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ABSTRACT The analysis of metabolic networks has become a major topic in biotechnology in recent years. Applications
range from the enhanced production of selected outputs to the prediction of genotype-phenotype relationships. The concepts
used are based on the assumption of a pseudo steady-state of the network, so that for each metabolite inputs and outputs are
balanced. The stoichiometric network analysis expands the steady state into a combination of nonredundant subnetworks with
positive coefficients called extremal currents. Based on the unidirectional representation of the system these subnetworks form
a convex cone in the flux-space. A modification of this approach allowing for reversible reactions led to the definition of
elementary modes. Extreme pathways are obtained with the same method but splitting up internal reactions into forward and
backward rates. In this study, we explore the relationship between these concepts. Due to the combinatorial explosion of the
number of elementary modes in large networks, we promote a further set of metabolic routes, which we call the minimal
generating set. It is the smallest subset of elementary modes required to describe all steady states of the system. For large-
scale networks, the size of this set is of several magnitudes smaller than that of elementary modes and of extreme path-
ways.

INTRODUCTION

Progress in biotechnology led to the discovery of a rapidly

increasing number of genomes of different species (1,2).

From the identification of enzymes, the genes encode, the

biochemical reactions can be derived, and the metabolic

network of the organism can be reconstructed. Two of the

most frequently used tools to analyze these networks are the

stoichiometric network analysis (SNA) (3) and the flux bal-

ance analysis (FBA) (4), which are closely related to each

other.

The SNA is based on concepts of convex geometry. It was

outlined in a seminal article by Clarke (5) to analyze the

stability of chemical reaction networks. The starting point

is the steady state of the system where the kinetic equations

expressed in terms of fluxes represent a linear equation

system, which is determined by the stoichiometry matrix.

The steady-state assumption requires that a flux vector is an

element of the null-space of the stoichiometry matrix. A row

of this matrix can be interpreted as a hyperplane in flux

space. The intersection of all these hyperplanes forms the null-

space. From thermodynamic considerations, some of the re-

actions can be assumed to proceed only in one direction so

that the backward reaction can be neglected. Provided that

all reactions are unidirectional or irreversible, the intersec-

tion of the null-space with the semipositive orthant of the

flux space forms a polyhedral cone, the flux cone. The inter-

section procedure results in a set of rays or edges starting at

0, which fully describe the cone. The edges are represented

by vectors and any admissible steady state of the system is

a positive combination of these vectors. Thus, the first goal

of SNA is to determine the representative vectors of the

edges of the flux cone.

From a biological perspective, these edges characterize

important pathways of the metabolic network. In the case

of a pointed cone, where 0 is a vertex, they connect inputs

to outputs with a minimal set of reactions. If one of the

reactions is blocked, the route containing this reaction is in-

terrupted and gets eliminated from the pathway set. As a

consequence, the cone loses an edge and shrinks. Due to the

fact that most reactions are catalyzed by enzymes in meta-

bolic networks, we can determine the minimal set of en-

zymes, which must be expressed for a proper functioning of

a metabolic route. This relationship links the metabolic net-

work to the genetic regulatory network. It might help to

elucidate the operon and regulon structure in prokaryotes and

eukaryotes, respectively (6). Furthermore, the length of these

metabolic pathways might be an important determinant in

the evolutionary optimization procedure since the costs for

maintaining a certain route increases with the number of en-

zymes expressed (7).

Another system property of interest is the robustness of

the network, which can be assessed by counting the number

of edges per reaction or per input-output relationship. In the

former case, the approach measures how many edges of

the cone are eliminated if a reaction is blocked, whereas, in

the latter case, the outcome tells us how many pathways are

available to produce a desired output from a given input.

The minimality property of these pathways can also be

exploited to determine the minimal cut sets of the network

(8). A minimal cut set is defined as a minimal set of reactions

required to disconnect the input from the output. Minimal cut

sets are used to determine the inhibitors necessary to fully

Submitted October 27, 2004, and accepted for publication September 7,

2005.

Address reprint requests to C. Wagner, University of Bern, Institute of

Pharmacology, Friedbuehlstr. 49, CH-3010 Bern, Switzerland. Tel.:

41-31-632-9991; Fax: 41-31-632-4992; E-mail: clemens.wagner@pki.

unibe.ch.

� 2005 by the Biophysical Society

0006-3495/05/12/3837/09 $2.00 doi: 10.1529/biophysj.104.055129

Biophysical Journal Volume 89 December 2005 3837–3845 3837



block the metabolic network. This approach can be applied

against parasites where the metabolic system of the para-

site is shut down by the drugs, but not the network of the

host.

