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ABSTRACT The two strands of aDNAmoleculewith a repetitive sequence can pair intomany different basepairing patterns. For
perfectly periodic sequences, early bulk experiments of Pörschke indicate the existence of a sliding process, permitting the rapid
transition between different relative strand positions. Here, we use a detailed theoretical model to study the basepairing dynamics
of periodic and nearly periodic DNA. As suggested by Pörschke, DNA sliding is mediated by basepairing defects (bulge loops),
which can diffuse along the DNA. Moreover, a shear force f on opposite ends of the two strands yields a characteristic dynamic
response: An outward average sliding velocity v; 1/N is induced in a double strand of lengthN, provided f is larger than a thresh-
old fc. Conversely, if the strands are initially misaligned, they realign even against an external force f , fc. These dynamics
effectively result in a viscoelastic behavior of DNAunder shear forces, with properties that are programmable through the choice of
the DNA sequence. We find that a small number of mutations in periodic sequences does not prevent DNA sliding, but introduces
a time delay in the dynamic response. We clarify the mechanism for the time delay and describe it quantitatively within a phe-
nomenological model. Based on our findings, we suggest new dynamical roles for DNA in artificial nanoscale devices. The
basepairing dynamics described here is also relevant for the extension of repetitive sequences inside genomic DNA.

INTRODUCTION

The basic double-helical structure of DNA is insensitive to

the nucleotide sequence, but many of its biophysical proper-

ties are not. For instance, the local thermodynamic stability

of double-stranded DNA (dsDNA) depends strongly on the

sequence (1), and certain sequence motifs can cause per-

manent bends or make DNA more bendable (2). Such local

modulations of the DNA properties play an important role in

molecular biology, e.g., for nucleosome positioning (3) and

transcription regulation through DNA looping (4). The

sequence-dependent stability of DNA basepairing is also

crucial for applications in nanotechnology (5–7). Clearly,

since the thermodynamics of DNA basepairing is sequence-

dependent, the kinetics is sequence-dependent as well. Our

aim here is to show that the kinetics can display a much richer

phenomenology than might be expected on the basis of the

thermodynamics alone.

The dynamics of DNA basepairing can be probed experi-

mentally on the single-molecule level with mechanical and

optical techniques (8–14). One approach is to unzip dsDNA

from one end of the double helix (12,13,15). However, un-

zipping probes only one aspect of the basepairing dynam-

ics—the sequential opening of consecutive basepairs. In a

different approach, a shear force is applied by grabbing the

two strands on opposite ends of the dsDNA (16); see Fig. 1.

For a heterogeneous dsDNA with a random sequence, the

effect of a shear force is to unravel the basepairs from both

ends (16); see Fig. 1 a, which is qualitatively similar to

unzipping. In contrast, with a perfectly periodic sequence,

e.g., (C)N on the upper and (G)N on the lower strand or a

higher-order repeat such as (CA)N and (GT)N, the two strands

can bind in many configurations (17). An applied shear force

then facilitates local strand slippage and can induce macro-

scopic DNA sliding (18); see Fig. 1 b. (Throughout this

article, we use the term ‘‘DNA slippage’’ for microscopic

events where a few bases at the end of the double-strand

unbind and rebind shifted by one or several repeat units.

In contrast, ‘‘DNA sliding’’ refers to an average large-scale

movement of the two strands against each other.)

DNA slippage is an aspect of DNA basepairing dynamics,

which plays an important role in the generation of a class of

genetic diseases (19,20). If local DNA slippage occurs in an

Okazaki fragment during DNA replication, trinucleotide repeats

inside genes can get extended beyond a threshold length for the

onset of Huntington’s and other diseases. Such slippage events

are possible only within the time window that DNA polymerase

needs to fill in the Okazaki fragment. Thus, the kinetics of

strand slippage is an important determinant for the frequency of

repeat extensions.

We propose that the dynamics of periodic and nearly

periodic DNA is interesting also for the design of DNA-based

nanodevices. Indeed, DNA is becoming increasingly popular

as a building block for the assembly of nanoscale structures and

devices (5–7). These applications already exploit the specificity

of the basepairing interaction, e.g., to direct the assembly of

DNA strands into predefined architectures, and the dynamics of

DNA branch migration, e.g., to replace a bound DNA strand by

a different strand. Below, in Discussion, we consider several

new possible applications of DNA in nanotechnology, based on

the dynamic properties identified in the main part of this article.

Finally, DNA sliding is interesting also from a purely theo-

retical perspective. Since simultaneous slippage of all base-

pairs is kinetically inhibited by an extensive activation barrier,
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the macroscopic sliding of DNA strands is a complex process

involving the dynamics of many local basepairing defects

(17,18). The most likely defects are bulge loops (see Fig. 1 b),

which are created at the ends of the dsDNA, or, in pairs, any-

where along the molecule. Once formed, bulge loops diffuse

freely along a periodic dsDNA until they annihilate with a loop

on the opposite strand or are absorbed at an end. Mutations in

the periodicity of the DNA sequence create obstacles for the

diffusion of bulge loops. Effectively, the bulge-loop dynamics

can be regarded as a reaction-diffusion process of particles and

antiparticles in one dimension. DNA shearing experiments

render certain aspects of these dynamics observable and per-

mit a quantitative characterization.

