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ABSTRACT Motile cells explore their surrounding milieu by extending thin dynamic protrusions, or filopodia. The growth of
filopodia is driven by actin filament bundles that polymerize underneath the cell membrane. We compute the mechanical and
dynamical features of the protrusion growth process by explicitly incorporating the flexible plasma membrane. We find that
a critical number of filaments are needed to generate net filopodial growth. Without external influences, the filopodium can
extend indefinitely up to the buckling length of the F-actin bundle. Dynamical calculations show that the protrusion speed is
enhanced by the thermal fluctuations of the membrane; a filament bundle encased in a flexible membrane grows much faster.
The protrusion speed depends directly on the number and spatial arrangement of the filaments in the bundle and whether the
filaments are tethered to the membrane. Filopodia also attract each other through distortions of the membrane. Spatially close
filopodia will merge to form a larger one. Force-velocity relationships mimicking micromanipulation experiments testing our
predictions are computed.

INTRODUCTION

In the crawling movement of eukaryotic cells, two types of

membrane protrusions, lamellipodia and filopodia, are often

observed. A lamellipodium is a flat and broad membrane

extension filled with a dense and highly branched actin fila-

ment meshwork (1,2). Filopodia are needlelike membrane

extensions occupied by aligned actin filaments organized

into bundles (3–7). In both types of protrusions, actin

filaments are polarized, with their fast-growing barbed ends

pointing in the direction of cell motion and their pointed ends

pointing toward the cell body. Cells extend filopodia from

the lamellipodium (8) to explore their surrounding milieu. A

nascent filopodium forms when the actin-bundling protein

Fascin fuses individual actin filaments into ordered bundles

(5). The elongation of the filopodium can progress for several

microns. Force generation through actin polymerization has

been studied extensively (9,10), but how the presence of the

plasma membrane affects force generation and membrane

protrusion dynamics is not well understood. In this article, we

quantify the process of actin-powered filopodium extension

using a computational model. We couple explicitly actin poly-

merization kinetics with the fluctuation dynamics of the

plasma membrane to compute the protrusion speed as a func-

tion of the number of filaments in the bundle and the cell

membrane elasticity, although the process of filopodia ini-

tiation is not explicitly modeled.

Electron microscopy of growing filopodia at the leading

edge of mouse melanoma cells suggests that cross-linked

F-actin bundles make up the filopodium (11,12). The number

of actin filaments and the density of cross-linking proteins

(Fascin) determine the rigidity of the bundle (13–15). The

base of the filopodium is anchored in the highly cross-linked

F-actin network of the lamellipodium (11,16,17). Under

physiological conditions, most filopodia extend at a speed of

�0.2 mm/s, growing up to 2-mm in length (11,18,19). After

a critical length is reached, the filaments appear to buckle and

the filopodium dissolves (5). Several auxiliary proteins are

also found at the tip of the filopodia and may be implicated in

the protrusion process (20,21). Models of filopodium growth

have been limited to the classical Brownian ratchet model

where the filopodium is described as a rigid diffusing object

pushed by a single growing filament (10). The effects of

actin bundles and the presence of the cell membrane have not

been examined previously.

Static energetic considerations alone suggest that the

presence of the membrane changes fundamentally the be-

havior of protruding F-actin bundles. We find that the re-

storing force exercised by the membrane pointing in the

direction opposite to the protrusion direction is roughly

constant. A single filament is not sufficient to overcome this

restoring force; ;2–3 growing actin filaments are necessary

to produce significant extensions. Due to the membrane re-

storing force, the actin bundle undergoes a buckling insta-

bility when the filopodium reaches a critical length. An

F-actin bundle of sufficient stiffness is required to extend the

plasma membrane beyond several hundred nanometers.

Therefore, even though a small number of filaments already

have more than enough chemical polymerization energy to

protrude, only a bundle with many filaments is stiff enough

to protrude for microns. Membrane mechanics also defines

the geometrical features of the filopodium: for instance, the

membrane encasing the F-actin bundle has a well-defined

radius related to the membrane elastic constants.

When the dynamical properties of the membrane are taken

into account, we find that the protrusion speed depends on

the elastic properties of the cell membrane. In contrast with

the classic Brownian ratchet model, here, the membrane at
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the tip of the filopodium is flexible. We examine the pro-

trusion dynamics in the limits of a rigid and flexible membrane

tip. We also examine two mechanisms of force generation:

1), the Brownian ratchet model (10,22), where the fluctua-

tions of the cell membrane leave sufficient space for the ad-

dition of actin monomers; and 2), the tethered ratchet model

(23), where the F-actin filaments are physically attached to

the cell membrane.

Other theoretical and computational studies have attemp-

ted to quantify cell motility (22,24–26). Mogilner and

Rubinstein (27) specifically examined the physical param-

eters during filopodial protrusion. They also computed the

F-actin bundle rigidity and the diffusion process of the actin

monomers. Others have examined the kinetics of multifila-

ment bundle growth (28–30). Here, we explicitly incorporate

the dynamical properties of the cell membrane. Indeed, the

most important lesson of this work is that cell protrusion

dynamics depends sensitively on the physical properties of

the plasma membrane. The membrane has an important in-

fluence on the geometry of the actin network and the cell

dynamical properties, such as the protrusion growth speed.

STATIC ENERGETIC CONSIDERATIONS

In this section, the static energetics of the filopodium pro-

trusion process is examined using a coarse-grained theory.

The mechanical energy of the membrane can be written in

the Canham-Helfrich form (31,32) of

E0 ¼
Z

ð2kH2
1 gÞdA; (1)

where H is the mean curvature of the membrane and dA is an

area element. The values k and g are the bending modulus

and the surface tension of the membrane, respectively.