A complication occurs when some of the reactions are

reversible. However, with the simple trick of splitting up

a reversible reaction into separate forward and backward

directions, the system can be written in a fully irreversible

representation. The cost for this transformation is the in-

crease in the dimension of the flux space, which augments

by 1 for every split reaction. Moreover, the number of edges

of the flux cone rises by this procedure. This has led to dif-

ferent description of the flux cone depending on the set

of reversible reactions, which were partitioned in forward

and backward rates. Writing all reversible reaction as two

irreversible rates, the flux cone can be defined in the

semipositive orthant of the flux-space. The edges of this cone

are the so-called extremal currents, which were defined by

Clarke (5). Schuster and co-workers (9) determined the flux

cone in the original flux-space abandoning the semipositivity

constraint for reversible reactions. As a consequence,

representatives of edges of the flux cone may have negative

entries at the positions of reversible reactions. To distinguish

these flux vectors from extremal currents, they were named

elementary flux modes. An intermediate approach was un-

dertaken by Schilling et al. (10). The authors considered all

internal reversible reactions as two irreversible ones, but left

the reversible exchange reactions unchanged. The edges of

this cone were termed extreme pathways.
The concepts of elementary modes and extreme pathways

have found broad application in the analysis of metabolic

networks. Stelling and co-workers (11) used a reduced model

of the central carbon metabolism of Escherichia coli to study
the growth behavior of the wild-type and mutated organisms.

The growth of phenotypes was computationally foretold by

the elementary mode analysis and the result was experimen-

tally tested. In the overwhelming majority of cases, the flux

mode analysis correctly predicted the experimental outcome.

The concept of extreme pathways has been applied to the

human red blood cell metabolism (12). The authors analyzed

the effect of flux limitation and determined the steady-state

solution space with respect to network capabilities. In bio-

engineering, E. coli is used to produce recombinant proteins

such as green fluorescent protein. Vijayasankaran et al. (13)

have applied elementary mode analysis to the metabolic

network of E. coli, which led to the identification of the most

efficient pathway for the production of the protein.

Recently a debate has been launched in the literature

whether it is necessary to compute the elementary modes or

if it is sufficient to calculate the extreme pathways (6,14–16).

On the one hand, it was claimed that some of the states of the

system cannot be reached by linear optimization when only

the extreme pathway are considered (14). They are therefore

missed in the optimization procedure, leading to incorrect

results. On the other hand, it was put forward that extreme

pathways are the smallest set of vectors, which describes the

flux cone (10).

In this article, we show that in the original flux-space the

smallest set to generate the flux cone is the minimal gen-

erating set. (Sets of generators are defined in Rockafellar

(17).) However, these sets are not minimal. We term the ele-

ments of the minimal generating set generating flux modes
instead of generators, due to their closed relationship to ele-

mentary flux modes. The minimal generating set we obtain

is a subset of elementary modes as well as of extreme path-

ways, and describes the edges of the flux cone. The re-

maining extreme pathways and elementary modes, which can

be expanded in generating modes, are all interior points. The

elements of the minimal generating set are related to the

result of flux balance analysis (FBA) in the following way.

Based on linear programming, FBA requires that the flux

cone is bounded. This can be achieved by limiting the fluxes

of the input reactions and of reversible cycles. In the bac-

terium E. coli the target function is represented by the pro-

duction of biomass due to the assumed optimization of

growth (18). The solution of the linear programming prob-

lem is a vertex of the truncated flux cone. This vertex is either

a representative of one of the edges of the cone (element of

the minimal generating set) or an interior point, which be-

comes a vertex because of the flux limitations. Of course,

these interior point vertices can always be written as a com-

bination of extreme vertices, which stem from the edges of

the flux cone. Therefore, phase-plane analysis of metabolic

networks (19) partitions the space of selected inputs into dif-

ferent regions, according to the sets of extreme vertices in-

volved in producing the optimized output.

We have recently developed a new algorithm, which

calculates elementary flux modes via linear combinations of

null-space basis vectors (20,21). It turned out that the null-

space approach is significantly faster than previously sug-

gested algorithms, due to its reduction in dimensionality. The

mathematical basis of our method is described in Urbanczik

and Wagner (21), including all proofs. Empirical evidence

suggests that the null-space algorithm is polynomial in the

input size and output size and shows an almost quadratic

dependence of the CPU time versus the number of ele-

mentary modes. This result is obtained using the network of

the central carbon metabolism of E. coli with different input

sets. Application of the new method to the pyruvate metab-

olism in rat liver mitochondria is given in Stucki (22), in-

cluding a highly simplified Mathematica program (Wolfram

Research, Champaign, IL) of the null-space approach, which

handles only the fully irreversible case.