The outline of this article is as follows. First, we describe

our theoretical model for the energetics and dynamics of

DNA basepairing under a shear force. We then show that our

model leads to the following predictions:

1. For periodic dsDNA, the combination of polymer mechanics

and basepairing dynamics gives rise to a viscoelastic re-

sponse to shear forces above a threshold fc, where both fc and

the viscosity h are programmable over a wide range through

the DNA sequence. The viscoelastic behavior can be de-

scribed with the help of a mechanical analog model.

2. DNA sliding is possible even when the exact sequence

periodicity is destroyed by a few mutations.

3. The mutations affect the viscoelastic behavior by intro-

ducing a programmable time delay before sliding com-

mences after a sudden force jump.

4. The mechanism for the time delay can be understood

within a phenomenological model, which also permits a

quantitative description of the full distribution of time

delays. Taken together, we find that the sequence depen-

dence of the basepairing dynamics allows us to adjust the

mechanical response of DNA under a shear force over

a broad range of behaviors. In the last section, we discuss

the experimental ramifications of these findings.

DNA MODEL

To study the dynamics of DNA sliding, we consider a DNA

molecule under a shear force f, which can be applied experi-

mentally by pulling the opposite 59 ends (16) or, alterna-

tively, the opposite 39 ends. In a coarse-grained description,

the configuration of the DNA is specified by its basepairing

pattern S and the spatial contours of both strands. A generic

configuration consists of two stretched and two unstretched

single strands, and the central region from the first to the last

basepair (see Fig. 1).

We will not explicitly describe the dynamics of the spatial

polymer degrees of freedom, but assume rapid equilibration

compared to the timescale of DNA sliding. This assump-

tion is justified for short DNA molecules: The timescale

to equilibrate a semiflexible polymer of length L and per-

sistence length lp in a solvent of viscosity h is hL4=72 l2p f ;
where f is an external force applied to its ends (21). For

a DNA of 150 bp (one persistence length) in water at a 10-pN

load, the equilibration time is on the order of 0.01 ms, which

is fast compared to the millisecond timescale of DNA sliding

observed in the reannealing experiments of Pörschke (17).

Hence, we integrate out the contour conformations to obtain

a free-energy function E(S) that depends only on the base-

pairing pattern S. The total free-energy E(S) can be split up

into three terms,

EðSÞ ¼ EstretchðSÞ1EbpðSÞ1EloopðSÞ; (1)

corresponding to the stretching energy, the free-energy gain

due to basepairing, and the free-energy cost of (internal or

bulge) loops in the pattern S, respectively.

Polymer model

The mechanical polymer properties of DNA enter only into

the stretching energy, which we write in the form Estretch(S) ¼
�f L(S), with an effective force-dependent total length L(S)

for the stretched DNA, i.e., the two single-stranded ends

where the force is applied and the central DNA segment from

the first to the last basepair (see Fig. 2). The unstretched

single strands do not contribute to the free energy, since we

take all energies relative to the unstretched and unpaired

state, which is the usual convention (1). For the stretched

single strands, we use a freely jointed chain polymer model

with a Kuhn length twice the bare segment length bs � 0.7

nm for a single base (22). With this model, each unbound

FIGURE 1 DNA under a shear force. (a) A non-

periodic sequence unravels from both ends, driven by the

length gain from converting stacked bases into longer

single strands. (b) A periodic DNA sequence can open by

sliding, mediated by bulge loops that are created at the

ends and diffuse freely along the DNA. When a bulge

loop reaches the opposite end, the two strands have effec-

tively slipped against each other by a distance equal to the

loop size.
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base at the ends where the force is applied contributes an

effective length �bbsð f Þ to the total length L(S), where

�bbsð f Þ ¼ �kBT

2f
ln

sinhð2fbs=kBTÞ
2fbs=kBT

� �
(2)

and kBT is the thermal energy. Note that �bbsð f Þ differs from

the average extension of one segment in the direction of the

force. Instead, the average total extension Æxæ of a DNA with

basepairing pattern S is calculated as the force derivative of

the stretching free energy,

Æxæ ¼ @EstretchðSÞ
@f

; (3)

which yields the correct (Langevin) form for the extension of

a freely jointed chain. For the central DNA region from the

first to the last basepair, we assume a B-DNA conformation

and use a wormlike-chain model with persistence length lp ¼
50 nm and a contour length of bd ¼ 0.34 nm per base. (The

length of an asymmetric loop in the central region is appro-

ximated by counting only the bases in the shorter arm of the

loop.) For the forces of interest here, the effective length of a

basepair, �bbdðf Þ, is given by the asymptotic formula

�bbdðf Þ ¼ bd 1 �
ffiffiffiffiffiffiffiffi
kBT

4flp

s !
: (4)

The force-dependence of the lengths �bbsð f Þ, �bbdð f Þ is, in fact,

essential only for our calculation of the viscoelastic response.

For all other properties considered below, the force-dependence

has no qualitative effect, and will hence be neglected (i.e.,
�bbsð f Þ ¼ bs, �bbdð f Þ ¼ bd everywhere except in Viscoelastic

Behavior).

