space, jVNj:

FIGURE 7 Yawing rate in forward motion as a function of pitch angle.

Vz$ is the projection of Vz9 onto the z axis as defined in Fig. 4.

FIGURE 8 Averaged velocity field around a bacterium model in the

x-z plane. The model moves forward with a pitch angle u ¼ 8� at a distance
from the wall d/2b ¼ 1.25; (a) without a wall, (b) with a wall at z ¼ 0.
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a, the cell body moves upward when u ¼ �8� so that the

pitching rate becomes positive, whereas in Fig. 9 b, the
flagellum moves upward when u ¼ 8�, which introduces a

negative pitching rate. These velocity vectors are consistent

with the pitching rate shown in Fig. 6.

In Fig. 9 a, the subtracted velocity vectors around the cell

body point to the negative x axis direction, which indicates

that the swimming speed decreases if a wall exists. The

vectors around the cell body in Fig. 9 b point to the positive x

axis direction, although their magnitudes are small. This

indicates that the bacterium model swims faster when it

encounters a wall and swims at a positive pitch angle, as

shown in Fig. 5.

The subtracted velocity vectors shown in Fig. 9, c and d,
correspond to the yaw rate shown in Fig. 7. Especially when

u ¼ 8�, the flagellum moves in the negative y axis direction
and the cell body moves in the positive direction, which

causes the clockwise rotation of the bacterium model when

viewed from above.

For backward motion, all the vectors in Figs. 8 and 9 point

in the opposite directions because the signs of U and V are

inverted from those for forward motion.

DISCUSSION

At any point in time, the signs of U and V for forward

motion are opposite to those for backward motion, and their

magnitudes are the same. Over a long period, however, the

consequent position and posture are different. The numerical

results obtained in the previous section represent quasisteady

values because the inertial forces are negligible. During an

infinitesimal period, the bacterium model in a certain posture

with pitch angle u and distance from the wall d proceeds and
rotates with the corresponding velocity U and the angular

velocity V: After this period, the model slightly changes its

orientation and position, which results in a change in u and d.
Then, in the next instant, the model moves according to U
and V that correspond to the new u and d. Thus, the motion

of the model can be tracked.

Numerical tracking of the motion, which requires a con-

siderably long computational time, has not yet been con-

ducted. Instead, a qualitative explanation of the motion of a

cell close to a wall summarizing the numerical results is

presented. A number of diagrammatic representations were

generated to explain the experimentally observed differences

between the forward and backward motions over a long

period. These are shown in Fig. 10.

Because the pitching motion is stable for the parallel

forward motion shown in Fig. 10 a (Fig. 6), a bacterium will

maintain a fixed distance from the wall and the pitch angle u

will be maintained close to 0�. When u � 0�, its speed is

slower than that achieved in free space due to the presence of

the wall (Fig. 5). This does not lead to significant circular

motion because the yaw rate is negligible when u� 0� (Fig. 7).
Backward motion can be classified into two types because

the corresponding pitching motion is unstable (Fig. 6): one is

‘‘departing’’, which is depicted in Fig. 10 b, where the pitch
angle u is negative and continues to decrease unless the cell

is at a distance from the wall (e.g., d/2b ¼ 12.5); and the

other is ‘‘approaching,’’ which is shown in Fig. 10 c, where
the pitch angle u is positive and continues to increase.

For departing motion, cell motion is influenced very little

by the wall because the cell is steadily increasing its distance

from the wall. It swims almost in a straight line (Fig. 7, u, 0�)

FIGURE 9 Subtracted velocity field illustrating the effect of a wall at z ¼
0 on the velocity field. The model moves forward at a distance from the wall

d/2b ¼ 1.25. (a) u ¼ �8�, in the x-z plane, (b) u ¼ 8�, in the x-z plane, (c)

u ¼ �8�, in the plane that includes the centerline of the flagellum and is

parallel to the y axis, (d) u ¼ 8�, in the plane that includes the centerline of

the flagellum and is parallel to the y axis.

3776 Goto et al.

Biophysical Journal 89(6) 3771–3779



at an averaged speed nearly equal to that achieved in free

space (Fig. 5).