In this work we use the null-space algorithm to study the

geometry of the flux cone. This geometric interpretation of

the method allows us to identify the edges of the cone and

to elucidate the differences among elementary fluxmodes, ex-

treme pathways, and the minimal generating set. Moreover,

we will present the relationship between these different sets

of routes and the solution of the linear optimization problem.
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BASIC FRAMEWORK

We first briefly resume the null-space algorithm to calculate

elementary flux modes of a reaction network. Metabolic sys-

tems are assumed to operate in the steady state so that the

time derivatives of the metabolites are zero. In this case, the

reaction network can be represented as

0 ¼ NJ~; (1)

where N represents the stoichiometry matrix and J~ the flux

vector. In the following, we assume that the network consists

of m independent species and of n reaction rates or fluxes.

Only for illustrative purposes we arrange the fluxes in such

a way that the first r reactions are reversible and the last (r1
1). . .n irreversible. There are two strategies to calculate

elementary modes. The primal algorithm introduced by

Schuster et al. (9) starts with flux vectors fulfilling the ir-

reversibility condition, and combines these vectors accord-

ing to the stoichiometry matrix, so that the final flux vector

lies in the null-space of N. It is based on an earlier suggested

algorithm by Nozicka et al. (23). The starting point of this

algorithm is

½NTj Id�: (2)

Here NT is the transposed stoichiometry matrix and Id the

identity matrix, which represent the set of initial flux vectors

with fulfilled irreversibility condition.

Assuming only irreversible reactions, the above algorithm

has a simple geometric interpretation. The initial cone is the

semipositive orthant of the flux-space and the columns of NT

are hyperplanes in this space. The flux cone is then formed

by the intersection of the hyperplanes with the semipositive

orthant and by mutual intersections, which reduces the di-

mension of the cone with each hyperplane by 1. Thus, in the

final stage, the flux cone is of dimension n–m.
In our dual algorithm we first calculate the kernel matrix

K, which consists of null-space basis vectors and satisfies the
equation

NK ¼ 0: (3)

Obviously, the vectors of K fulfill the null-space condition.

It is well known from linear algebra that K can be put into

the form (24)

K ¼ K9
Id

� �
; (4)

where the identity matrix is now of size n–m. So the

transpose of K has the very same form as the initial state of

the primal algorithm (Eq. 2). At the moment we assume that

all basis vectors in (Eq. 4) are irreversible, containing at least

one irreversible reaction. It means that the network has

neither a reversible input output path nor a reversible cycle.

As a consequence, the flux cone is pointed and r # m.
Nonpointed cones will be considered separately in a later

section. In the second step, we combine these basis vectors

so that the irreversibility conditions are fulfilled. For the last

n–m fluxes, these inequalities are automatically satisfied

because of the identity matrix in K (Eq. 4). Therefore we are

searching vectors ~bb, which lead to flux vectors J~¼ K~bb
fulfilling the inequalities

Ji $ 0 for i ¼ r1 1 . . . n: (5)

Obviously,~bb is a semipositive vector since the basis vectors

are all irreversible. As we have shown in our previous work

(21), the ~bb vectors are obtained by a stepwise processing

of the rows of K9. Each row of K is associated with a flux Ji
of the network. Within a step, ~bb vectors are constructed by

pairwise annihilating the flux, which corresponds to that row.

For i$ r1 1, only the flux vectors with semipositive entries

at this position, and which are elementary, are kept for the

next step. In contrast, for i# r the calculated modes are only

checked for its elementary property. Note that the vector ~bb
is always part of the corresponding elementary mode due

to the identity matrix in K (Eq. 4). Thus a projection of

the elementary modes on the n–m-dimensional subspace

spanned by Jm11, Jm12. . .Jn still contains all information of

the flux cone.

Due to the similarities between the primal and the dual

approach mentioned above, the null-space algorithm has also

a more geometrical interpretation. Each row of K9 represents
a hyperplane in the subspace V9 spanned by Jm11, Jm12. . . Jn.
The flux cone is shaped by half-spaces defined by the

hyperplanes of K9 and the inequalities given in Eq. 5. Thus,

in the null-space algorithm we can directly follow the for-

mation of the cone. This geometric interpretation also illus-

trates the reduction of dimensionality from n for the primal

algorithm to n–m in the case of the null-space approach.