Basepairing energy model

To obtain a compact theoretical description, we use a base-

pairing energy model which is simplified from the nearest-

neighbor model of SantaLucia (1), but nevertheless permits

semiquantitative predictions. We exclude basepairs within

a strand, and assign a binding (free) energy eðkÞb .0 for each

basepair of type k (Watson-Crick or other) between strands

(see Fig. 2). Hence, EbpðSÞ ¼ �SknkðSÞeðkÞb , where nk(S) is

the total number of type k basepairs in the basepairing pattern

S. Similarly, we assign a loop initiation cost e‘ . 0 for each

internal or bulge loop in a given pattern (we neglect an addi-

tional length-dependent loop cost, which has no qualitative

effect on the results discussed below). Therefore, Eloop(S) ¼
q(S)e‘, where q(S) is the total number of loops in the pattern.

The numerical values of the free-energy parameters eðkÞb and

e‘ are temperature-dependent (1). The actual values used in

our simulations are given below.

Elementary kinetic steps

We support our phenomenological theory presented below

by simulating the DNA basepairing dynamics in detail. To

this end, we use a kinetic Monte Carlo scheme with three

single base moves as elementary steps (23): basepair opening,

basepair closing, and basepair slippage. Here, basepair slip-

page refers to a local shift of the binding partner of a base,

which is possible only for basepairs next to unbound bases,

i.e., inside loops or at the ends of the molecule. Clearly,

basepair slippage can also be generated by a basepair opening

move followed by a basepair closing move. However, the

work of Pörschke (17) indicates that basepair slippage is faster

than would be expected from the individual rates for basepair

opening and closing (see below). Hence, we include the base-

pair slippage move, as has been done previously (23).

Kinetic rates

To fully specify our model for the DNA basepairing

dynamics, we need to assign a rate to each elementary kinetic

step. Careful relaxation experiments (24) determined the

rate for basepair closing at the end of helical segments to be

1–20 3 106 s�1, where the range indicates the experimen-

tal uncertainty. In our model, we assume that this rate is

independent of the identity of the basepair. To reproduce

the correct equilibrium behavior from our basepairing dy-

namics, the rate for opening a basepair of type k at the end

of a helix must be reduced by a factor expð�eðkÞb =kBTÞ with

respect to the closing rate. From reannealing experiments

with periodic sequences, Pörschke (17) estimated the rate for

the displacement of a bulge loop by one base, i.e., the rate

for basepair slippage, to be;53 106 s�1. Hence, the rates for

basepair closing and basepair slippage are approximately

equal, within experimental accuracy. In our model, we set

them exactly equal, for simplicity (our main results are, in

fact, insensitive to the precise value of the closing rate; see

below). In general terms, our model assumes that all kinetic

rates of passing from a higher energy configuration to one

with lower energy are the same, whereas the reverse rates are

chosen to obey detailed balance. It may be noteworthy that

FIGURE 2 DNA free-energy model. The free energy E(S) of a basepairing

pattern S contains three separate contributions: first, a negative binding

energy for basepairing. For simplicity, we assign the same binding energy

eðkÞb for every basepair of type k, regardless of the neighboring bases. Second,

a positive free energy cost for internal and bulge loops. We assign the same

cost e‘ for every loop, regardless of its length and base sequence, since the

detailed choice of the loop cost function does not affect our main findings.

Third, a stretching energy. For a given pattern S, the stretching energy can be

written in the form �f L(S), with an effective length L(S), which is obtained

from force-dependent base-to-base distances �bbdðf Þ and �bbsðf Þ for double and

single strands, respectively. Note that L(S) does not correspond to the

physical length of the DNA molecule (see main text).
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recent theoretical work on the kinetics of force-induced RNA

unfolding, which used similar assumptions, produced sur-

prisingly good agreement with experiment (25).

Below, we report all of our kinetic simulation data in units

of Monte Carlo steps. From Pörschke (17), our best estimate

for the real-time equivalent of one Monte Carlo step is 0.2 ms.

However, it should be kept in mind that this estimate beares

a large uncertainty.

SLIDING DYNAMICS OF PERIODIC SEQUENCES

The simplest periodic sequence is a repetition of one base on

one strand, e.g., AAA. . ., and the complementary base on the

other. In this case, we have only basepairs of one type (i.e.,

eðkÞb [ eb in our model) and each base on one strand can bind

to any base on the other strand. For longer repeat units, e.g.,

triplet repeats such as CAGCAG. . ., which play an important

role in genetic diseases (19), one can treat a repeat unit as an

effective base with larger associated energies eb, e‘ and

lengths bd, bs. We are interested in the basepairing dynamics

induced by a constant shear force f that is suddenly turned on

at t ¼ 0. In the following, we first review the physical

description of DNA sliding dynamics, which we have

established already in Neher and Gerland (18). We then

construct a mechanical analog model to characterize the

viscoelastic response of periodic DNA and its sequence-

dependence.

Quantitative phenomenological description

As illustrated in Fig. 1 b, sliding of periodic dsDNA is

mediated by the creation, diffusion, and annihilation of bulge

loops. When a force is applied, the diffusion of bulge loops

within the dsDNA remains unbiased, assuming the force

does not deform the dsDNA structure significantly (this as-

sumption clearly breaks down for forces above the B-S

transition around 65 pN). In contrast, the force strongly

affects the rates at which bulge loops are created at the ends.

