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ABSTRACT Nonequilibrium molecular dynamics simulations were used to calculate the elastic properties of a spectrin repeat
unit. A contiguous a-helical linker was constructed by employing periodic boundary conditions, allowing a novel scheme for
evaluating the thermodynamic force as a function of extension. By measuring the force-extension response under small
extensions, spectrin was observed to behave primarily as an elastic material with a spring constant of 1700 6 100 pN/nm. The
implications of this spring constant, in terms of the properties of the spectrin tetramer, are also discussed.

INTRODUCTION

The erythrocyte (red blood cell) offers a novel system for

studying how a cell responds to an applied force. Lacking

any internal organelles, the plasma membrane and its as-

sociated cytoskeleton are the only structures the erythrocyte

has available to resist external forces and maintain its unique

shape (1). The cytoskeleton of the erythrocyte is primarily

composed of a network of large (;200 nm) rodlike multi-

domain proteins called spectrin. The organization of the

spectrin cytoskeleton spans several distinct time- and length-

scales, ranging from the atomistic description of the in-

dividual domains of spectrin to the nearly continuum-level

description of the entire cell. This article is concerned with

the calculation of material properties of spectrin at the atom-

istic scale that can be used to understand properties of the

larger-scale structures composing the erythrocyte.

Spectrin is a tetrameric protein that is formed by the head-

to-head association of two heterodimers (2,3). Each hetero-

dimer is composed of antiparallel a- and b-subunits that

form a right-handed double-helix (4). These subunits are fur-

ther divided into ;20 (for the a-spectrin monomer) and ;17

(for the b-spectrin monomer) covalently-linked spectrin

repeat units. Although the repeat units do not exhibit strict

sequence homology, each unit is ;106 residues in length

and is folded into three a-helices (A, B, and C) arranged in

an antiparallel coiled coil. Based on crystallographic mea-

surements, helices A and C are thought to compose a contig-

uous a-helix that forms the linker region between the repeat

units (5–10).

Although it seems clear that the erythrocyte derives its

shape and resilience from the spectrin cytoskeleton (1), the

relationship between the structure and function of spectrin on

the atomistic scale (9–14), the scale of the tetramer (2,4,15–

17), and the scale of the network (18–22) are still subjects of

important research. Our approach to studying these relation-

ships is to build a simulation methodology that spans the

multiple time- and length-scales inherent in the construction

of the erythrocyte. This article presents simulations charac-

terizing the elastic properties of a spectrin repeat unit, which

can be thought of as the basic building block of the eryth-

rocyte cytoskeleton. The information obtained at this scale

will aid in understanding the material properties of the spec-

trin network at larger scales, in particular that of the spectrin

tetramer.

The origin of the elasticity of the spectrin tetramer has

been the subject of considerable debate. Electron micro-

graphs of spectrin in vitro (2,15) and viscometry studies of

the spectrin dimer (23) suggested that spectrin was quite

flexible, and could be treated as an entropic polymer. This

flexibility has been thought to be a consequence of hingelike

functionality of a nonhelical linker connecting repeat units

(24). However, as discussed above, recent x-ray crystal

structures of multiple-repeat spectrins indicate that the linker

likely forms a contiguous a-helix, suggesting that the linker

may not be as flexible as originally perceived. Furthermore,

electron micrographs of partially expanded membrane skele-

tons suggested that the tetramer forms a rigid double-helix

(4). With this type of structure, the elasticity of the tetramer

has been proposed to be dependent more on energetic con-

tributions derived from changes in the helical pitch and dia-

meter of the double-helix (4,25).

More recently, the material properties of spectrin mono-

mers have been studied using atomic force microscopy

(AFM) (26–30) to measure a force-extension curve. These

experiments show a force-extension curve with a character-

istic sawtooth pattern. The peaks in the sawtooth pattern

have been attributed to the force required to rupture the in-

dividual repeating domains. However, in the absence of

external forces, the end-to-end distance of a spectrin tetramer

in the cytoskeleton is only approximately one-third or less of

its total contour length (16,17,19,20). Rupturing a domain

using AFM involves stretching the end-to-end length of

spectrin up to, and beyond, its full (folded) contour length.