The different set of routes of a reaction network

In this section we will discuss the three different sets of

network routes, which have been discussed in the literature.

We will also promote a fourth set, the minimal generating

set, which might become important in many applications.

The different sets can only be compared if they are con-

sidered as elements of the same vector space. Therefore,

we define our standard vector space as the n-dimensional

flux-space. Elementary modes are calculated in this vector

space. In contrast, to compute extremal currents the dimen-

sion of the vector space is increased by r, the number of

reversible reactions. In our previous work we have shown

(20), that there exists a projection operator which maps

extremal currents onto elementary modes and that this map-

ping is reversible. By the projection operation, the spurious

cycles (forward and backward reaction of a reversible

reaction) get lost; however, they can be easily reconstructed

when going in the opposite direction (from elementary

modes to extremal currents). Thus the number of elementary

modes corresponds to the number of extremal currents minus
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the number of reversible reactions r. Apart from this aspect,

extremal currents and elementary modes describe the same

set of routes but in different vector spaces. To illustrate the

differences between elementary modes and extreme path-

ways, we will use the slightly modified example network

suggested by Papin et al. (6) and displayed in Fig. 1. It

consists of three species A, B, and C and of six fluxes J1. . . J6,
whereof J1 and J2 are reversible. The stoichiometry matrix of

this network reads

N ¼
1 �1 1 0 0 0

0 1 0 1 0 �1

0 0 �1 �1 1 0

0
@

1
A: (6)

The corresponding kernel matrix K is then given as

K
T ¼

0 �1 �1 1 0 0

�1 0 1 0 1 0

1 1 0 0 0 1

0
@

1
A: (7)

Let us call the subspace V9, which is spanned by the fluxes

J4, J5, and J6. Due to the fact that these reactions are irre-

versible, the initial cone is given by the semipositive orthant

of V9. The first three columns of KT represent hyperplanes in

V9, which are linked to the fluxes J1 to J3 (see Fig. 2).

Associated with J3 is the plane e3. Due to the irreversibility

condition imposed on J3, only the proper half-space is ad-

missible for the system. Therefore, the excluded half-space

has to be cut off from the initial cone. For the other two hy-

perplanes e2 and e1 linked to the reversible fluxes J2 and J1,
respectively, no inequality holds. Although these planes

intersect the flux cone they do not contribute to its formation.

The elementary flux modes of the system are now the ver-

tices of the flux cone as well as the intersections of the hy-

perplanes defined by reversible fluxes (here J1 and J2) with
the cone. They are displayed in network representation in

Fig. 3 and read as flux vectors

EM1 EM2 EM3 EM4 EM5

J1 �1 1 �1 0 0

J2 0 1 �1 0 1

J3 1 0 0 0 1

J4 0 0 1 1 0

J5 1 0 1 1 1

J6 0 1 0 1 1

: (8)

The elementary flux modes EM1–EM3 represent vertices

of the flux cone whereas EM4 and EM5 are interior points

(see Fig. 4 A). The modes EM4 and EM5 arise from the

intersection of e2 and e1 with the flux cone, respectively.

Like extremal currents, extreme pathways are calculated

in an extended vector space. For all internal reversible re-

actions, an additional flux in the reverse direction is intro-

duced. In contrast, reversible exchange reactions are not split

in forward and backward rates. They will simply adjust so

that the steady-state condition is fulfilled. It is easy to find

a projection operator that maps the extreme pathway back to

the original flux-space of dimension n. These projected

extreme pathways can be compared to the set of elementary

modes. Again, by the projection we will lose the spurious

cycles resulting from internal reversible reactions. The pro-

jection procedure also provides the insight that the detour

via the extended vector space is not necessary. Extreme

pathways can also be directly calculated in the n-dimensional

flux-space, which can be nicely seen using the null-space

approach. To obtain the extreme pathways, we take into

account half-spaces of hyperplanes associated with irrevers-

ible reactions and intersections with internal reversible

FIGURE 1 Scheme of the example network used in this study. It consists

of three Species A, B, and C, and of six fluxes J1–J6. The first two, J1 and J2,

are reversible; the remaining fluxes are unidirectional, given by the orien-

tation of the arrows.