When the two DNA strands are misaligned, these creation

rates are imbalanced, since a bulge at an overhanging end does

not reduce the number of basepairs in the structure (although

it does on the opposite end). This imbalance produces a restor-

ing force fc, which can be obtained approximately (18) by

balancing the energy cost of breaking a basepair with the gain

in stretching energy, eb ¼ f3ð2 �bbsð f Þ � �bbdð f ÞÞ. The restor-

ing force creates an average inward drift that realigns the two

strands. To obtain an outward drift velocity v, i.e., macro-

scopic sliding, one needs to overcome the restoring force fc, so

that v ; ( f – fc) in the vicinity of fc. Indeed, fc becomes a

critical force in the thermodynamic sense when the limit of

a large strand length N is taken and the state where the strands

are completely separated is excluded.

At the critical force, the rates at which bulge loops are

produced are equally large on the overhanging stretched and

the unstretched ends. The average sliding velocity v van-

ishes; however, the bulge-loop dynamics still leads to a

macroscopic diffusion of the two strands relative to each

other, with a diffusion coefficient D. Interestingly, this dif-

fusion coefficient scales with the total number of bases as D
; 1/N, so that the rupture-time t required to separate the two

strands completely scales as t ; N3 instead of the usual t ;

N2 for diffusion of a particle over a distance N. This scaling

of D is due to the fact that loops are generated at the ends

with a constant rate, but only result in a global shift between

the strands, if they diffuse over a distance ;N, either to anni-

hilate at the other end or with a loop on the opposite strand.

In both cases, the probability for an event scales as 1/N. The

D; 1/N scaling occurs also in the reptation problem of poly-

mer physics, and indeed the microscopic origin is closely

related, as motion is mediated by defect diffusion (26).

Since the production of a loop on the stretched ends shortens

the molecule, the corresponding production rate decreases with

f. Hence, the rates of events extending or shortening the double-

stranded region, that are equal for f ¼ fc, differ at other forces

resulting in a drift. Each of these rates, and consequently the

sliding velocity v as well, is proportional to 1/N. From the

Einstein relation, one expects v; (f – fc)D; 1/N, in agreement

with this result. With the negative (inward) drift velocity below

fc, rupture events are driven by rare fluctuations, and the

rupture-time t grows exponentially with N, as is characteristic

for thermally activated transport over an extensive energy

barrier. On the other hand, for forces larger than fc, the N�1

scaling of v leads to rupture times increasing as t ; N2.

This scaling holds up to a force f*, above which the

rupture times grow only linearly with N, due to a dynamical

transition in the opening mode from sliding to unraveling

(i.e., the opening mode of heterogeneous dsDNA). For

f . f*, it is energetically favorable to break basepairs con-

secutively from both ends and both strands are separated

after breaking N basepairs. Within our model, f* is well ap-

proximated by the solution of f ¼ eb=½�bbsð f Þ � �bbdð f Þ�—i.e.,

the balance between the basepairing energy and the stretching

energy gained by extending the molecule by the difference

between the length of an unbound base and a basepair. (For

DNA sequences where this force is large enough to deform

the DNA structure, in particular for f* above the ;65 pN of

the B-S transition, the unraveling mode may not exist.)

Viscoelastic behavior

DNA sliding can be regarded as a viscous flow of the two

strands relative to each other. According to the physical

picture reviewed above, this flow has interesting nonlinear

and sequence-dependent properties. Since the shear force

also elicits an elastic response (due to the entropic elasticity

of DNA), the behavior of periodic dsDNA is reminiscent of

a viscoelastic material. Such materials combine solidlike and

fluidlike mechanical properties when probed by external

stress. In the following, we examine this analogy more

closely.
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The mechanical behavior of a typical viscoelastic material

can be described by a Zener model (27), which is con-

structed, e.g., by connecting a Kelvin element (a dashpot in

parallel with a spring) in series with a spring (see Fig. 3). The

Zener model reproduces the two prominent characteristics of

viscoelastic materials:

1. In a creep experiment, where a constant stress is suddenly

applied, an instantaneous elastic strain is followed by a

gradual creep toward a new equilibrium.

2. When the strain is suddenly increased, the stress rises

sharply and then relaxes gradually to an equilibrium

value.

On a qualitative level, periodic dsDNA displays these same

characteristics in its average behavior:

1. Upon sudden application of a constant force f in the range

fc , f, f*, the DNA rapidly stretches against its entropic

elasticity and slowly creeps with a viscosity h that is

proportional to the number of bases in the double strand.

However, it will not approach a new equilibrium, but

eventually rupture.

2. When the extension of the DNA is suddenly increased,

the tension rapidly rises and then slowly relaxes to the

critical value fc (provided the initial rise was above fc).

The viscoelastic behavior of periodic DNA can be described

by a nonlinear generalization of the Zener model (see Fig.

3 b), where the Kelvin element effectively describes the

basepairing dynamics, while the outer elastic element

accounts for the entropic elasticity of the polymer backbone

(consisting of dsDNA, single-stranded DNA, i.e., ssDNA,

and, if present, linkers to the points of force application).

Since the basepairing dynamics of two misaligned comple-

mentary periodic DNA strands produces a restoring force fc,
the sliding velocity v is proportional to f – fc. The sliding

dynamics is thus described by a dashpot in parallel with

a potential generating the restoring force and preventing

contraction beyond maximal overlap. In contrast to the

standard Zener model with harmonic springs, the stress in

response to a strain will relax to the value fc, independent of

the displacement (within a certain range). Fig. 3 a shows

extension-time-traces obtained from our model, both for

a periodic (bottom panel) and a heterogeneous DNA (center
panel); see Fig. 3 legend for parameters. Here, we have

considered a creep test situation where the force is switched

periodically between fmin , fc and fmax . fc (top panel). Fig.