Contributions due to Gaussian curvature can be considered

as boundary energy (33). If we consider a cylindrical sym-

metry, a point on the membrane can be characterized by two

variables, (r, h(r)). Using the Monge representation, the

mean curvature is given by

H ¼ 1

2

hrr

ð11 h
2

r Þ
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An area element is dA ¼ 2pr
ffiffiffiffiffiffiffiffiffiffiffi
11h2r

p
dr: Under a fixed

protrusion length l, we impose the boundary conditions of

h(0) ¼ l and h(N) ¼ 0, mimicking the effect of membrane

adhesion to other parts of the cytoskeleton. The equilibrium

membrane geometry canbe solvedbyminimizing theHelfrich

energy. The resulting Euler-Lagrange equations are too cum-

bersome for convenient computation. Instead,wewrite h(r) as
an expansion over a basis set and directly minimize the

Helfrich energy with respect to the expansion coefficients. A

typical membrane profile is displayed in Fig. 1 a.
The membrane energy as a function of the protrusion

length displays two regimes (Fig. 1). For short protrusions,

the membrane resembles a smooth bump and the overall

mechanical energy grows quadratically with l. As l increases
beyond 80 nm, the membrane forms a cylinder of a well-

defined radius. An increase in l simply elongates the cylinder

length. For long protrusions, the energy of a membrane

cylinder is approximately given by

E0 � 2pRl
k

2R
2 1 g

� �
; (3)

where R is the cylinder radius. The membrane energy is

linear in l. Minimizing with respect to the radius gives

FIGURE 1 Equilibrium membrane energy as a function of the length of

the protrusion, l, obtained from minimization of the Helfrich energy. (a) The

membrane profile, h(r), is written as a series expansion hðrÞ ¼ ½hðr9Þ�
hð0Þ�r=r91hð0Þ1+

n
ansinðnpr=r9ÞÞ; and then expansion coefficients an

varied until the minimum energy is reached. The value r9 ¼ 500 nm is the

radius of the outer boundary and h(0)¼ l, h(r9)¼ 0. For the particular profile

shown, l ¼ 1000 nm. (b) For relatively long protrusions, E is a linear

function of l. The slope is given by pðk=R12gRÞ ¼ 2p
ffiffiffiffiffiffiffiffi
2kg

p
: For shorter

protrusions, the energy profile is nonlinear. The inset shows the energy of

the membrane for protrusions up to 50 nm.
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R ¼
ffiffiffiffiffiffiffiffiffiffiffi
k=2g

p
: Thus, the resorting force in the z direction is

given by

f ¼ �@E0

@l
¼ �pðk=R1 2gRÞ ¼ �2p

ffiffiffiffiffiffiffiffi
2kg

p
: (4)

Similar estimates have been obtained for membrane tethers

(34).

We asked whether a single actin filament is sufficient to

extend a filopodium.Energetic considerations suggest that the

answer depends on the bending modulus, k, and the surface

tension, g, of the membrane. If the free actin monomer

concentration in the cell is (actin)¼ 10mM, the free energy of

a growing actin filament decreases�kBT ln((actin)/(actin)c)¼
�4.4 kBT per monomer. The critical actin concentration (for

the barbed end) is (actin)c ¼ 0.12 mM. Each added monomer

increases the filament length by;D¼ 2.8 nm. Thus, the free

energy decreases as 1.6 3 l, per actin filament. On the other

hand, the energy of the membrane, when a cylindrical

protrusion has formed, grows as E0 ¼ �fl where f is given in
Eq. 4. For typical plasmamembranes, k� 20 kBT (35,36) and
g � 0.005 kBT/nm

2 (36). This gives f ¼ �2.8 kBT/nm. Thus,

from energy balance alone, a single filament is unable to

protrude at all. At least two filaments are needed to overcome

the membrane restoring force. For a single actin filament to

protrude indefinitely, the free actin concentration has to be at

least 500 mM.

We note that the actin filament bundle must be anchored to

the cytoskeleton to provide any protrusive force. Here, we

assume that the underlying cytoskeletal network is rigid.

Additionally, because the pointed end is embedded in the

actin filament meshwork, we assume that no depolymeriza-

tion can occur.

If the flexibility of the actin filaments is taken into account,

then buckling and breakingwould occur after a critical growth

length is reached. The restoring force of the membrane, f,
acts as an external force on the semiflexible actin filament.

Ignoring thermal fluctuations, there is a critical force, fb, for
which if f . fb, the filament begins to buckle. A standard

calculation (37) gives

fb ¼
p

2

4

lpkBT

l
2 3 IðNÞ; (5)

where lp is the persistence length of the filament and l is the
overall length of the filament. For a single actin filament, lp¼
17 mm (38), and I(N) is a dimensionless factor representing

the bundle stiffness as a function of the number of filaments

in the bundle (27). For the membrane force given by Eq. 4,

a single growing actin filament will begin to buckle at

l¼ 170 nm. This result indicates that even though there might

be enough chemical energy to drive the growth of a filopodium,

a few actin filaments are not stiff enough to extend a filopodium

significantly.

The strategy employed by cells to generate thin membrane

protrusions is to use F-actin bundles. The persistence length

of a filament bundle grows approximately as the number of

filaments in the bundle squared, if there are strong cross links

between the filaments: i.e., I(N) ¼ N2. Therefore, the buck-

ling length grows as the number of filaments. For example,

for a bundle of 10 filaments, a filopodium can grow to 1700

nm before the onset of buckling. At forces .fb, the relative
deflection of the filopodium, z/L, is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lpkBT=f
p

(37).

Fig. 1 shows that the membrane energy of the filopodium

grows linearly as a function of its length. The effective force

on the membrane tip is given by Eq. 4. Therefore, a possible

model to describe the filopodial protrusion process is to

consider an object under the load force given in Eq. 4, and

pushed by an F-actin bundle. Dynamical models of filopo-

dium protrusion are discussed in the next section.

Filopodia attract each other

The presence of the plasmamembrane introduces an effective

attractive force between two filopodia. The length scale of the

attraction, d0, may determine the spacing between filopodia at

the leading edge. If the separation between filopodia is within

the interaction range, then they will merge to form a larger

filopodium. This effect has implications in filopodium for-

mation.

Let the distance between two equal-length filopodia be

d (Fig. 2). The unfavorable membrane-energy is minimized

if d is zero. From small deformation approximations of the

Helfrich theory, the decay length of membrane distortions is

;
ffiffiffiffiffiffiffiffi
k=g

p
: Thus, the interaction distance is d0 � 4R where

R is the radius of a filopodium. Thus, we find that bundles

spaced greater than a few hundred nanometers do not

interact. The attractive force between the filopodia must also

overcome the bending rigidity of the F-actin bundle to

merge. Thus, substantial forces may be needed. Therefore, if

d . d0, the filopodia will not merge. With decreasing

distance, the membrane between the filopodia will merge and

rise toward the tip (Fig. 2, inset). In this regime, the attractive

force is quite substantial and depends on the length of the

filopodia. To estimate the attractive force, we assume that the

lengths and radii of filopodia do not change before and after

merging. The change in the membrane energy is;2E0 � E0

¼ E0, where E0 is the energy of a single membrane tube in

Eq. 3. Thus, the effective force, Fa, between filopodia is

approximately E0/d0, which depends on the membrane

properties k and g, as well as the length of the filopodia.