FIGURE 2 The three hyperplanes, which may shape the flux cone. Their

normal vectors are given by the columns of KT. Thus, e3 linked to the flux

J3 is given by n~3 ¼ ð�1 1 0ÞT, e2 linked to the flux J2 is given by

n~2 ¼ ð�1 0 1ÞT, and e1 linked to the flux J1 is given by n~1 ¼
ð0 � 1 1ÞT.
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reactions. All hyperplanes linked to reversible exchange

reactions are ignored. In our example, only J1 corresponds to
a reversible input. If we omit the intersection of e1 with the

flux cone, then the elementary mode EM5 is dropped (see

Fig. 4 B). As a result, only four of the five elementary modes

remain as extreme pathways.

As shown in Fig. 4, elementary modes and extremal path-

ways completely cover the flux cone. However, both sets

of network routes still contain interior points (EM4 and EM5

for the set of elementary modes and ExPa4 for the set of ex-
treme pathways; see Fig. 4). The obvious question arises:

What is the minimal set of network routes to cover the flux

cone? This is the set we have called the minimal generating

set (21). As a consequence of the set of inequalities given in

Eq. 5, only hyperplanes linked to irreversible reactions form

the flux cone. Hyperplanes related to reversible fluxes can

only lead to interior points of the cone, since both half-spaces

are admitted.

The intersection of half-spaces given by the identity

matrix define the semipositive orthant of the subspace

span[Jm11. . .Jn]. All further half-spaces associated with

irreversible reactions shape the flux cone whereas hyper-

planes linked to reversible reactions do not. Since only half-

spaces related to irreversible reactions are taken into account

to calculate the minimal generating set, it is the smallest

subset of elementary flux modes that covers the flux cone in

the n-dimensional flux-space. In our example, only the half-

space defined by e3 and J3 $ 0 has to be considered. As

displayed in Fig. 4 C, the three edges of the flux cone indeed
correspond to the three elements of the minimal generating

set GM1 to GM3.

Phenotype phase-plane analysis

If the metabolic network of an organism is reconstructed,

the minimal generating set describes all possible states the

system can assume (possibilities of the genotype). However,

only a few generating modes are active at the same time. The

selection of the generating modes might be the result of op-

timization processes during evolution as well as adaptation

FIGURE 3 Network representation of elementary modes (5), extreme

pathways (4), and generating modes (3) using the example network given in

Fig. 1. The first two fluxes J1 and J2 are reversible, whereas the remaining

ones are unidirectional. After deletion of J2, EM2 and EM4 remain, whereby

the former interior point EM4 becomes a representative of an edge of the

flux cone.

FIGURE 4 The different sets of routes of the reaction network given

in Fig. 1 (spurious cycles omitted). (A) elementary flux modes (EMs), (B)

extreme pathways (ExPas), and (C) generating modes (GMs). All flux

vectors are projected to the components J4–J6. The components of the

projected flux vectors represent the linear combination of null-space basis

vectors.
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to the environment. It is well known from linear opti-

mization that the state the system singles out is a vertex

on the hull of the truncated flux cone (if it is not degen-

erated). This selection of modi is controlled by the envi-

ronment (input, output) and the status of the genetic network.

Thus, it becomes possible to describe the phenotype of the

microorganism if the active subset of the minimal generating

set can be determined. A different approach to find phe-

notypic behavior was put forward by Varma and Palsson

(25). They applied the method of shadow prices, an approach

derived in economics, to distinguish different modes of ac-

tion of the system in the space of input fluxes. Here we show

that the changes of the shadow prices, and therefore that of

the phenotypes, go in parallel with the change of the active

subset of generating modes. In silico phenotype predictions

has been applied successfully to the metabolic capabilities

of E. coli (26) as well as Saccharomyces cerevisiae (27) using
linear optimization procedures and phenotype phase-plane

analysis.

To illustrate the concept, we will use the example model

introduced by Edwards et al. (19) and presented in Fig. 5. If

we naively calculate elementary modes, extreme pathways,

and the minimal generating set as in the example above, the

number of elements would be 24, 12, and 6, respectively.

However, if we want to perform an experiment the coupling

to the environment must be properly defined. The exchange

reactions are coupled either to sources or sinks; otherwise,

the external metabolites must reach a stationary state.