3 c shows the corresponding behavior of the generalized

Zener model for comparison. We observe that the average

behavior of the periodic DNA resembles that of the

generalized Zener model, whereas the heterogeneous DNA

shows only elastic behavior. Of course the extension also

displays strong thermal fluctuations, which play an important

role in single-molecule dynamics, and ultimately lead to

rupture even below the critical force (18).

Programmability

The viscoelastic behavior described above relies on the

basepairing dynamics within the DNA molecule, and is

manifestly sequence-dependent. This fact makes the me-

chanical behavior of dsDNA under shear-force program-

mable, i.e., both the force offset fc and the viscosity h can be

adjusted through sequence composition and length of the

dsDNA. Even for perfectly periodic sequences, there is still

a considerable freedom in the choice of the sequence

composition, since a repeat unit can be several bases long

and involve different combinations of Watson-Crick and

other basepairs. Exploiting this freedom, the range over

which the average basepairing energy eb can be programmed

is ;0.5–4 kBT (1), which translates into an equally wide

range of force offsets fc ¼ eb=ð2 �bbs � �bbdÞ. (The precise

experimental range of the force offset is difficult to predict,

FIGURE 3 Viscoelastic response of periodic DNA. (a)

The shear force on an 80-bp dsDNA (with two 20-bp

ssDNA linkers) is switched periodically between fmin ¼
11.4 pN and fmax ¼ 19 pN (upper panel). The center and

bottom panels show the extension-time-trace for hetero-

geneous and periodic DNA, respectively (energy param-

eters: eb ¼ 1.11 kBT and e‘ ¼ 2.8 kBT, roughly

corresponding to AT basepairs at 50�C (18)). The time

units are Monte Carlo steps, the real-time equivalent of

which is discussed in Kinetic Rates (see article). The

heterogeneous DNA responds only elastically to the force

jumps, mostly due to stretching of the linkers. The length

of the periodic DNA shows a similar elastic strain, but in

addition, the molecule elongates at a finite speed due to

sliding, since fmax . fc ¼ 16.3 pN. When the molecule is

relaxed, we find an elastic response and inward sliding,

since fmin , fc. The length of the periodic DNA fluctuates strongly due to loop formation and annihilation. (b) The viscoelastic behavior displayed by a periodic

DNA molecule can be described by a generalized Zener model, where harmonic springs are substituted by anharmonic elastic elements describing polymer

elasticity and the restoring force fc. The ideal dashpot (with viscosity h) creates the viscous behavior of periodic dsDNA. (c) The response of the above

idealized model to the same periodic force resembles the average response of periodic DNA.
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since it depends sensitively on the effective ssDNA and

dsDNA length. Roughly, we expect values of up to 30 pN.)

The velocity of macroscopic strand sliding is determined

by four factors: 1), the mobility of defects, i.e., the rate for

bulge-loop displacement; 2), the bulge-loop density; 3), the

inverse strand length; and 4), the deviation of the force f from

the critical force fc. The defect density depends sensitively on

the basepairing free energy and may vary roughly between

0.001 and 0.2 for different repeat lengths and temperatures,

leaving great freedom to adjust the timescale of DNA

sliding. Note that since only the bulge-loop density and not

the individual rates for basepair closing and opening influence

the sliding velocity, the rate for bulge-loop displacement

is the only crucial rate parameter in our model. By increasing

the strand length, the sliding velocity can be made arbitrarily

small, or, equivalently, the viscosity h can be made arbi-

trarily large (h ; N). Alternatively, h is increased by using

longer repeat units, since h grows exponentially with the free

energy cost of creating a bulge loop. An order-of-magnitude

estimate for the lower bound on h yields ;10�3 pN 3 s/nm,

based on reannealing experiments with homogeneous

oligonucleotides of 10 bps (the reannealing experiments of

Pörschke (17) suggest that a misaligned 10-bp molecule can

slide by one basepair within 0.1 ms; assuming that the sliding

velocity extends linearly from fc ;10 pN to force zero, one

obtains the estimate h ;3 3 10�3 pN 3 s/nm). With these

force- and timescales, DNA sliding should be well observ-

able in single-molecule experiments.

PERIODIC DNA WITH WEAK
SEQUENCE DISORDER

How is the basepairing dynamics affected when a few muta-

tions destroy the perfect periodicity? Fig. 4 (top) shows two

simulated extension-time-traces, one for a perfectly periodic

sequence and one with M ¼ 7 equidistant mutations (DNA

parameters; see Fig. 4’s legend). Here, we assigned the same

binding energy to mutated and original basepairs, to focus on

the effects that mutations exert on the basepairing dynamics

rather than the energetics. Furthermore, we assumed that

mutated bases can only bind to their ground-state binding

partners, i.e., mutated bases cannot form basepairs with the

original bases and all mutations are of a different type. The

less generic effects that can result without these assumptions

are discussed below.

We observe that the mutations have a drastic effect:

whereas the original sequence begins to slide almost imme-

diately after application of the force, the mutated sequence

exhibits a pronounced delay before sliding sets in. Indeed,

the figure suggests that the mutated sequence has two char-

acteristic timescales: a waiting time tw, during which the

extension fluctuates around a constant value; and a sliding

time ts, during which the extension increases until the two

strands are completely separated. Another, less drastic effect

of the mutations is to reduce ts; i.e., once sliding starts, it is

faster than without mutations. Note that the convex shape of

both sliding curves is due to the fact that the sliding velocity

increases as the length of the double-stranded region de-

creases, v ; h�1 ; N�1 (see above).