The physiological significance of spectrin’s force response

under such extreme extensions is not clear, nor is it known if

the rupture behavior plays any role in governing the shape or

elasticity of the erythrocyte.
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Furthermore, the spectrin AFM experiments have not

resolved changes in extension to ,;1 nm. Rief et al. (26)

were able to fit a spectrin AFM force-extension curve to a

two-level model of unfolding and estimated that a spectrin

repeat unit needs to be extended only by ;1.5 nm before

rupture occurs and the unit unfolds. This suggests that the

AFM experiments are missing information on the prerupture

force response of a spectrin repeat unit that may be critical

for understanding its function in a biological system.

Molecular dynamics (MD) simulation can complement

the experimental studies by providing more detailed atomis-

tic structural information and can also probe force-extension

relationships with resolution �1 nm. Previous MD simu-

lations of a single isolated (i.e., no linker) spectrin repeat unit

(12,13) primarily focused on calculating the force-extension

curve under extensions large enough to make comparisons

with AFM experiments. This study takes a different ap-

proach by examining the force response of a spectrin repeat

unit under small extensions. Here, a spectrin repeat unit was

extended, and the force response measured, using a method

called cyclic expansion nonequilibrium molecular dynamics

(NEMD) (31–36). This method facilitates the use of bound-

ary conditions to attach the spectrin repeat unit to its periodic

image. These boundary conditions allow for simulation of an

intact a-helical linker region, without any noncontiguous

helical ends (a distinction that will be addressed in more

detail in the companion article (37)). As mentioned above,

the force response at small extensions may be more relevant

for understanding spectrin under physiological conditions.

The small-extension force response will be shown to provide

some important details about the nature of the elasticity of

the tetramer. Nevertheless, the AFM experiments do provide

critical insight into the relationship between the structure of

a protein and its response to applied forces. The companion

article (37) expands on this work by subjecting the spectrin

repeat unit to larger extensions and examining the role of the

linker in the rupture process observed by AFM experiments.

METHODS

Molecular dynamics simulations were performed using the DL_POLY

simulation package, Ver. 2.12, developed in Daresbury Laboratory (Dares-

bury, Warrington, England (38)). A modification of the Nosé-Hoover

constant NPT algorithm in DL_POLY allowed for the calculation of the

NEMD trajectories, as described below. The force-field used was the

modified Cornell et al. (39,40) AMBER (parm96) force field. Electrostatic

interactions were treated with the smooth particle-mesh Ewald method using

a tolerance of 5 3 10�5. The real-space part of the Ewald sum and van der

Waals interactions were cut off at 7.6 Å. A flexible TIP3P water model (41)

with the intramolecular parameters of Schmitt and Voth (42) was used to

solvate the system. All simulations were performed with a 1 fs time step. The

temperature was kept constant at 300 K using a Nosé-Hoover thermostat

with a relaxation time of 0.1 ps, and the pressure was kept constant with

a barostat relaxation time of 1 ps.

The starting structure for all simulations was based on the solution NMR

structure of the 16th repeat of chicken-brain a-spectrin (11) (Protein Data

Bank ID 1AJ3). Residues 1–9 and 108–110 were not resolved in the NMR

experiment and were added to the structure using the Swiss-PDBViewer

(43). Multiple-repeat crystal structures of various spectrins (5–10) indicate

that repeat units are typically linked by a contiguous a-helical linker. To

account for these observations, the missing residues were constructed to

adopt a-helical conformations, and the ends of the spectrin repeat unit

(residues 1 and 110) were covalently attached by a peptide bond through the

periodic boundary conditions along the z axis of the simulation cell. The

boundary conditions thus serve as a means by which a periodically rep-

licated system of linked spectrin repeat units can be simulated. The resulting

structure was solvated with 2194 water molecules and equilibrated under

zero pressure in a constant NPT ensemble for 10 ns. For the last 8 ns, the

average length of the box in the z direction was 5.57 nm with a standard

deviation of 0.052 nm; in the x and y directions, the average length was 3.76

nm with a standard deviation of 0.020 nm. The total charge of the molecule

was �1, so a sodium cation was added to the system to maintain neutrality.

The average a-carbon root-mean-squared deviation from the NMR structure

was 2.6 Å, indicating that the structure was fairly stable. Configuration

snapshots from this equilibration were used as starting points for the NEMD

trajectories as described below. The water oxygen radial distribution

function and diffusion constant were in agreement with simulations of pure

water, indicating that finite size effects originating from the solvent were

minimal.