Obviously the direction of irreversible input and output

reactions are predefined, while the direction of reversible

exchange reactions is fixed by the experimental setup. Al-

though in the latter case the exchange reactions are initially

reversible, they become unidirectional by the coupling. The

case where the output is coupled neither to a sink nor a source

is explored in the next section. In the actual example, the

inputs are J9 and J12 (the carbon and oxygen sources), while

the outputs read J2, J3, J4, and J13 for D, E, C, and the

biomass production, respectively (see Fig. 5). The minimal

generating set is given in Table 1. For the phase-plane

analysis, we project the five-dimensional flux cone to the

three-dimensional subspace given by the two inputs, J9 and
J12, and the biomass reaction, J13. For fixed carbon source

and free oxygen input the projected cone is displayed in Fig.

6. Due to the projection, GM1, GM3, and GM4 become

interior points and are not drawn. The six different regions

obtained are separated by GM2 and GM5–GM8. In region RI

and RVI the system cannot process the inputs due to

stoichiometric constraints. The network states in the regions

RII–RV are positive combinations of the two flanking GMs

(see Fig. 6). Thus, the minimal-generating set changes from

fGM7, GM8g in region RII to fGM8, GM2g in RIII to fGM2,

GM6g in RIV and finally to fGM6, GM5g in RV. Under these

conditions, the ratio of J13/J9 defines the efficiency of the

GMs, which is optimal for GM8. Note that a different GM
becomes optimal if we fix the oxygen input J9 and vary the

carbon input J12 (GM6). Due to the defined coupling of the

system to the environment, all exchange reaction is

unidirectional. In addition, if J2 is defined as output, the

direction of J1 is also given. Thus, in this case the set of

elementary modes and extreme pathways collapse to the

minimal generating set.

The phenotypic behavior can be obtained via FBA or by

calculating the minimal generating set. In FBA, the opti-

mization procedure selects a single solution out of many

equivalent pathways with the same objective value but dif-

ferent internal flux distribution (alternative solutions are

obtained via mixed-integer linear programming). In contrast,

using the minimal generating set, we keep control over the

full solution space.

FIGURE 5 Example model of a metabolic network taken from Edwards

et al. (19). The reactions are: J1: C 4 3D 1 ATP; J2: D 4 Dout; J3: E 4
Eout; J4: C 4 Cout; J5: A 1 ATP / B; J6: B / C 1 2ATP 1 3NADH; J7:

5C/ 4C1 10NADH; J8: C1 2NADH/ 3E; J9: Aout / A; J10: ATP/;

J11: NADH 1 O2 / 2ATP; J12: O2,out / O2; and J13: C 1 10ATP /
biomass.

TABLE 1 Generating modes GM1–GM8 of the model displayed

in Fig. 5, represented in the space of fluxes J1–J13

GM1 GM2 GM3 GM4 GM5 GM6 GM7 GM8

J1 1 3 0 0 0 0 0 0

J2 3 9 0 0 0 0 0 0

J3 0 0 0 0 3 3 0 0

J4 0 0 1 3 0 0 0 0

J5 1 11 1 10 1 2 1 10

J6 1 11 1 10 1 2 1 10

J7 0 0 0 0 0 0 1 1

J8 0 0 0 0 1 1 0 0

J9 1 11 1 10 1 2 1 10

J10 8 0 7 0 3 0 27 0

J11 3 33 3 30 1 4 13 40

J12 3 33 3 30 1 4 13 40

J13 0 8 0 7 0 1 0 9
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Nonpointed cone

A cone is pointed if it does not contain a one-dimensional

sub-vectorspace. The set of elementary modes is unique for

pointed and nonpointed cones, whereas the minimal gener-

ating set loses its uniqueness when the cone is nonpointed

(24).

Based on irreversibility constraints, a network displays

a nonpointed flux cone if it contains a reversible input output

pathway or a reversible cycle. As a consequence, one of the

basis vectors of the null-space can run in the forward and the

backward direction without violating the irreversibility

conditions imposed on the system. Whether the system has

a pointed cone or not can be easily determined by the null-

space matrix given in Eq. 4. If one of the basis vectors is

reversible (containing only reversible fluxes), the flux cone

is nonpointed. As an example, this condition is met when

the number of reversible reactions r is larger than the number

of independent metabolites m. In the following, we will

consider nonpointed cones caused by reversible input output

pathways and reversible cycles separately. In the latter case,

further thermodynamic considerations may additionally re-

duce the space of admissible steady states.