What is the physical mechanism that sets the waiting

timescale (tw)? Clearly, sliding can begin only after all mutated

basepairs have been broken, since otherwise the two strands

are locked into one relative position. Arguably the simplest

scenario would be that all mutations independently fluctuate

between the open and closed states, and sliding commences

when all mutations happen to be open simultaneously.

Alternatively, the dynamics of the mutated basepairs could

be correlated. To clarify the dynamical mechanism, we plotted

the binding state (bound/unbound) of all mutated basepairs

alongside the trajectories in Fig. 4 (bottom, shaded curves). It is

evident that the mutations do not open independently. Instead,

interior mutations open only once the neighboring mutation

toward the exterior has already opened.

The two-random-walkers model

Inspection of Fig. 4 (bottom) suggests that the positions of

the two outermost-bound mutations might, in fact, perform

FIGURE 4 (Top) Extension-time-trace for a perfectly periodic DNA of

N ¼ 120 basepairs and the same DNA with seven mutations, both under

a shear force of f ¼ 12.7 pN (energy parameters as in Fig. 3). Whereas the

molecule without mutations starts sliding almost immediately, the molecule

with mutations fluctuates about its initial length for some time tw before

sliding starts. (Bottom) The time-trace of the binding state (open/closed) for

the seven mutated basepairs in the sequence. Each mutated basepair (1–7) is

unbound wherever the corresponding thick horizontal line is broken, and

bound where the line is shown. Note that the mutated basepairs do not open/

close independently from each other. Instead, a mutated basepair opens only

once all mutated basepairs to the left or right are already open. The black

envelope curves emphasize the positions of the outermost bound mutation

on each side. Their dynamics resembles a (biased) random walk. Sliding

begins when all mutations are open.
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a (biased) random walk (see the black curves in Fig. 4). If

true, the waiting time tw could be interpreted as the first

collision time tc of two random walkers (2RW) on a row of

M 1 1 discrete sites, with force-dependent in- and outward

hopping rates kin and kout. To test this hypothesis, we

compare the histogram of tw values (from many simulations)

with the distribution P(tc) of first collision times for 2RW.

Fig. 5 shows three such histograms (main panel and two
insets) obtained with the same DNA parameters as in Fig. 3,

but with three different forces. Superimposed are the dis-

tributions P(tc), calculated as described below and in Sup-

plementary Material. The case shown in the main panel of

Fig. 5 corresponds to a force value for which the 2RW are

unbiased—i.e., kin ¼ kout—whereas the left inset corre-

sponds to a smaller force producing a bias to the outside

(kout . kin) and the right inset shows the opposite case of a

larger force and kout , kin. In all three cases, the observed

histogram is well described by the 2RW model. Indeed,

despite some caveats (see below), this model can serve as a

useful coarse-grained description for the basepairing dy-

namics preceding the sliding stage.

The calculation of the first collision time distribution P(tc)

belongs to the class of first-passage problems, which has

been studied extensively in statistical physics (28). In the

context of the helix-coil transition, Schwarz and Poland (29)

(see also (30)) already solved the associated diffusion prob-

lem. Here, we use their work as a basis to treat the first-

passage problem. One can replace the problem of 2RW in one

dimension by the equivalent problem of one RW on a two-

dimensional lattice with a triangular shape (see Fig. 6). In the

following, the unbiased case (kin ¼ kout [ k) is of particular

interest. In this case, there is only the single rate constant k,
which can be absorbed in the unit of time, so that the

distribution P(tc) depends only on the number of lattice points

(i.e., the number of mutations). However, in the limit of large

M this dependence also disappears, if we use the rescaled

collision time t̃c ¼ tck=M
2. The resulting parameter-free

distribution can be expressed in the form (see Supplementary

Material) of

Pðt̃cÞ ¼ �16

p
2

@

@t
½QðtÞ�2jt¼t̃c

; (5)

where Q(t) is the rapidly converging series

QðtÞ ¼ +
N

n¼1

ð�1Þn

2n� 1
exp �p

2

2
ð2n� 1Þ2

t

� �
: (6)

This distribution is plotted as the solid line in the main panel

of Fig. 5. Even when M is small, it is a good approximation

to the actual distribution, as illustrated by the dashed line in

Fig. 5 showing the exact distribution for the case of M ¼ 7.

In the case of biased RW (kin 6¼ kout), we compute P(tc)

numerically. The dashed curves in the insets of Fig. 5 show

these distributions for M¼ 7 mutations, where we have used

the rates kin, kout as fit parameters.

Scaling of mean waiting time

In the 2RW model, the mean first collision time follows the

diffusive behavior tc ; M2 when the RW are unbiased (see

above). When the walkers have an inward bias, this changes

to linear scaling tc ; M, whereas tc increases exponentially

with M for an outward bias (see Supplementary Material). To

test these predictions of the 2RW model, we determined the

FIGURE 5 Waiting time distributions. (Main panel) The histogram of

waiting times tw of a 120-bp-long DNA sequence with M ¼ 7 equidistant

mutations subject to a force f ¼ f̃c ¼ 12:9pN; is well described by the

distribution of collision times (dashed line) of the two-random-walker model

(see main text and Fig. 6). The solid line shows the parameter-free asymptotic

distribution of Eq. 5 for comparison. (Insets) Distribution of tw for forces

above and below f̃c (f ¼ 15.2 pN and f ¼ 11.4 pN, respectively). The dashed

lines are fits using the RW model with directional bias (see main text).