Cyclic expansion NEMD

Cyclic expansion NEMD was used to calculate the force-extension behavior

of a spectrin repeat unit. The method has been successfully applied to the

study of the viscous properties of simple fluids (31,32) and the elastic

properties of lipid bilayers (33,34,35,36). Cyclic expansion NEMD can be

used to determine the primary material behavior (e.g., viscous or elastic) of

the system under study by measuring the phase relationship between the

extension rate and force response. The form of the method used here is

largely due to Ayton et al. (35), with some minor modifications to account

for the differences in the system studied.

In a cyclic expansion NEMD experiment, the system is subject to an

oscillating strain rate given by

e� ¼ jvsinðvtÞ; (1)

where j is the amplitude of oscillation and v is the frequency (l ¼ 2p/v is

the period). This strain rate is applied along the z direction of the box by

scaling the dimensions of the simulation cell at each step by

_LLzðtÞ ¼ LzðtÞe�; (2)

_LLxðtÞ ¼ LxðtÞf_ ; _LLyðtÞ ¼ LyðtÞf_ ; (3)

where _LLz is the extension rate or pulling speed. Although Lz is scaled in

a predetermined fashion via Eq. 1, the x and y directions are scaled so as to

maintain zero x and y stress and therefore constant volume, on average. This

is accomplished through the use of a Hoover barostat term (44,45), f_ , which

has the equation of motion

f€ ¼ 1

2NkBTt
2

P

ðPxxðtÞ1PyyðtÞÞVðtÞ; (4)

where Paa is the aa component of the instantaneous pressure tensor, N is

number of atoms, tP is the barostat relaxation time, T is the temperature, and

kB is Boltzmann’s constant.

With the exception of the strain rate term of Eq. 1, the equations of

motion for the particles of the system experiencing cyclic expansion are

identical to those used in the Nosé-Hoover constant NPT algorithm (46). The

atom positions ri and momenta pi are governed by

_rri ¼
pi

mi

1f_ ðrxi
î1 ryi

ĵÞ1 e�rzi
k̂; (5)
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_ppi ¼ Fi � f_ ðpxi
î1 pyi

ĵÞ � e�pzi
k̂� api; (6)

where the force, Fi, on each particle i is minus the gradient of the potential of

the system. The first term on the right-hand side of Eqs. 5 and 6 is derived

from Hamilton’s equations of motion. The additional terms involving f_ and

e� induce a flow field, making the momenta pi peculiar (47) (i.e., related to

equipartition via Eq. 8). The thermostating variable a keeps the temperature

of the system constant by removing or adding heat and evolves according to

_aa ¼ 1

t
2

T

TkðtÞ
T

� 1

� �
; (7)

where Tk is the instantaneous kinetic temperature,

3NkBTkðtÞ ¼ +
N

i

jpij
2

mi

; (8)

and tT is the thermostat relaxation time.

Initial positions and velocities for the NEMD simulations were obtained

from configurations sampled along the equilibration trajectory. The equil-

ibration was performed by integrating the equations of motion under an NPT

ensemble where the barostat for the z direction was independent of the x and

y directions (i.e., using Eqs. 5 and 6 with e� given by an expression similar to

Eq. 4). This resulted in starting configurations with a distribution of initial

lengths L that come from an NPT ensemble.

Cyclic expansion NEMD simulations were performed using strain rate

periods of 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 ps. Twelve

starting configurations were used for the 500- and 1000-ps period sim-

ulations, seven for the 1500- and 2000-ps period simulations, and four for

the rest. For all simulations, the strain rate amplitude j was set to 0.02

(giving a maximum strain of 0.04). A full NEMD cycle involves extending

the system to maximum strain and then contracting it back down to its initial

length. The extension part of the cycle was calculated for all of the above

strain rate periods, but the contraction half of the cycle was only calculated

for 500-, 1000-, 2000-, and 4000-ps strain-rate periods, using four starting

configurations each.

THEORY: FORCE AND FREE ENERGY

Previous implementations of cyclic expansion NEMD focused

on measuring the stress-strain relationship of membranes

(33–36). However, due to spectrin’s heterogeneity along the

direction of the applied strain, the cross-sectional area re-

quired to calculate a stress is ill-defined. The material pro-

perties of spectrin are thus best characterized in terms of its

force-extension behavior (i.e., the mean force that the mole-

cule exerts in response to a displacement along its reaction

coordinate, or end-to-end length). Formulating the material

response of spectrin in terms of force and extension also

allows for a more convenient comparison with experiment,

since these are the quantities measured by AFM.