As mentioned above, when the system is coupled to the

environment the direction of the exchange reactions must

be defined. The selection of inputs and outputs reflects the

experimental condition, e.g., the ingredients of the nutrition

substrate the microorganism is placed on. If all reversible

exchange reactions are endowed with a direction, reversible

input output pathways are removed from the system. Of

course, under different conditions an input might become

an output and vice versa, which just reflects the different

couplings to the environment. However, during an experi-

ment, such a change should not occur—since time-dependent

phenomena are not covered by the approach and violate the

steady-state assumption. There might still be the possibility

that an external substance is neither defined as input nor

output since it cannot be controlled experimentally. For this

case we introduce external metabolites for all undefined

substances and treat them as members of the network. In

the stationary state all reversible branches of the network,

which are connected to dead end (external) metabolites get

eliminated. These branches of the network represent strictly

detailed balanced subnetworks, which form a null submatrix

in the kernel-matrix of the network (28). Thus, reversible

input-output pathways are excluded when the system is prop-

erly coupled to the environment.

If the system is disjoined from the environment, ther-

modynamics requires that the network eventually reach an

equilibrium state. Thus, irreversible cycles are excluded and

only reversible cycles might be present (29,30). The flux

cone is now represented as a sub-vectorspace and a pointed

subcone. A basis of the sub-vectorspace is given by the set of

reversible null-space basis vectors, whereas the subcone is

defined by the irreversible elementary modes.

As an example, we consider again the network displayed

in Fig. 1. However, the reversible reactions in this case are

J2, J3, and J4, whereas J1, J5, and J6 are assumed to be

irreversible. The former set forms a reversible cycle, and the

latter represents unidirectional input output reactions. Thus,

extremal pathways correspond to the extremal currents and,

when projected back to the flux-space, J1 to J6, they are

equivalent to the set of elementary modes. As shown in Fig. 7

A, the five elementary flux modes form a wedgelike body,

which is already defined by the minimal generating set

presented in Fig. 7 B. Again, the flux cone of the example

network can be easily constructed using the kernel matrix K.
The identity defines the space given by the semipositive J5
and J6 direction as well as the full J4 axis (no semipositivity

restriction on J4). This cone is further restricted by the ir-

reversibility condition imposed on J1. The associated hyper-

plane e1 (see Fig. 7 B) then provides the wedgelike structure.
Here, the thermodynamic constraints are only considered

insofar as some of the reactions are unidirectional (large free

energy). Any thermodynamic feasible state of the system is

a combination of elements of the minimal generating set,

but not vice versa. Further thermodynamic consideration for

combinations of generating flux modes can additionally re-

duce the space of admissible steady states. An obvious sup-

plementary constraint is that reversible cycles only operate

if they are coupled to a driven input output mode. In this

example, this leads to additional inequalities J6 $ J4 and

J4 $ 0. The associated half-spaces given by the normal

vectors n~4 ¼ ð�1 0 1ÞT and n~5 ¼ ð1 0 0ÞT are shown
in Fig. 7 C. As a consequence, the flux cone becomes

pointed. It is important to note that all elementary flux modes

connecting input to output are thermodynamically feasible

since they do not contain reversible cycles. However, by

combining elementary flux modes a reversible cycle might

get formed, which must comply with Kirchhoff’s second law.

This can be directly checked by determining the solution

space of chemical potential differences. If the solution space is

empty, the mode is thermodynamically unfeasible. A different

FIGURE 6 Phase-plane analysis of the example model displayed in Fig. 5

using the minimal generating set. Projection of the flux cone to input

reactions J9 and J12 and biomass output J13. In the regions RI and RVI, there

is no biomass production. The regions RII, RIII, RIV, and RV are associated

with the generating modes fGM7, GM8g, fGM8, GM2g, fGM2, GM6g, and
fGM6, GM5g, respectively.
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approach to explore this structure was suggested by Beard

et al. (31) using matroid cycles.

DISCUSSION

Constraint-based approaches have become a major tool to

analyze metabolic networks of microorganisms. A variety of

applications have been suggested, including evolutionary

processes, gene knockout viability studies, and optimization

in biotechnology (32). However, different concepts of meta-

bolic pathways have been proposed to be used in these ap-

proaches. Thus, the aim of this work is twofold: first, to

elucidate the differences between the different set of path-

ways; and second, to identify the smallest set of routes that

describes the flux cone and encompasses all optimal states of

the network.

The different sets of metabolic pathways are best char-

acterized when we take into account the vector space

wherein they are defined. Consider a system with n reactions

whereof r , n are reversible. Furthermore, k , r are

reversible exchange reactions. Then, elementary modes are

calculated in the n-dimensional flux-space whereas extreme

pathways and extreme currents are obtained in an n1k-
dimensional or, respectively, an n1r-dimensional space.