For approaching motion, the cell approaches very close to

the wall and the averaged speed is larger than that achieved

in free space because the orientation places the flagellum

close to the wall (Fig. 5). The positive pitch angle induces

rotation in the yaw direction which, in turn, results in a

circular trajectory in the counterclockwise direction when

viewed from above (Fig. 7).

These diagrammatic representations are consistent, at least

qualitatively, with the observed circular trajectories when the

cells swim backward close to the wall. They are also con-

sistent with the speed in the backward direction exceed-

ing that in the forward direction. Moreover, they lead us to

understand that the broadness in the residence time distri-

bution for the backward direction is due to the unstable

motion. The approaching cells tend to stay longer near the

wall than the departing cells do. Therefore, we conclude that

the unusual characteristics of the motions observed are

mainly caused by fluid-dynamic interactions between the cell

and the rigid boundary when the cell has a nonparallel ori-

entation relative to the boundary. This representation may be

verified if the pitch angle is measured along with the swim-

ming speed and trajectory in experiments, although the direct

measurement of u seems to be very difficult.

The diagrammatic representation for approaching cells

suggests that the flagellum collides with the wall in ap-

proaching motion and sometimes touches the wall during

motion with a circular trajectory. This was not considered in

the calculation here and so quantitative agreement with the

experiments is not expected. The hook portion of the fla-

gellum is assumed to be flexible, and this flexibility allows

the flagella of peritrichous bacteria to form a bundle. The

hook portion bend is sometimes observed when the YM4 cell

changes its swimming direction. This flexibility was also not

taken into account in this analysis. However, the bending is

only observed at the instant of direction change. The fla-

gellum is not observed bending at the hook part during

forward or backward motion (10). However, there is another

opportunity for the hook to deform slightly because the axis

of the flagellar helix is not generally collinear with the

centerline of the cell body. This may change the quantitative

values calculated in this article. To obtain quantitatively

exact values, the exact relative motion of the cell body and

the flagellum should be included in the calculation, which

requires unknown factors such as bending stiffness, torsional

stiffness, and homogeneity. The results presented here

provide a qualitative explanation of the observed bacterial

motion.

The asymmetry observed in the motion of bacteria has an

important bearing on how far the bacteria can spread in

a given time. This was examined in a previous study (12) in

which a numerical simulation was performed for chemotac-

tic behavior of bacteria using the asymmetric parameters

obtained from observation. It is now reasonable to suggest

that such a model should include the effect of the fluid-

dynamic interactions with a boundary on the diffusivity of

the bacteria. The asymmetry increases the probability of bac-

teria remaining near a wall and forming a biofilm on it. This

may answer the question of why bacterial populations gather

on the surface of a wall, even if that wall is inorganic and

unimportant to their chemotaxis.

According to the numerical results presented here, the

closer to a wall a cell is, the slower it swims. This is contrary

to results reported by Ramia et al. (19) and is due to dif-

ferences between the shape of real bacteria and the idealized

microorganism shape used in that study that possesses a small

spherical cell body and a large flagellum. As is specified in

FIGURE 10 Images of the motion of a bacterium close to the wall.

Forward motion is stable: (a) the cell moves in a straight line maintaining

a fixed distance from the wall. Backward motion is unstable: (b) the cell

moves in a straight line when departing the wall, and (c) the cell trajectory is

curved in a counterclockwise sense as seen from above when approaching

the wall.

The Wall Effect on Bacterial Motion 3777

Biophysical Journal 89(6) 3771–3779



Eqs. 2 and 3, the net force should balance out during motion.

The presence of a wall simultaneously increases the drag

force exerted on the cell body and the propulsive force of the

flagellum. For real bacteria, the former of these two forces is

dominant. However, for the idealized microorganisms of the

previous study (19), the latter force is dominant.

Berg and Turner (22) reported a circular trajectory for the

E. coli cell, which has a cell size smaller than the flagellum

size. Because E. coli is peritrichous, the nature of its motion

differs from that of monotrichous bacteria. More specifically,

the cell swims in a way in which the cell body precedes the

flagellar bundle, so it is considered to move forward, as

described in the introduction. Ramia et al. (19) identified the

circular trajectory for singly flagellated microorganisms in

forward motion. This suggests that stability depends on the

ratio of the cell body to flagellum size, a notion that warrants

investigation in the near future.