Two computational methods which are commonly used to

measure force-extension relationships in proteins are steered

molecular dynamics (48–50) and biased unfolding (12,51).

In steered MD, one end of the molecule is fixed, and the

other is subject to a harmonic potential that moves at some

given velocity. Biased unfolding also uses a potential to

constrain the length of the molecule, but the potential only

moves when fluctuations increase the length. Both of these

methods use the analogy of an AFM experiment to define a

force by adding an extra potential to the system and mea-

suring the displacement of the reaction coordinate along that

potential. They have proven to be remarkably useful in

describing the molecular origin of the peaks in the AFM

force-extension curves for the muscle elasticity protein titin

(50–54). However, in the case where the spectrin repeat unit

is attached to its periodic image, these methods cannot be

applied since there are no ends to attach to the restraining

potential.

The force that can be measured using cyclic expansion

NEMD arises solely from molecular interactions (there is no

added external potential) and is defined as minus the de-

rivative of the free energy with respect to length under iso-

thermal conditions,

F0ðLÞ ¼ � @A

@L

� �
T

; (9)

where L is the length of the box in the z direction, and the

zero subscript signifies that the system is at equilibrium (or in

the v/0 limit). It can be shown (see Supplementary

Material) that by using the NEMD equations of motion, the

free energy derivative of Eq. 9 can be expressed as

F0ðLÞ ¼ lim
v/0

ÆPzzVæ=L: (10)

Perhaps not surprisingly, the force is just the pressure along

the direction of strain multiplied by the cross-sectional area

of the box. It is important to point out that this simple ex-

pression for the force is a consequence of the equations of

motion and that this methodology can only be applied in the

case where periodic boundary conditions are employed. If

the spectrin repeat unit was not attached through periodic

boundary conditions, then the force measured by Eq. 10

would be due to solvent reorganizing around the protein in

response to a shape change in the box, and not to an exten-

sion of the spectrin repeat unit.

Equation 10 motivates the definition of a finite frequency,

or nonequilibrium, force, Fv(L) ¼ ÆPzzVæ/L. This force Fv(L)

contains contributions from the irreversible work done on the

system, at a finite frequency v, and is in fact equal to minus

the derivative of the work with respect to the length. The

equilibrium free energy derivative, Eq. 9, is only obtained in

the zero frequency limit. The effective spring constant is

similarly defined as k0 ¼ limv/0 kv, and is measured by

calculating the slope of the force-extension curve for each

trajectory at a particular frequency, averaging over multiple

starting configurations, and extrapolating to zero frequency.

RESULTS

Equilibrium properties

One of the key features distinguishing this study from pre-

vious MD simulations of a single spectrin repeat unit (12,13)

is the presence of a contiguous a-helical linker. The periodic
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boundary conditions employed conveniently allow modeling

of the linker region connecting two repeat units with the

computational cost of simulating one repeat unit. This

situation thus models an infinitely long chain of attached

repeat units. Of course, with a real multiple-repeat spectrin

molecule, the repeat units can be bent or twisted relative to

one another (see (6,9) for illustrations of this effect), which

cannot occur under these boundary conditions. The period-

ically replicated system simulated here thus corresponds to

a prestressed, or hyperstretched, state where all of the long

wavelength bending modes have been dampened out. This

allows us to examine a situation where the stretching modes

are decoupled from the bending modes, a condition un-

attainable by regular experiment. As a consequence of the

boundary conditions, the linker is forced to bend slightly to

connect to its periodic image, but the effects of this bend are

expected to be small compared to the effects of including the

linker.

Many dynamical properties of a system can be obtained

from an equilibrium simulation. A property of primary

concern to this study is the measurement of an effective

spring-constant for the spectrin repeat unit. The equilibrium

trajectory (used to generate starting configurations for the

NEMD simulations) was integrated under a constant NPT

ensemble where the length of the box in the z direction was

allowed to fluctuate independently of the other directions.