Using Eq. 3, we find that the effective attraction force is

approximately

Fa �
E0

4R
¼ pl

k

4R
2 1

g

2

� �
: (6)

The force is a linear function of l. If l ¼ 500 nm, the force is

;30 pN.

The relation d0 � 4R and a more accurate estimate of the

interaction energy between filopodia can be obtained by
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carrying out finite element calculations of the membrane

geometry. The computational procedure is given in Appen-

dix A. To find the range of interaction between filopodia, we

compute the average membrane energy as a function of d,

ÆEðdÞæ ¼ 1

Z

Z
D½h�EðdÞe�EðdÞ=kBT; (7)

whereE(d) is the shape energy of the filopodia, which is given
by Eq. A1. The functional integral,

R
D½h�; represents an

integration over all possible membrane configurations, and Z
is the partition function. This energy is a measure of the en-

thalpy of attractive interaction and includes thermal fluctua-

tions. Fig. 2 shows ÆE(d)æ as a function d for two F-actin

bundles of l¼ 1000 nm. (ÆE(d)æ is a linear function of l; this is
not shown in Fig. 2.) In this calculation, F-actin bundles are

assumed to be rigid. During the merging process, curved

bundles may change the membrane geometry between the

filopodia.We have not computed the energy for this situation.

We have shown that F-actin bundles closer than d0 should
merge and form a larger bundle if the bundle lengths are long

enough. We speculate that this mechanism could be re-

sponsible for the experimentally observed l-patterns at the

base of the filopodium inside the lamellipodium actin network

and filopodium initiation (11). The details of the merging

event depend on the interaction of the membrane with F-actin

and the elastic deformations of the actin bundles. These issues

are beyond the scope of this work.

DYNAMICAL MODELS OF
FILOPODIUM PROTRUSION

Force generation due to bending fluctuations of growing filaments has been

studied extensively (24,26). In these models, the fluctuations of the F-actin

tip create sufficient space for the addition of actin monomers. The

subsequent relaxation of the bent filaments propels the object (plasma

membrane, bacterial cell wall, etc.) forward. These mechanisms depend on

the geometry of the actin filament behind the moving object, i.e., the angle of

the actin filaments with respect to the object. However, the filaments in the

filopodium are parallel to each other and presumably perpendicular to the

cell membrane at the leading edge. Bundling proteins, such as Fascin, cross-

link filaments tightly together (11). Growth due to fluctuating filaments is an

unlikely mechanism for filopodial growth for two reasons:

1. F-actin bundles fused by Fascin are quite rigid; the persistence length of

the bundle is tens to hundreds of microns.

2. Being perpendicular to the cell membrane, it is difficult for a fluctuating

bundle tip to generate sufficient space for monomer addition.

These reasons have been discussed before by Mogilner and Rubinstein (27).

Hence, we assume that for filopodia, the protrusion is mostly due to the

thermal fluctuations of the membrane; lateral fluctuations of the F-actin

bundle itself will not be considered.

The polymerization ratchet model, where a single polymerizing filament

propels a diffusing rigid object, has been studied (10). Here, we consider an

N-filament polymerization ratchet model and apply it to filopodial growth.

We consider two main models of filament bundle growth:

Model 1. We assume that the tip of the filopodiumbehaves as a rigid object

(cap). The rigid cap can diffuse in the z-direction with a diffusion

constantD. In the previous section, we showed that the cell membrane

exerts a constant opposing force on the F-actin bundle. Thus, a

filopodium may be effectively modeled as a rigid cap under the load

force given by Eq. 4 and propelled by the growing bundle (Fig. 3). In

this model, the relative stagger of the filaments in the z-direction is

important, although the arrangement of the filaments in the x,y-plane is

unimportant. Aside from the geometrical arrangement of the filaments,

and the bundled morphology of F-actin, this is the classical Brownian

ratchet model (10). This model is also similar to the growth of

protofilaments in microtubules, for which the force generation prop-

erties have been considered before (28,30).

Model 2. We simulate the flexible cell membrane explicitly and the growth

of filopodium is investigated quantitatively (Fig. 3). The dynamics of

fluctuating cell membrane is included. The membrane can fluctuate with

a diffusion constant D9. (The relationship between D and D9 is discussed
in the next section.) Various possible interactions between the F-actin tip

and the cell membrane are considered. The detailed formulation of the

equations is given in Appendix B. In this model, the arrangement of the

filaments in the x,y-plane is important.

Our aim is to compare the two models and demonstrate the effect of the

cell membrane. The mathematical details of the models are given in

Appendices B and C.

Force generation from a growing bundle of F-actin is significantly

different from the single-filament situation (28–30). The protrusion

dynamics depends on the spatial arrangement of the filaments in the bundle.

The growth of the filaments is stochastic: the lengths of the filaments at any

given moment are likely to be unequal. As a result, the object being pushed

does not have to diffuse the full 2.8-nm distance to add another monomer.

The protrusion speed is significantly higher if there are many filaments in the

bundle. This is explored in more detail in Results.

RESULTS

The diffusion constant of an object being propelled depends

on the viscosity of the surroundings and the shape of the

diffusing object. Under normal cellular conditions, cytoplas-

mic viscosity can range from 0.03 poise (39,40) to 30 poise

(39,41,42); the size of the objects (molecules) may vary from

FIGURE 2 The interaction energy between two filopodia as a function of

their separation, d. The energy is minimized when the filopodia merge. The

interaction range, d0, is approximately twice the diameter of the filopodium;

d0 is�200 nm. The circles are our computational results and the solid line is

a guide to the eye. The dashed line shows the estimated energy using the

force estimate of Eq. 6.
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nanometers to microns. Therefore, the diffusion constant can

range from 1 to 107 nm2/s. For the sake of generality, we

compute the protrusion dynamics for a wide range ofD. Note
that D for Model 1 is related to D9 of Model 2. D describes

the transverse diffusion of the complete membrane cap and

D9 describes the transverse diffusion of a small membrane

element. Since the diffusion constant of a platelike object in

the transverse direction is related to its horizontal dimension,

then the relationship between D and D9 is

D ¼ ðeffective radius of themembrane elementsÞ
R

D9; (8)

where R is the radius of the membrane cap. Results from

Model 1 will be compared with those of Model 2 by scaling

the diffusion constant with Eq. 8.