FIGURE 6 On a coarse-grained level, the dynamics of

mutation opening/closing can be described by a model

of two particles hopping on a one-dimensional lattice, with

inward/outward hopping rates kin, kout. Their positions

represent the two outermost closed mutations. When the

particles collide, all mutations have opened. Equivalently,

one can consider a single particle hopping on a triangular

two-dimensional lattice. The first collision time then cor-

responds to the time to reach the diagonal absorbing

boundary.
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mean waiting time Ætwæ for different M and different forces f
from our DNA simulations. Fig. 7 a shows Ætwæ as a function

of M (on a double logarithmic scale) for the same three force

values as in Fig. 5. Here, we increased the total DNA length

N proportional to M, to keep the mutation density constant

and equal to that of Fig. 5. At the smallest force, the waiting

time increases exponentially with M, as expected. At the

intermediate force, corresponding to the case of unbiased

walkers, we find a scaling Ætwæ;Mz with z � 2.4, while z �
1.5 for the largest force. We expect that the values of these

exponents are strongly influenced by finite size effects, since

we can vary M only over roughly one decade. However, our

results indicate that the waiting times increase more rapidly

with the system size than expected on the grounds of our

phenomenological 2RW model. A possible explanation is

given in Microscopic Mechanism, below.

How does the mean waiting time depend on the applied

force? Fig. 7 b shows three curves of Ætwæ versus f for

different mutation densities. The vertical dashed lines indi-

cate the force value where kin ¼ kout for each curve. Below

these values, Ætwæ increases sharply with decreasing force.

Indeed, it is reasonable to consider the force f̃c where kin ¼
kout as a generalization of the critical force fc to the case

of weakly disordered sequences. As explained in Supple-

mentary Material, the rates kin, kout can be extracted in

several different ways from the simulation data, leading to f̃c
values which are mutually compatible.

Fig. 7 c summarizes the different dynamical regimes as

a function of the applied force f and the mutation density n.

Without mutations (n ¼ 0) the force axis is divided into three

regimes, with rupture driven by rare fluctuations, continuous

sliding, and unraveling at low, intermediate, and large forces,

respectively. As mutations are introduced (n . 0), the

boundary f̃cðnÞ between the fluctuation-driven Kramer’s

regime and the sliding regime rises to larger forces, and the

sliding regime acquires the time delay of Fig. 4 as a new

feature. It is clear from Fig. 7 c that the force interval dis-

playing sliding behavior becomes narrower as the mutation

density is increased. This trend can be understood within a

more microscopic picture (see below). We could not deter-

mine unambiguously whether the sliding regime vanishes

completely already at a finite mutation density. However, it

is clear that sliding will, in practice, be unobservable for

sequences with many mutations. The qualitative features

depicted in Fig. 7 c are robust against variations in our micro-

scopic parameters eb, e‘, �bbsðf Þ, and �bbdðf Þ. However, the posi-

tions of the boundaries between the different regimes depend

on these parameters (see below).

Microscopic mechanism

Why does the mutation dynamics of Fig. 4 (bottom) resemble

the behavior of two random walkers? First, the opening of

a mutation (and subsequent local shift of the two strands

against each other) is always associated with the formation of

two permanent loops (see Fig. 6, left). Hence, the opening of

mutations is energetically expensive and mutations remain

mostly closed, as long as this cost is not compensated by any

gain in entropy or stretching energy. Since there is no such

gain when an interior mutation opens, mutations can only

open beginning from the ends toward the inside: loops are

constantly created at the ends of both strands and propagate

inwards until they hit a mutation, which forms a barrier to

bulge-loop diffusion. On the unstretched strand, loops are

generated at a higher rate than on the stretched strand, re-

sulting in a larger quasi-equilibrium loop density (18). When

the outermost bound mutation opens spontaneously, the ac-

cumulated loops on the exterior unstretched strand can sud-

denly penetrate to the inside. This penetration results in an

entropy gain and a relative shift of the mutated bases, which

prevents immediate recombination (see Fig. S10 in Supple-

mentary Material). The size of the entropy gain and the shift

FIGURE 7 (a) The mean waiting time Ætwæ as a function of the system

size (the mutation density of n ¼ 1/15 is kept fixed as the number of evenly

spaced mutations M is increased). At low forces the scaling is exponential

(circles, data for f ¼ 11.4 pN; solid line, exponential fit), while we find

power-law behavior at the force threshold (f̃c¼ 12.9 pN, squares) and above

(f ¼ 15.2 pN, diamonds). (b) The mean waiting time as a function of

the applied force for a sequence of N ¼ 240 bp with 5, 9, and 15 mutations.