The equipartition theorem states that the average thermal

energy associated with each degree of freedom is kBT/2,

where kB is Boltzmann’s constant and T is the thermody-

namic temperature. If the equilibrium energy of the repeat

unit follows Hooke’s law, then the effective spring constant

can be calculated, according to the equipartition theorem, by

measuring the fluctuations in the length of the box via k ¼
kBT/sL

2, where sL is the standard deviation of length of the

box in the z direction. Over the course of the last 8 ns of the

equilibration trajectory, the average length was measured to

be 5.57 nm with a standard deviation of 0.052 nm, giving

a spring constant of 1530 pN/nm. This value is close to that

obtained using the NEMD methods described later; however,

since this method requires the entire equilibrium simulation

to calculate sL, an estimate of the error in k is not readily avail-

able. The only way to assess the accuracy of sL is to calculate

it as a function of time steps and see whether it converges

to some value. Even after 8 ns of equilibration, sL did not

appear fully converged (data not shown), suggesting that a

significantly longer equilibrium trajectory would be neces-

sary to measure a statistically precise value for k.

NEMD control: water

Cyclic expansion NEMD simulations are usually discussed

in terms of the system’s stress response to an applied strain.

However, a spectrin repeat unit is by no means homogeneous

along the direction of the applied strain. This makes the

definition of a cross-sectional area, which is required to cal-

culate a stress, unclear. It is thus more appropriate to describe

spectrin’s force response to an applied extension. (Since

force and stress are closely related, the terms ‘‘force’’ and

‘‘stress’’ will often be used interchangeably throughout the

rest of this article.)

It is important to separate the intrinsic material response of

the spectrin repeat unit from that of the solvent. To ensure

that the chosen boundary conditions did not generate spu-

rious solvent effects, cyclic expansion NEMD simulations of

pure water were performed under conditions nearly identical

to those used for the spectrin repeat unit simulations. As dis-

cussed in Methods, the simulation box length L is extended

only in the z direction, whereas the x and y directions fluc-

tuate under zero pressure. These conditions maintain, on

average, constant volume and give rise to a change in the

shape of the simulation cell. Under very slow extension rates,

water will not respond with a measurable stress response to

the applied strain since it is an isotropic liquid and freely

adopts any container shape. On the other hand, under ex-

ceedingly high extension rates, the water molecules will not

be able to adjust to the boundary condition changes quickly

enough, resulting in a viscoelastic or even quasi-elastic stress

response.

A simulation of 3072 water molecules was equilibrated in

a simulation cell with similar dimensions to those used for

the spectrin repeat unit simulations (average Lz ¼ 6.24 6

0.75 nm and Lx ¼ Ly ¼ 3.80 6 0.23 nm). Preliminary

investigations revealed that the force response of water was

only detectable at very fast oscillations (with periods of l ¼
1–2 ps). To allow the box shape to adjust in response to these

high strain-rates, the barostat time constant tP had to be

adjusted to 0.1 ps. Strain rate periods of 1–100 ps were

imposed on 10 configurations taken from a 1-ns equilibration

trajectory.

To get an estimate of the magnitude of the elastic and

viscous forces that bulk water responds with under cyclic

expansion NEMD, the water force-extension curves were fit

to the function

Fv ¼ �kvDL� gv
_LL; (11)

where kv is a finite-frequency effective water spring con-

stant, and gv is a finite-frequency friction coefficient. Note

that the friction term, gv
_LL, corresponds to forces that are out

of phase with the imposed extension. Fig. 1 illustrates how

the elastic component kv of the water force response varies

as a function of frequency (the strange dip observed at v/2p

¼ 667 ns�1 is likely a consequence of poor sampling due to

the very large noise encountered at high frequencies). As

expected, very high extension rates gave a measurable elastic

response. However, even at frequencies 50-times faster

than those used in the spectrin repeat unit NEMD simu-

lations, no significant elastic component was detected. This

ensures that when the protein is present, any measured elastic

component can be attributed solely to the presence of

spectrin. The fits to Eq. 11 also reveal that gv has minimal
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frequency dependence over this range of frequencies. The

average gv was found to be 1200 6 300 pN ps/nm. For the

extension rates used in the spectrin repeat unit NEMD sim-

ulations, the force response due to water friction is expected

to only account for an insignificant 1–2 pN.

Elastic properties of the spectrin repeat unit

For small extensions and pulling speeds, the material prop-

erties of a spectrin repeat unit were mapped onto a linear elastic

constitutive relation given by

FðLÞ ¼ �kDL; (12)

where F is the force that the system responds with to the

applied strain, DL is the displacement in the simulation box

length L along the z coordinate from its equilibrium position,

and k is an effective spring constant. Of course, this is not the

only possible constitutive relation that could be applied to

a protein like spectrin. More complex viscoelastic models

exist (55,56) which relate both the extension and the

extension rate to the force; but the measurement of force

(or pressure) in an MD simulation tends to be very noisy and

characterization of secondary effects is not always feasible.