In Model 2, the fluctuations of the membrane are po-

tentially coupled via hydrodynamic interactions. In Appen-

dix C, we argue that this coupling is negligible when

considering filopodium growth.

We also investigate the speed of filopodial growth as a

function of the number of filaments in the bundle (N). We

assume that the free actin monomer concentration, (actin), is

the same as that of the cytosol. This approximation is valid

for filopodia shorter than several microns (27). Throughout

the article, (actin) ¼ 10 mM (43). The details of the model

parameters can be found in Appendix C. Note that no fitting

of parameters was needed: all parameters are either taken

from the literature or estimated.

Model 1: bundled filaments propelling a rigid cap

Fig. 4 a shows the protrusion speed as a function of the

diffusion constant for a F-actin bundle propelling a rigid

membrane cap (Model 1). In the rapid diffusion limit where

D/D2 is much larger than the monomer addition rate, all

protrusion speeds approach a plateau value, although the

plateau value depends on N. Fig. 4 b shows the dependence

of speed on N. In the rapid diffusion limit, the protrusion

speed approaches an asymptotic curve.

WhenD is high, the protrusion velocity is a function of the

polymerization kinetics of F-actin and the number of

filaments, N. An estimate of the protrusion velocity in this

limit can be obtained by assuming that the cap is in thermal

equilibrium with respect to z-diffusion. In this limit, the

position of the cap satisfies the equilibrium distribution,

PðzÞ} e�Fz=kBT: To examine the effect of filament geometrical

FIGURE 3 Two possible models for describing filopodium extension.

The first model (left) is the standard Brownian ratchet model where a F-actin

bundle protrudes against a rigid object under load. The rigid object is the tip

of the membrane extension, or cap. The load force on the cap is give by Eq.

4. For this model, the spatial arrangement of the bundle in the x,y-plane is of
no importance. However, how the filaments are staggered in the z-direction

is important. In the second model (right), a flexible membrane is considered.

For the flexible membrane, we find that the geometrical arrangement of the

filaments is important. In our computation, we vary the spacing between the

filaments, d. The physiological spacing is;d¼ 15 nm. In these models,D is

the diffusion constant of the rigid membrane cap and D9 is the diffusion

constant of the small membrane elements.

FIGURE 4 Model 1: a rigid cap being propelled by an F-actin bundle. The

external force, F, is 13 pN, given by Eq. 4. (a) Velocity as a function of the log

of the diffusion constant,D, for various numberoffilaments. (b) The protrusion

speed as a function of number of filaments, N, for different values of D.

Dynamical Model of Filopodium Protrusion 69

Biophysical Journal 90(1) 65–76



arrangement, we first consider two filaments staggered by

D/2 (Fig. 5). The protrusion velocity in this case is ap-

proximately

V � �k2
D

2
1 k1

D

2

R D

D=2
PðzÞdzRN

0
PðzÞdz ; (9)

where we have assumed thatRN

D
PðzÞdzRN

0
PðzÞdz � 0; (10)

and neglected pathways where two or more successive

additions to the same filament occur. This assumption is

valid when FD � kBT. For the filopodium, FD ¼ 8 kBT and

therefore the assumption is valid. Note that this estimate is

valid when the filaments are staggered by D/2 with respect to

each other. For other geometries, the velocities will be

significantly different (see the graph in Fig. 5). In general, for

N-filaments, velocity is a sensitive function of the relative

stagger of the filaments.

The speed enhancement due to the F-actin bundle mostly

arises from the smaller interval, which the object has to diffuse

to add a monomer to a filament tip. For N-filaments equally

staggered by D/N, instead of diffusing a distance of D to add

a monomer, D/N is sufficiently far to ratchet the cap forward.

The probability of generating the distance D/N is an expo-

nential function of the external force. If the membrane cap is

flexible, the same arguments apply. However, in the fol-

lowing section, we will see that the possibility of generating

a gap between the membrane and the filaments is tremen-

dously enhanced by membrane flexibility.

Model 2: flexible membrane enhances
protrusion speed

We carried out the full dynamical calculation where the cell

membrane is allowed to fluctuate. In Fig. 6 a, the protrusion
velocities from Models 1 and 2 are compared. When the

membrane is flexible, the filopodium protrudes substantially

faster. The explanation of this result is the following:when the

membrane is flexible, a local fluctuation that generates a gap

between the membrane and the filaments is more likely than

when the membrane is rigid. The rigid membrane must

overcome the full load force,F. A flexiblemembrane only has

to overcome the unfavorable local bending energy, which is

substantially lower than FD. Once the monomer is added, the

membrane prefers to relax to a flat configuration, and the

generation of additional space between the membrane and

F-actin becomes favorable. Thus, the filaments in fact help

each other to grow, via thermal fluctuations of the plasma

membrane.

To validate this explanation, we carried out the compu-

tation for the hypothetical situation where all of the filaments

are located at x ¼ y ¼ 0. Thus, instead of the physiological

spacing of d ¼ 15 nm, we choose d ¼ 0 nm (Fig. 3 b). The
membrane is still flexible; the only difference is the arrange-

ment of the filaments. In Fig. 6 b, the filopodium protrusion

speed as a function of the number of filaments in the bundle

is compared for these situations. We see that a spatial sep-

aration between filaments, which corresponds to the bundle

structure, enhances the protrusion velocity.

The protrusion speed can vary, depending on the number

of filaments in the bundle. In an experiment where N is

known, the effect of membrane flexibility can be observed

using our model estimates. The membrane rigidity can be

manipulated by depleting or adding cholesterol to the plasma

membrane. Our model predicts that the protrusion velocity

will change as a function of the membrane rigidity. The inset

in Fig. 6 a shows the protrusion velocity as a function of the

membrane bending constant, k. Membrane surface tension

or stretch modulus, g, is held constant.

Force velocity relations

To find the general force-dependence of the protrusion

velocity, we compute the protrusion velocity of the bundle

FIGURE 5 For two filaments propelling

a rigid object under load, an estimate of the

protrusion speed can be obtained in the

limit of D / N. The steady-state proba-

bility distribution can be separated into

several regions, each with a protrusion

velocity. The total average velocity is

a statistical sum of these contributions.