In our previous work we have shown that all sets can be

projected down to the n-dimensional flux space. The pro-

jection allows for comparing the different sets in the same

vector-space. It turned out that neither elementary modes nor

extremal pathways are, in general, the smallest set describing

the flux cone. Thus, the second goal of this work is to pro-

mote the smallest set, which we named the minimal gener-

ating set. The elements thereof are called generating modes,
and visualization examples are presented in Figs. 4 and 7.

The minimal generating set is defined as the minimal set of

modes to reach all points of the flux cone. It is obtained by

completing the null-space algorithm after having processed

all irreversible fluxes. For a pointed cone, all interior points

are a positive combination of vertices. Thus, when inter-

rupting the null-space algorithm after the last irreversible

flux, further combinations associated with a reversible re-

action always lead to an interior point of the cone. For

nonpointed cones the very same algorithm holds. However,

the flux cone is then described by the irreversible generating

modes and the reversible ones. If the inverted reversible

modes are ignored, a general description of the flux cone in-

cludes negative coefficients for reversible generating modes.

Although many of the elementary modes are interior rays,

they might become an edge of the cone if one of the fluxes

is inhibited. To illustrate the phenomena, we consider the

example network shown in Fig. 1. If the flux J2 is inhibited,
the elementary flux modes EM1 and EM4 survive, spanning

a two-dimensional cone. In contrast, from the minimal gen-

erating set, only GM1 remains and we are missing the former

interior elementary flux mode EM4. In contrast to the set of

elementary modes, the minimal generating set has to be re-

calculated after gene deletion to obtain the altered cone.

However, the advantage of the minimal generating set is its

reduced size. Considering the central carbon metabolism of

E. coli, the computation of elementary modes requires 1–2 h

(;500,000 EMs), whereas it took ,2 s to work out the

minimal generating set (;3000 GMs) (21).

An application of the minimal generating set is the phe-

notype phase-plane analysis, which predicts the phenotype

from the genotypical possibilities and the coupling to the

environment. Different modes of operation of the system are

distinguished in the plane of selected inputs. Phase-plane

analysis is a projection of the flux cone to a restricted space

of exchange reactions. Therefore the borders, which separate

different regions of the subspace, represent projection of the

generating modes. However, as we already have pointed out,

some of the vertices of the flux cone might become interior

points by the projection. Thus, the number of vertices of the

flux cone and the number of separating lines in the phase

plane may differ.

FIGURE 7 Elementary modes (A) and minimal generating set (B) for the
example model displayed in Fig. 1 with J2, J3, and J4 as reversible, and J1,

J5, and J6 as irreversible reactions. The modes EM1 and GM1 are reversible;

thus, the wedge is open in the positive and the negative J4 directions. The
reversible cycles do not operate by themselves; they must be coupled to an

input output mode. This leads to two additional inequalities (see text). The

resulting flux-cone is pointed, revealing a pyramidal shape (C).
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In the literature, the term convex basis can be found, which
was introduced in an article by Pfeiffer et al. (33) in the

context of nonpointed cones, to describe a minimal subset of

elementary modes covering the flux cone. Later on it has

been claimed that the convex basis of a network corresponds

to the set of extreme pathways (6,14,16). This statement

needs some clarification. First of all, a convex basis is not

a basis in the mathematical sense (34), thus this term is

somehow misleading. Second, it is not clear in which vector

space such a convex basis is defined. If all reversible re-

actions are split up in forward and backward reactions, the

convex basis corresponds to the extreme currents. In con-

trast, if only reversible internal reactions are represented

by two irreversible fluxes, then the convex basis is the same

as the set of extreme pathways. Finally, if we consider the

initial flux space, the convex basis is equivalent to the min-

imal generating set. However, neither the extreme currents

nor the extreme pathways are in general equivalent to the

minimal generating set if they are projected to the original

flux space (see Fig. 4). Due to this confusing use of the term

convex basis, we feel that the name minimal generating set is

more appropriate to describe the minimal set of generators.

Furthermore, Klamt et al. (14) apprehended that when con-

sidering only extreme pathways, an optimization procedure

would fail to provide the optimal state. Here we show that

the edges of a pointed flux cone are fully described by the

minimal generating set, which is a subset of extreme path-

ways. Thus, all optimized states of the network are either

generating flux modes or a combination thereof, as a con-

sequence of the truncation procedure (see Fig. 6).
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