Equation 12 represents a first approximation to the material

behavior of the spectrin repeat unit and is not expected to be

valid over a large range of extensions (such as those probed

by AFM experiments (26,27,29,30)) or pulling speeds. The

complete force response is likely to have complex extension

and extension rate dependencies arising from the conforma-

tional changes that would result under large strains that no

simple linear elastic or viscoelastic model could address.

Despite these considerations, our results show that Eq. 12

offers a reasonable description of the spectrin repeat unit up

to extensions of ;3 Å.

Cyclic expansion NEMD subjects the system to a sinusoi-

dal extension rate via Eq. 1. As opposed to a constant rate

of extension, this provides us a convenient method for

determining the primary material behavior of the spectrin

repeat unit (i.e., whether it is viscous, elastic, or viscoelastic).

When the system is extended, it responds with a force and if

the force response is in phase with the extension, then the

material is said to have an elastic response. If the system

responds with a force that is in phase with the extension rate,

then the material has a viscous response. The material may

also have both viscous and elastic properties, in which case a

phase-shift in the response from the ideal viscous or elastic

behavior would be observed.

To confirm that Eq. 12 is an appropriate constitutive

equation, the phase relationship between the force response

and the imposed cyclic extension was measured. Fig. 2

shows that the force is largely in phase with the extension,

indicating that under small perturbations, the spectrin unit

responds elastically. This observation verifies the use of an

elastic constitutive relation, as proposed in Eq. 12. Had a

significant phase shift been observed, then the constitutive

equation would have needed to be modified to include a

viscous component.

Of course, measuring the phase relationship between the

extension and force response does not provide the functional

form of the elastic relation. To this end, an explicit force-

extension curve was measured and plotted in Fig. 3. This

figure shows force-extension curves at l ¼ 4000 ps for both

the extension and contraction trajectories. Each point on the

curve is the average force within the nearby range of ex-

tensions. Error bars were calculated by treating each NEMD

trajectory as an independent measurement and calculating

the standard error of the mean force (i.e., the variance of the

mean force is the sum of the variance of the average force

from each trajectory divided by the square of the number

of measurements (57)). These error bars therefore give a

measurement of the sampling error. The averaged force-

extension curves must be interpreted cautiously since the

starting configurations for the NEMD trajectories have some

distribution of starting lengths. No two trajectories started

FIGURE 2 Force (left axis, solid line) and extension (right axis, dashed

line) versus time t for a single cyclic expansion NEMD trajectory at l¼ 4 ns,

as in Eq. 1. Each point of the force curve is the average force of the preceding

1000 time steps.

FIGURE 1 Fitted spring constant versus strain-rate frequency for 3072

water molecules in a box of the same shape as in the spectrin repeat unit

simulations. Error bars represent the standard deviation of the mean.
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from precisely the same length and thus each point along the

curve does not correspond to a unique extension rate. How-

ever, the end-points of the curve are roughly at a zero ex-

tension rate, whereas the middle regions of the curve are

roughly at the maximum extension rate. The force-extension

curves reveal that, when the spectrin repeat unit is extended

up to six-times its equilibrium length fluctuations, it gives

a nearly linear force response. When it is then contracted

back toward its initial length, the force response is also linear

and shows essentially no hysteresis to within the error of the

measurements. Therefore, for small amplitude oscillations,

the repeat unit can be treated approximately as an ideal spr-

ing, validating the constitutive equation proposed in Eq. 12.

To obtain a quantitative measurement of the spring con-

stant, cyclic expansion NEMD trajectories were generated

according to the procedure described in Methods. For all

trajectories, a linear fit was performed on the force-extension

curve for both the extension and contraction parts of the

NEMD cycle. This resulted in a set of finite-frequency spring

constants which are plotted in Fig. 4. This figure shows that

the frequency dependence of the spring constant for the

extension half of the NEMD cycle is minimal. A linear

regression of this data gave an extrapolated spring constant

of kv/0 ¼ 1700 6 100 pN/nm, only slightly larger than the

value obtained in the equilibrium simulations. It could be

argued that tertiary structure rearrangements of the three

helices composing the spectrin repeat unit would, on long

timescales, lower the measured spring constant. If very long

equilibrium MD simulations were available, this effect could

manifest itself as large fluctuations in the length of spectrin,

lowering the measured effective spring constant. However,

any equilibrium tertiary structure rearrangements that per-

sisted over long timescales would likely result in more

disordered crystal structures (6,9,10). Given the insensitivity

of the measured spring constant over an eightfold difference

in pulling speeds, its similarity to the value obtained via

equilibrium length fluctuations, and the fact that the available

crystal structures are all well resolved, suggests that the

spring constant obtained in this study would be applicable at

longer timescales.