The protrusion velocity for two filaments as

a function of the stagger spacing, x, is

shown on the right. The actin concentration

in this case is 100 mM. A load force of 13

pN is applied in the �z direction.
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under an arbitrary applied force. InModel 1, the load force can

be applied directly to the rigid membrane cap. Alternatively,

to mimic a possible experiment, the load force can be applied

to a rigid bead that obstructs the filopodium growth. We ex-

amine both situations using computational modeling.

Fig. 7 a shows the protrusion velocity of the filopodium as

a function of the load force, F, in Model 1. Note that the

membrane already exerts an opposing force of F ¼ 13 pN if

k ¼ 20 kBT and g ¼ 0.005 kBT/nm
2. Thus, for filopodia,

velocities for forces ,13 pN would not be observed. For

a small number of filaments (N , 50), the force-velocity

relationship shows the standard exponential character. How-

ever, for a larger number of filaments, the bundle growth

responds to force differently, especially for forces in the

physiologically relevant range of 10–20 pN. Force-velocity

relationships of this type can be measured for F-actin bundles

in reconstituted systems growing against a rigid object (44).

To compute the force-velocity relationship of a filopodium

in vivo, the load force can be applied using a bead bound by

a laser trap, the bead obstructs the growing filopodium. In

addition to the fluctuating membrane, the fluctuations of the

bead also play a role. Fig. 7 b shows the force-versus-velocity
relationships for this situation. The bead has its own diffusion

constant, D2. The bead and the tip of the filopodium are

assumed to interact via hard-core potentials. The force-

velocity relationship indicates that a rigid membrane pro-

duces faster growth velocities when D2 is small, opposite of

the trend in Fig. 6. Interestingly, the obstruction of the bead

FIGURE 7 Force-velocity diagrams. (a) Model 1 with a rigid membrane

cap. We vary the load force on the membrane cap, F. The dotted lines are the

results for rapid diffusion,D¼ 104 nm2/s. The solid lines are results for slow

diffusion, D ¼ 50 nm2/s. The load force arising from membrane elastic

energy is between 10 and 20 pN. The dot-dashed line is the elongation

velocity of a single actin filament. (b) Force velocity curve in a possible

experiment. The comparison between Models 1 and 2 is shown for N ¼ 25.

The load force is applied via a large bead at the tip of the filopodium. The

diffusion constant for the bead is varied from D2 ¼ 100 nm2/s to D2 ¼ 1000

nm2/s. The load force, F9, such as from a laser trap, is applied to the bead. A

rigid membrane withD¼ 2000 nm2/s is compared with a flexible membrane

with D9¼ 104 nm2/s. Notice that for F9¼ 0, the flexible membrane situation

is slower than the rigid membrane when D2 ¼ 100 nm2/s. This is the

opposite of the result when D2 ¼ 1000 nm2/s. This is due to the presence of

the slow rigid object, which hinders the protrusion, even for F9 ¼ 0.

FIGURE 6 Model 2: comparison between the flexible and rigid

membrane, and the effect of the filament arrangement. (a) Protrusion

velocity as a function of the diffusion constant for Models 1 and 2. There are

25 filaments in the bundle. The diffusion constants D and D9 are adjusted

according to Eq. 8. The inset shows the dependence of the protrusion

velocity on the membrane bending constant, k. The physiological value is

k ¼ 20 kBT. (b) The effect of the filament arrangement in the bundle:

Protrusion velocity drops substantially when the filaments are together (d ¼
0). Comparison with the rigid membrane is also shown. This result implies

that for the flexible membrane, the arrangement of the filaments can have

important effects on the speed. The filaments help each other to protrude via

the flexible membrane. The diffusion constants D and D9 are again adjusted

according to Eq. 8.
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introduces an unexpected effect. Now, to add monomers,

a collective fluctuation of the bead and the membrane is

needed. Since the bead fluctuates much more slowly than the

flexible membrane, the bead suppresses the small membrane

fluctuations that enhance the filopodium growth velocity.

DISCUSSION

Filopodial extension is now recognized as the result of

a F-actin bundle, anchored in the lamellipodium network,

protruding against the resistive restoring force of the

membrane (5,7,10,27). The main purpose of this article is to

explore the effects of the plasma membrane on the protrusion

of actin bundles, or filopodia. We quantified the mechanical

resistance force generated by the membrane, opposing the

filopodial growth. We showed that the elasticity of the

membrane can generate attractive forces between spatially

separated filopodia, potentially bending the F-actin bundles

and creating additional reorganization of the leading edge.

Dynamical features such as membrane ruffles may be the

result of membrane elasticity as well.

The elasticity of the cell membrane also influences the

protrusion dynamics of the filopodium. We find that the

fluctuations of a flexible membrane can enhance the filopo-

dial growth velocity (see Fig. 8). Several factors/parameters

such as the spatial arrangement of the filaments in the

bundle, the membrane-bending modulus and diffusivity, and

the actin monomer concentration at the tip of the filopodium,

are all important in determining the protrusion velocity. Some

of these parameters, such as the membrane elastic constants,

are known. The transverse membrane diffusion constant, D9,
can be measured by analyzing the fluctuating dynamics of

stained membrane. Actin monomer concentration at the

filopodium tip is more problematic. A possible approach is to

compute the actin monomer concentration profile using

a reaction diffusion equation (27). However, the actin

monomers are not free to diffuse within the filopodium; the

presence of the bundle must be incorporated to properly

estimate the actin monomer concentration. When the number

of filaments in the bundle is large, and the filopodium is long,

the growth of the filopodium becomes diffusion-limited (27).

In an in vitro experiment with lipid vesicles, factors in-

fluencing filopodium protrusion dynamics maybe controlled.

The elastic properties of the lipid vesicle, the amount of

cross-linking proteins, and the number of actin monomers

can be varied. Quantitative comparison between theory and

experiment is then possible.

Membrane fluctuations may play a similar role during

lamellipodium protrusion (45). The actin filaments within the

lamellipodiumare usually not in a bundled form, but branched

and cross-linked (46). The protruding filaments at the

lamellipodium leading edge should assist each other in the

samemanner as the filopodium.Depending on theArp2/3 and

the capping protein concentrations, the spacing between the

filament tips in the lamellipodium is substantially larger.

Thus, the enhancement of the protrusion velocity by the

fluctuating membrane may be quantitatively different. Phys-

ical attachment (tethering) of the filaments to the leading-edge

membrane can also change membrane fluctuation character-

istics. The dynamical role of the membrane in the lamellipo-

dium is in need of quantification.