APPENDIX A: BOUNDARY INTEGRAL EQUATION

The procedure to derive the boundary integral equation for half space is the

same as that used in previous studies (19,20).

Multiplying the right equation of Eq. 1 by a vector v(x, y), the left

equation of Eq. 1 by a scalar qðx; yÞ; and then integrating the sum of the two

for the fluid domain V producesZ
vðx; yÞ � =

2uðyÞ � 1

m
=pðyÞ1=ð= � uðyÞÞ

� �
dVðyÞ

1

Z
qðx; yÞ

m
= � uðyÞdVðyÞ ¼ 0: (A1)

Here, the term =ð= � uðyÞÞ; which is zero from the right equation of Eq. 1, is

added to derive a boundary integral equation in terms of velocity and

traction. Applying Gauss’s theorem to Eq. A1 yields

1

m

Z
vðx;yÞ � tðyÞdSaðyÞ�

1

m

Z
uðyÞ �tðx;yÞdSaðyÞ

1

Z
uðyÞ � =

2vðx;yÞ�1

m
=qðx;yÞ1=ð= � vðx;yÞÞ

� �� �
dVðyÞ

1

Z
1

m
pðyÞ= �vðx;yÞ

� �
dVðyÞ ¼ 0: (A2)

Here, tðx; yÞ is the traction expressed by vðx; yÞ and qðx; yÞ instead of uðxÞ
and pðxÞ: The surface for the integration of Sa in Eq. A2 includes both the

infinite wall and the bacterium model. When a set of elementary solutions

satisfying the nonslip condition on the infinite wall is chosen for the vector

vðx; yÞ and the scalar qðx; yÞ; we do not need to integrate for the infinite wall
surface, only for the surface of the bacterium model. The explicit forms of

such elemental solutions are given by Blake (21) and Ramia et al. (19). Thus,

Eq. A2 is written in terms of velocity and traction:

uiðxÞ ¼ �
Z
tijðx; yÞujðyÞdSðyÞ1

Z
vijðx; yÞtjðyÞdSðyÞ:

(A3)

Here S is the surface of the bacterium model. If the position x is chosen on

the surface, Eq. A3 yields a boundary integral equation. The first term on the

right-hand side of Eq. A3 should be evaluated using Cauchy’s principal

value as r ¼ jx� yj/0 because tðx; yÞ has a singularity that does not

disappear after the integration as r/0: The boundary integral equation is

CijðxÞuiðxÞ ¼�
Z

tijðx; yÞujðyÞdSðyÞ1
Z

vijðx; yÞtjðyÞdSðyÞ

(A4)

where

CijðxÞ ¼ dij 1 lim
e/0

Z
tijðx; yÞdSeðyÞ:

Equation A4 is transformed into a discretized boundary integral equation in

terms of the velocities and the tractions of node points of boundary elements,

that is Eq. 5.

APPENDIX B: DEPENDENCE OF THE
CALCULATED RESULTS ON v

The final form of the equation for U and V is an algebraic equation:

U
V

� �
¼ ½W� O

v

� �
; (B1)

where the matrix ½W� is determined from the matrices ½H�; ½G� and the

positions of each node point. In the calculation,v ¼ ð0; 0;vÞT was given in

the coordinate system fixed to the cell body. v was held constant whereas u

and d were varied. From Eq. B1, the calculated U andV are proportional to

v: When the results are normalized by any linear or angular speed in the

calculation, as is done in Figs. 5–7, the nondimensional values are

independent of v:

The torque of the motor is evaluated from the resultantU andV: Because

the torque is also proportional to v, U and V can be calculated when the

torque of the rotary motor is held constant. The data are not shown here, but

the results for constant torque are not significantly different from the data for

a constant v:

APPENDIX C: BOUNDARY ELEMENT MODELING

The surfaces of both the cell body and the flagellum were discretized as

boundary elements. Isoparametric quadrilateral elements with eight node

points were adopted for all the elements. The cell body was modeled as

a circular cylinder with both ends capped by hemispheres, and the flagellum

was modeled as a thin twisted circular cylinder. The boundary elements on

the flagellum were adjusted to avoid becoming highly skewed. The numbers

of elements for the cell body and the flagellum were 70 (212 nodes) and 156

(470 nodes), respectively.
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