The spring constant for the contraction half of the NEMD

cycle, also shown in Fig. 4, does exhibit a stronger frequency

dependence than the extension spring constant. Although the

starting configurations for the extension trajectories were

sampled from an equilibrium distribution, the contraction

half of the cycle originated from the final configurations of

the extension trajectories which belong to a nonequilibrium

state. Therefore, the structural perturbations resulting from

the previous NEMD run alters the frequency dependence of

the measured spring constant. However, since extensions

and contractions sample the same points on the reaction co-

ordinate, the infinitely slow strain rate response should be the

same. As expected, the extrapolated value for the contraction

spring constant (kv/0 ¼ 1800 6 300 pN/nm) agrees well

with the value for extension.

DISCUSSION

As mentioned previously, earlier steered and biased MD

simulations of a single spectrin repeat unit did not include

a contiguous a-helical linker (12,13). Although these earlier

studies did not report a value for an effective spring constant,

the force-extension curves of (13) reveal that the spring

constant, over the first nanometer of extension, is ;100

pN/nm—approximately an order-of-magnitude smaller

than that reported here. This demonstrates that the contiguous

a-helical structure of the linker dramatically affects the ma-

terial properties of the spectrin repeat unit, making it more

resistant to external forces. The origin of this effect likely has

to do with the network of hydrogen bonds that maintain

a-helices. A contiguous a-helical linker is able to form more

backbone hydrogen bonds than a ruptured, or nonhelical,

linker. With more hydrogen bonds, the contiguous a-helix

would be able to withstand stronger forces. These and related

issues, such as the recent double-repeat MD simulations of

FIGURE 4 Spectrin repeat unit elastic spring constant versus strain-rate

frequency on extension (solid squares) and contraction (open squares).

Error bars represent the standard deviation of the mean. The extrapolated

value of the extension spring constant was found to be 1700 6 100 pN/nm,

and the contraction spring constant was 1800 6 300 pN/nm.

FIGURE 3 Force versus extension at l ¼ 4000 ps for extension (solid
squares) and contraction (open squares) trajectories.

Extending Spectrin: Linear Response 97

Biophysical Journal 90(1) 92–100



Ortiz et al. (14), are addressed in far more detail in the com-

panion article (37).

When comparing these simulations with experimental

results, the effects of the boundary conditions must be care-

fully considered. The periodic system generated by attaching

a spectrin repeat unit to its periodic image corresponds to

a highly-stretched multiple-repeat spectrin molecule, where

all of the bending interactions between repeat units are

absent. The benefits to such a construction is that it allowed

for measurement of a spring constant for a spectrin repeat

unit that is isolated from any interrepeat bending motions.

Experiments to date have only been able to measure force-

extension relationships of spectrins consisting of several

attached repeat units. In an experiment, the repeat units are

able to bend as well as stretch when spectrin is extended.

This complicates determining what aspects of the spectrin

repeat unit play a role in governing the elasticity of a

multiple-repeat spectrin (i.e., bending, stretching, twisting,

etc.). In these simulations, the small system size actually pro-

vides an advantage over using a larger system consisting of

many repeat units, since a larger system would suffer some

of the same problems as encountered experimentally. These

specially constructed NEMD simulations thus provide unique

and valuable information about the elasticity of spectrin that

complement the results available from current experiments.

Although no direct experimental measurements of the

spring constant of a spectrin repeat unit are available, some

comparison with experimental measurements of a different

but related system can still provide some insight. AFM ex-

periments (58) estimate that the Young’s modulus of the

a-helical polypeptide poly-L-glutamic acid is ;3 3 103

pN/nm2, in good agreement with earlier theoretical estimates

of polyglycine and poly-L-alanine (59). The elastic response

of a spectrin repeat unit will come primarily from the weakest

region, which is expected to be the a-helical linker since it is

not part of the heptad repeat pattern (6,9). Assuming that the

above AFM measurements of poly-L-glutamic acid represent

a typical Young’s modulus for an a-helix, the five-residue,

0.75-nm-long linker would be expected to give a spring con-

stant of ;500 pN/nm (assuming a cross-sectional radius of

;0.2 nm). The discrepancy between this value and that mea-

sured for the spectrin repeat unit using NEMD is within an

order of magnitude, but perhaps suggests that interactions

with adjacent helices impart extra stabilization on the linker.