FIGURE 8 Filaments mutually enhances the growth of the filopodium.

Membrane fluctuations are rectified by a growing filament. The subsequent

relaxation of the membrane creates more space for the growth of other

filaments. The enhancement is a direct function of the membrane flexibility.

The same mechanism must also exist for the lamellipodium growth where

branched filaments are coupled via membrane fluctuations.

FIGURE 9 Representative membrane configuration obtained from a

Monte Carlo simulation. The membrane area is composed of triangular finite

elements. (Inset) The membrane energy of a growing filopodium as a function

of its length.
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Several proteins, such as Ena/VASP, have been observed to

aggregate at the tip of filopodia (20,21). Theymaymediate the

generation of protrusions, very much like other capping

proteins that are attached to the membrane (e.g., formin).

Force-generation with tethered growing filaments has been

studied before (47,48). It is possible that capping of F-actin

modifies the polymerization rate constants, k1 and k2. In
addition, tethering between F-actin and the membrane changes

the fluctuation behavior of the leading-edge membrane. The

most significant effect of tethering is that it changes the mean

time where a sufficient gap is generated between the filament

and themembrane. An estimate can be obtained by examining

themean first-passage time of generating a gap ofD¼ 2.8 nm.

In general, if the tethering protein is a passive mechanical

element, then tethering increases the time needed to generate

a gap; however, the tethering protein may take advantage of

the hydrolysis cycle of actin to actively generate a gap.

This model does not account for the dynamics after the

buckling length of the filopodium is reached.When the bundle

starts to bend, the increased strain in the filaments will change

the polymerization and depolymerization kinetics, and may

lead to the breakage of the filaments. In all of these processes,

the cell membrane plays a substantial role and, as shown here,

must be considered in quantitative models of cell motility.

APPENDIX A: MEMBRANE STATISTICAL
MECHANICS WITH FINITE ELEMENTS

During cell movement, filopodia typically extend from the lamellipodium

whose thickness is ;200 nm (46). To incorporate the appropriate boundary

conditions and include the thermal fluctuations and statisticalmechanics in our

computational model, we carried out equilibrium Monte Carlo simulations of

filopodia extension from the lamellipodial edge. Fig. 9 shows a snapshot from

the simulation. We vary the length of the filopodium by fixing the overall

length of the F-actin bundle to be l. The energetics of the system is explored as

a function of l. Note that, in this situation, there is no overall symmetry and the

membrane must be specified by a three-dimensional coordinate system. To

compute the membrane energy, we implemented a finite element represen-

tation of the membrane that allows for arbitrary boundary conditions. The

membrane is free to fluctuate and change the vertex of the finite elements. The

actin filaments in the bundle (not shown in the figure for clarity) are treated as

parallel rigid cylinders (6-nm in diameter). The spacing between the filaments

from center to center is d¼ 15 nm.At the tip of the filopodium, themembrane

is not allowed to sample configurations below z ¼ l.

To compute the average membrane enthalpy of Eq. 7, the membrane

surface, h, is tiled by a triangular lattice of finite elements. Each triangle,

indexed by i and characterized by a vector normal to the triangle, ai, can
change its size and orientation. Eq. 1 can be written in a discretized form

(49–51),

E0½h� ¼ +
i

2k

Di

+
j

lij
4
cos

�1ðai � ajÞ
" #2

1 +
i

gDi; (A1)

where the i-summation is over all the triangles in the membrane. For each

triangle, the j-summation is over all the neighboring triangles of i. lij is the

length of the edge shared by i and j triangles. Di is the area of the i
th triangle.

The values k and g are the bending modulus and surface tension of the

membrane, respectively. The membrane geometries can be varied by

changing the positions of the vertices. By moving the vertices, all possible

membrane geometries can be sampled. The functional integral in Eq. 7,R
D½h�; symbolizes integration over all possible membrane configurations.

The enthalpy average is obtained using the Metropolis Monte Carlo

procedure (52).

APPENDIX B: MODEL 1—RIGID CAP PROPELLED
BY THE F-ACTIN BUNDLE

We model the tip of the filopodia as a rigid circular disk with the radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffi
k=2g

p
and one-dimensional diffusion constant D. A load force, F, is

applied in the direction opposite to the protrusion (�z direction). The load

force is given by Eq. 4. We treat the F-actin bundle as N-parallel rigid
filaments polymerizing (depolymerizing) in D ¼ 2.8-nm increments. Note

that D is one-half of the actin monomer size. The cap can only move in the

z-direction and no rotation or change of orientation is allowed (Fig. 3).

Therefore, the x,y-positions of the filaments and the relative distances in

between the filaments are unimportant. However, the relative positions of

the filaments in the z-direction are important. We have assumed that the

filaments are evenly staggered by D/N in the z-direction.

To compute the dynamics, we consider the joint probability,

P(z,n1,. . .,nN,t), where N is the total number of filaments and na is the

number ofmonomers in theath filament. The probability satisfies the equation

@P

@t
¼D

F

kBT

@P

@z
1

@
2
P

@z
2

� �

1 +
N

a¼1

k1Hðz; naÞPðz; n1; . . . ; na � 1; . . . ; nN; tÞ

1 +
N

a¼1

k2Pðz; n1; . . . ; na 1 1; . . . ; nN; tÞ

� +
N

a¼1

ðk2 1 k1Hðz; na 1 1ÞÞPðz; n1; . . . ; nN; tÞ; (B1)

where k1 and k2 are the polymerization and depolymerization rates of

F-actin, respectively, and D is the transverse diffusion constant of the rigid

cap. F is the load force on the cap. The value of F is given by Eq. 4.

The polymerization kinetics of F-actin has been measured. In our model,

we use k1 ¼ 11.6 (actin) s�1, k2 ¼ 1.4 s�1 (53).

The probability of adding actin monomers depends on the cap position, z,

and the number of monomers in the ath filament, na. This relationship is

captured by the function H(z, na). If there is sufficient space between the

filament and the cap, i.e., z . naD, then H ¼ 1; otherwise, H ¼ 0.

The solution of Eq. B1 is obtained using a Monte Carlo algorithm. The

details of the method are given in Appendix D. The possible kinetic events

defining the dynamics are

1. Addition of a monomer with rate k1 to any of the filaments if the space

between the filament and the cap is .D.

2. Loss of a monomer with rate k2 from any of the filaments.

3. Diffusion of the cap against a constant force, F, applied in �z-direction,
with a rate k1 by the amount Dz.

4. Diffusion of the cap with rate k� by �Dz, if the cap does not overlap the

physical space occupied by the filaments.