The dashed lines indicate the threshold force f̃c for each case. Below the

threshold, Ætwæ rises sharply. (c) Different regimes of the DNA dynamics in

the parameter space (f, n). The Kramers regime (DNA rupture becomes

exponentially slow with increasing system size) is separated from the

(delayed) sliding regime by the line f̃cðnÞ where the inward and outward

hopping rates are equal, kin ¼ kout (circles, data; solid line, interpolation). At

forces larger than f*, the molecule dissociates by unraveling from both ends.
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increases with the distance to the next mutation. Therefore,

the mutation density, not the absolute number, is the relevant

parameter that determines the relative magnitude of the

hopping rates kin and kout in the random-walker model, and

hence fixes the value of the force threshold f̃c.
We now discuss how parameter changes affect the

location of the boundaries between the different dynami-

cal regimes in Fig. 7 c. First, it is clear that increasing the

basepairing energy eb, will shift both force thresholds, fc
and f*, toward higher forces. Furthermore, from the above

microscopic picture, it follows that the inward hopping rate

kin is proportional to the average loop density, while the

outward hopping rate kout decreases with the loop density.

The average loop density, in turn, is affected by our energy

parameters: with increasing eb, e‘, the average loop density

decreases, and consequently the boundary f̃cðnÞ is shifted

toward lower mutation densities, i.e., the sliding regime be-

comes more sensitive to mutations (this tendency is enhanced

by the rising energetic cost for opening a mutation).

So far, we considered only mutations with binding energy

equal to the original bases. Dropping this restriction leads to

a sloped boundary f*(n) between the sliding and unraveling

regimes, and also affects the slope of f̃cðnÞ. Furthermore, we

assumed above that all mutations are of a different type and

bind only to their native binding partner. Without this as-

sumption, bases belonging to different mutated basepairs can

bind on encounter during the sliding phase. These basepairs

have to be opened in the same way as during the waiting

phase preceding sliding. When mutations are equidistant,

this effect becomes particularly strong, leading to additional

intervals of constant length, i.e., plateaus in the extension

versus time-trace. Another important effect, caused both

by variable spacing and energies of mutations, is that the

hopping rates kin and kout become site-dependent, so that the

random walks are effectively on a rugged-energy landscape

(31,32).

Finally, we stress that the 2RW model is phenomenological

and fails to describe certain features of the DNA dynamics.

(For instance, our simple description has neglected cor-

relations between subsequent hopping steps of an RW; see

Supplementary Material.) Short-range correlations do not

affect the long-time behavior, which may explain why our

model describes the shape of the waiting-time distribution

accurately (see Fig. 5). A more drastic approximation is that

the 2RW model does not account for the time required to bring

in new loops from the ends to a mutation deep inside the

dsDNA. The fact that this time increases with the length of the

DNA may be the cause for the waiting time to rise more

rapidly with the system size than expected from the 2RW

model (see Fig. 7).

CONCLUSIONS AND OUTLOOK

The basepairing dynamics in DNA and RNA molecules is

only beginning to be explored. Here, we have shown that

even the seemingly simple case of periodic DNA sequences

displays rich behavior, which can be revealed by applying a

shear force. Our main finding is that the microscopic dy-

namics of bulge-loop defects endows DNA with viscoelastic

properties, which can be programmed into the sequence.

Weak sequence disorder does not abolish these properties,

but 1), introduces a delay, since all mutations have to be

broken before DNA sliding begins, and 2), effectively

narrows the viscoelastic force regime. The dynamics of

mutation breaking is an interesting stochastic process, with

main features that can be understood by considering a first-

passage problem of two random walkers. Our theoretical

study has led to several experimental ramifications. For

instance, we predict that periodic or nearly periodic DNA

responds to sudden stress by slowly relaxing its tension to a

threshold value independent of the initial stress (provided the

DNA is not too short). This stress relaxation process cannot

occur for heterogeneous DNA. Furthermore, we predict that

the relaxation velocity is inversely proportional to the DNA

length, so that the timescale of the dynamics can be easily

adjusted into the range of interest for a given experimental

setup. We expect the existence of the different dynamical

regimes shown in Fig. 7 c to be independent of our detailed

model assumptions. As DNA slippage is directly linked to

the production rate and mobility of bulge loops, single-

molecule experiments on DNA sliding would test our basic

understanding of basepairing dynamics in DNA.

The same properties, which make DNA uniquely suited

for reliably storing genetic information while keeping it

accessible, permit many applications in nanotechnology (5).

For instance, dsDNA has been used as a reversible cross-

linker in polymer networks to switch between different

mechanical properties (7), and even DNA-only networks

with specified topologies can be constructed, exploiting

the specificity of the basepairing interaction (5). In other

applications, short dsDNA molecules served as programma-

ble force sensors (6) using the sequence-dependence of the

mechanical rupture force, or DNA-based nanomachines

were constructed on the basis of the DNA branch migration

mechanism (33). Our results render several new applications

for DNA in nanotechnology conceivable. For instance, com-

plementary periodic ssDNAs could be used as self-tightening

connections in nanostructures: once two such strands found

each other, they will slide to maximize their overlap until the

tension reaches a value fc. Periodic or nearly periodic DNA

could also serve as a viscoelastic crosslinker in polymer

networks, which should lead to different material properties

from those observed in Lin et al. (7). Similarly, DNA net-

works could also be endowed with viscoelastic properties,

and (nearly) periodic DNA might even be useful as a pro-

grammable reference molecule for kinetic measurements. Of

course, which of these and other possible applications will

turn out to be useful in the end is unclear at the present stage.

However, we feel that there is a clear potential that should be

explored.
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SUPPLEMENTARY MATERIALS

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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