Another possible reason for the discrepancy could be due to

the presence of bending modes in the poly-L-glutamic acid

AFM experiments. Part of the force response measured by

AFM is likely due to straightening the bending modes, and

not stretching the helix, which would lower the measured

spring constant. But since bending modes would not be as

prevalent over only five residues, the effective spring constant

at this length scale could be larger.

Optical tweezer micromanipulation experiments of freshly

extracted spectrin skeletons have estimated (21,60) that the

spring-constant of the mesoscopic spectrin tetramer is on the

order of 0.01 pN/nm. Suppose that the spectrin tetramer could

be treated as just a set of two elastic strands in parallel, where

each strand is composed of 40 ideal springs in series, and

each spring corresponds to a spectrin repeat unit. Using the

repeat unit spring constant of k¼ 1700 pN/nm would result in

a spring constant for the tetramer that is almost four orders-

of-magnitude larger than that estimated by the experiments

described above. This large discrepancy clearly demonstrates

that the elasticity of the tetramer cannot be derived from

simple linear extension of a series of individual repeat units,

but that extra degrees of freedom, such as bending, twisting,

or other mesoscale motions, must play an important role.

CONCLUSIONS

Cyclic expansion NEMD has been shown here to be an

effective simulation methodology for calculating the mate-

rial properties of a spectrin repeat unit. The forces were

measured via a simple expression that can be related to a

derivative of the free energy. A unique feature of these sim-

ulations was the use of periodic boundary conditions to sim-

ulate a single spectrin repeat unit with a contiguous a-helical

linker. This allowed for observation of the stretching con-

tributions to the elasticity, decoupled from the bending con-

tributions, while maintaining the physiological importance

of including the linker. Using this method, it was determined

that a spectrin repeat unit under these conditions responds

elastically to an applied extension. A quantitative estimate of

an effective spring constant for the spectrin repeat unit was

obtained and found to be 1700 6 100 pN/nm. By com-

parison with previous simulations, this result shows that the

contiguous a-helical linker significantly strengthens the

spectrin repeat unit. Furthermore, the magnitude of this value

suggests that bending or twisting interactions must play an

important role in governing the elasticity of the spectrin

tetramer at higher length scales.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

This research was supported by a grant from the National Science Foun-

dation Information Technology Research program (No. CHE-0218739).

The computational resources for this work were partially supported by the

National Computational Science Alliance under grant No. MCA94P017N

and utilized the IA32 and IA64 Linux Superclusters. Allocations of com-

puter time from the Center for High Performance Computing at the Uni-

versity of Utah and the Maui High Performance Computing Center are also

gratefully acknowledged.

REFERENCES

1. Elgsaeter, A., B. T. Stokke, A. Mikkelsen, and D. Branton. 1986. The
molecular basis of erythrocyte shape. Science. 234:1217–1223.

98 Paramore et al.

Biophysical Journal 90(1) 92–100



2. Shotton, D. M., B. E. Burke, and D. Branton. 1979. The molecular
structure of human erythrocyte spectrin: biophysical and electron
microscopic studies. J. Mol. Biol. 131:303–329.

3. Speicher, D. W., T. M. DeSilva, K. D. Speicher, J. A. Ursitti, P.
Hembach, and L. Weglarz. 1993. Location of the human red cell
spectrin tetramer binding site and detection of a related ‘‘closed’’
hairpin loop dimer using proteolytic footprinting. J. Biol. Chem. 268:
4227–4235.

4. McGough, A. M., and R. Josephs. 1990. On the structure of erythrocyte
spectrin in partially expanded membrane skeletons. Proc. Natl. Acad.
Sci. USA. 87:5208–5212.

5. Yan, Y., E. Winograd, A. Viel, T. Cronin, S. C. Harrison, and D.
Branton. 1993. Crystal structure of the repetitive segments of spectrin.
Science. 262:2027–2030.

6. Grum, V. L., D. Li, R. I. MacDonald, and A. Mondragón. 1999.
Structures of two repeats of spectrin suggest models of flexibility. Cell.
98:523–535.
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