The values k1 and k�, which must satisfy the detailed balance condition, are

given in Appendix D. These rates are valid in the range of small Dz, such that
the diffusing cap can be considered to be in a local steady state.

APPENDIX C: MODEL 2—FLUCTUATING
FLEXIBLE MEMBRANE PROPELLED BY
F-ACTIN BUNDLE

In Model 2, we simulate the membrane and the F-actin bundle interactions

by incorporating the flexibility of the membrane. Unlike Model 1, the
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membrane can adopt any shape. We incorporate realistic interactions

between the F-actin tip and the membrane. Unlike Model 1 where the

membrane cap is rigid, no external forces are needed since the tension and

resistance of the membrane are automatically incorporated. The F-actin

bundle in the filopodium has the same properties as defined in Model 1.

However, in this model, the geometrical arrangement of the filaments is

important. The relative distance between the filaments, d, is taken to be 15

nm to mimic the physiological situation (see Fig. 3). As explained in the text,

the arrangement of the filaments in the bundle has important effects on the

propulsion dynamics of the filopodium. For the unphysical situation where

d¼ 0 nm, the protrusion velocity is changed substantially. These aspects are

discussed in more detail in Results.

To couple the growth of the F-actin with the dynamical movement of the

membrane, we examine the forces acting on the cell membrane at the leading

edge. In the regime of low Reynolds number, viscous frictional force is

balanced by the forces between the membrane and F-actin, and the Brownian

random force; we have

@hðrÞ
@t

¼ �
Z

dr9
D9ðr� r9Þ

kBT

dE½h�
dhðr9Þ1 zðr; tÞ; (C1)

where r ¼ (x, y) and E(h) is the membrane energy as a function of the

membrane configuration and force due to the growing actin bundle. The

Oseen tensor, D9(r – r9), describes the viscous friction from the surrounding

solvent and hydrodynamic coupling between different membrane locations,

and z(r, t) is the random force that satisfies the fluctuation dissipation

theorem (54). The presence of the actin bundle is contained in the membrane

energy E(h) and, therefore, the membrane fluctuations are coupled to the

growth of the actin filament bundle. In this article, we make the

approximation

D9ðr � r9Þ ¼ D9dðr � r9Þ; (C2)

which simplifies the model enormously. In general, hydrodynamic effects

act over large length-scales and cannot be neglected for fluctuating

membranes. In this case, however, the filopodium is ,100 nm in radius.

In this length regime, the internal viscous friction of the plasma membrane is

actually more important than hydrodynamics (55). Furthermore, the

filopodium grows near the substrate where the velocity field of the fluid is

typically damped out by wall effects. With this combination of factors, the

approximation of Eq. C2 is justified. However, D9 is now a phenomenolog-

ical parameter and must be measured for the membrane at the leading edge

of crawling cells. In Results, above, we show that D9 is a crucial parameter,

which controls the protrusion speed.

To model the joint actin/membrane dynamics, a Fokker-Planck equation

can be used to describe membrane movements in the three-dimensional

Cartesian space (x, y, h(x, y)) coupled to the filaments (n1,. . .,nN). The time-

evolution of the probability distribution, P(h(r),n1,. . .,nN,t), is given by

@P

@t
¼�

Z
dJ

dhðrÞdr

� +
N

a¼1

ðk1HðhðrÞ; na 1 1Þ1 k2ÞPðhðrÞ; n1; . . . ; nN; tÞ

1 +
N

a¼1

k1HðhðrÞ; naÞPðhðrÞ; n1; . . . ; na � 1; . . . nN; tÞ

1 +
N

a¼1

k2PðhðrÞ; n1; . . . ; na � 1; . . . nN; tÞ;

where h(r) is the membrane height as a function of r ¼ (x, y) and na is the

number of monomers in the ath filament. H(h(r), na) is the function that

determines if there is sufficient space between the F-actin and the membrane

for the addition of another monomer. If h(r) . naD, then H ¼ 1; otherwise,

H ¼ 0. The intrinsic membrane flux, J, is defined as

dJ

dhðrÞ ¼ �D9
d
2
P

dh2ðrÞ
1fðhðrÞÞ dP

dhðrÞ1C½hðrÞ�P
� �

: (C3)

The definitions of f and C are

f½hðrÞ� ¼ 1

kBT

dE

dhðrÞ; (C4)

C½hðrÞ� ¼ 1

kBT

d
2E

dh
2ðrÞ

: (C5)

E is the energy functional of Eq. 1 plus a term due to the presence of the actin

filament and possible external forces F9,

E ¼ E0½h�1
Z
Uðn1; . . . ; nN; hðrÞÞ � F9hðrÞdA: (C6)

Here, U is the potential between the actin bundle tip and the plasma

membrane. Equation C3 is the functional generalization of the ordinary

Smoluchowski equation (56), the derivation of which will be given in

a separate publication.

The interaction potential, U, is determined by the protrusion mechanism.

For the Brownian ratchet model, U is a hardcore potential determined by the

membrane position, h(r), and the heights of the filaments, naD. If h(r) .
naD, then U ¼ 0; otherwise, U ¼N. If there is a tether (Ena/VASP or other

proteins) between the membrane tip and the membrane, then U is modified

slightly: If h(r). naD, thenU ¼ +N

a¼1
kt
2
ðh� naDÞ2; otherwise,U¼N. All

of the filaments interact with the membrane, thus we assume all the filaments

are tethered. The tether elastic constant, kt, is a property of the tethering

protein and an unknown parameter.

To solve the functional equation of Eq. C3, the membrane surface, h(r), is
discretized into a set of small membrane elements. We work in the Cartesian

coordinate system and, therefore, each membrane element has coordinates

(xi, yj, h(xi, yj)). The membrane fluctuates by changing hij ¼ h(xi, yj). The

diffusion constant, D9, therefore describes the diffusing characteristics of

each membrane element. The position of the membrane cap, z, is defined as

z ¼ 1

M
+
M

i;j�cap

hij; (C7)

where M is the number of membrane points in the cap. Since the transverse

diffusion constant of a platelike object is proportional to its linear dimension,

the relationship of Eq. 8 emerges.

APPENDIX D: MONTE CARLO
SOLUTION ALGORITHM

The Fokker-Planck equations of Eqs. B1 and C3 are difficult to solve in

closed form. Instead, we devised a Monte Carlo algorithm to generate

trajectories of the moving system. The trajectories are averaged to obtain the

reported results.

The algorithm is best explained in the context of Eq. B1. The one-

dimensional variable, z, is discretized into small intervals. If the intervals are

small enough, then a local steady-state approximation is valid and a local

solution of the Fokker-Planck equation can be obtained for the interval.

From this local solution, fluxes and transition rates to the neighboring

intervals can be obtained (57). We find

k6 ¼ D

Dz
2

7FDz=kBT

e
7FDz=kBT � 1

; (D1)

where k6 is the transition rate from zi to zi 6 Dz, respectively. The transition

rates satisfy the condition of detailed balance. The dynamic evolution of the

system can be considered as a Markov process where the addition and

subtraction of the monomers, and the movement of z, are the possible
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Markov transitions. Again, the procedure is valid when Dz is sufficiently

small. In our calculations, Dz ¼ D/N where D ¼ 2.8 nm.

Combining all the possible transitions, the master equation of the

composite system of filaments and the membrane cap can be written as

@PðsÞ
@t

¼ +
s9

Ms;s9Pðs9Þ � PðsÞ+
s9

Ms;s9; (D2)

where s labels the composite state of the actin/membrane system as

s ¼ (i,n1,. . .,nN), and P(s) is the probability of the system to be in state s.

Likewise, M is the composite transition-probability matrix whose rate

constants are given as k1, k2, and k6. The nonzero elements of M are

Addition of a monomer: If s ¼ (i,n1,. . .,na,. . .,nN) and s9 ¼
(i,n1,. . .,na�1,. . .,nN), and if the distance between the filament tip and

zi is .D, then Ms, s9 ¼ k1; else, Ms, s9 ¼ 0.

Loss of a monomer: If s ¼ (i,n1,. . .,na,. . .,nN) and s9 ¼
(i,n1,. . .,na�1,. . .,nN), then Ms, s9 ¼ k2.

Fluctuation of the membrane cap from zi to zi11: If s ¼ (i,n1,. . .,nN) and

s9 ¼ (i 1 1,n1,. . .,nN), then Ms, s9 ¼ k1; else Ms, s9 ¼ 0.

Fluctuation of the membrane cap from zi to zi–1: If s ¼ (i,n1,. . .,nN) and

s9 ¼ (i � 1,n1,. . .,nN), and if zi–1 is not less than any of the filament

height, then Ms, s9 ¼ k–; else Ms, s9 ¼ 0.

These definitions completely specify the matrix M.

To generalize this procedure to Eq. C3, we discretize the membrane

surface, as well as the membrane height, h(r). Thus, the membrane is

a surface in a three-dimensional grid, (i, j, k). If Dh is small enough, the same

local steady-state approximation applies. The transition rates between k and

k 6 1 are

k6 ¼ D9

Dh
2

½Eðhij6DhÞ � EðhijÞ�=kBT
exp½½Eðhij6DhÞ � EðhijÞ�=kBT� � 1

; (D3)

where E is the membrane energy of Eq. C6. The composite state of the

system is now labeled as s ¼ (i,j,k,n1,. . .,nN). The elements of the transition

matrix are given by

Addition of a monomer: If s ¼ (i,j,k,n1,. . .,na,. . .,nN) and s9 ¼
(i,j,k,n1,. . .,na11,. . .,nN), and if the distance between the filament tip

and hk(i, j) is .D, then Ms, s9 ¼ k1; else, Ms, s9 ¼ 0.

Loss of a monomer: If s ¼ (i,j,k,n1,. . .,na,. . .,nN) and s9 ¼
(i,j,k,n1,. . .,na�1,. . .,nN), then Ms, s9 ¼ k2.
Fluctuation of the membrane cap from hk(i, j) to hk11(i, j): If s ¼
(i,j,k,n1,. . .,nN) and s9 ¼ (i9,j9,k11,n1,. . .,nN), and if hk11(i9, j9) is not

less than any of the filament height, then Ms, s9 ¼ k1di, i9dj, j9; else Ms,

s9 ¼ 0.

Fluctuation of the membrane cap from zi to zi–1: If s ¼ (i,j,k,n1,. . .,nN)

and s9 ¼ (i9,j9,k�1,n1,. . .,nN), and if hk–1(i9, j9) is not less than any of

the filament height, then Ms, s9 ¼ k–di, i9dj, j9; else Ms, s9 ¼ 0.

These definitions completely specify the Markov dynamics of the membrane

and the filament growth.

In principle, it is possible to solve the Markov equation of Eq. D2 by

finding the eigenvalues and eigenvectors of the transition matrix. However,

the dimension of M is extremely large. Instead, Monte Carlo importance

sampling of representative trajectories is more appropriate. The algorithm of

Bortz, Kalos, and Lebowitz can accomplish this (58). Given a current state s

at time t, all future destination-states (i.e., trajectories) can be found

iteratively by this algorithm. Dynamical observable such as the protrusion

length as a function of time can be expressed as the trajectory average,

ÆlaðtÞæ ¼ ÆnaðtÞDæ ¼
1

X
+
X

u¼1

naðtÞD; (D4)

where the sum is over X number of repeated trajectories. To compute the

trajectories, the following procedure is followed:

For the current state, s, find K ¼ +
s9
Ms;s9: K is then the rate of

leaving the current state. Define a sequence of intervals between 0 and

K. The intervals are given by the transition rate constants, Ms, s9. Note

that many of the transition rates are zero. The identity of the destination

state, s9, is still unknown.

Choose a random number, r, such that 0 , r , K.

Find which interval r falls between 0 and K. This defines the destination

state, s9.

Choose another random number, r9, between 0 and 1 and compute

dt ¼ �log(r9)/K. The value dt is the time elapsed during the change

of state.

Update the time to t ¼ t 1 dt and the current state to s9.

Repeat the procedure.

By repeating the algorithm given above, all possible dynamical changes in

the system are sampled. The algorithm is a form of importance sampling

where the likely trajectories appear more frequently according to their

statistical weight in trajectory space. All computational results in the article

are obtained using this procedure.

Although adding membrane flexibility to the model revealed many

interesting effects, we note that the computational cost incurred is

substantial, especially when D9 is large. In this regime, most of the

computer time is used to simulate membrane movement, and polymerization

events are rare. In Fig. 6 a, protrusion velocities, when D9 . 106 nm2/s, are

difficult to obtain.
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