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ABSTRACT Near a solid boundary, Escherichia coli swims in clockwise circular motion. We provide a hydrodynamic model
for this behavior. We show that circular trajectories are natural consequences of force-free and torque-free swimming and the
hydrodynamic interactions with the boundary, which also leads to a hydrodynamic trapping of the cells close to the surface. We
compare the results of the model with experimental data and obtain reasonable agreement. In particular, the radius of curvature
of the trajectory is observed to increase with the length of the bacterium body.

INTRODUCTION

The bacterium Escherichia coli (E. coli) has been a micro-

organism of choice for studying a variety of biological and

biomechanical processes. In particular, E. coli has been used

as the prototypical micro-swimmer (1,2). In solution, E. coli
cells swim in a random walk, with approximately straight

swimming trajectories alternating with rapid reorientations.

When E. coli cells are close to a surface, however, they trace

out clockwise (when viewed from above the surface) circular

trajectories (3–8), and are observed to stay near the surface

for long periods of time (8), enhancing the probability of their

adhesion to the substrate. Consequently, the motility of E.
coli near surfaces is important in the early stages of biofilm

formation and pathogenic infection (9,10). In this article, we

provide a hydrodynamic model for such circular motion.

E. coli and other peritrichously flagellated bacteria swim

by the action of rotary motors (usually two to six) embedded

in the cell wall (2). The motors rotate counter-clockwise or

clockwise, when viewed from behind the cell, with each

motor driving a long, thin, left-handed helical flagellar fil-

ament. If all the motors rotate counter-clockwise in a viscous

fluid (e.g., water), the flagella bundle together and propel the

bacterial cell forward. This motion is called a ‘‘run’’. If one

or more motors rotate clockwise, the flagella unbundle, and

the bacteria tumbles. The forward thrust generated by the

flagellar bundle during a run is opposed by the translational

viscous drag on the entire cell. Each flagellum (average

length, ;7 mm) rotates at speeds of ;100 Hz (11,12) and its

counter-clockwise rotation exerts a net torque on the cell

body (average length, 2–5 mm). To balance this torque, the

cell body counter-rotates in a clockwise direction (viewed

from behind the organism) at speeds of ;10 Hz (13).

As described above, E. coli cells near solid surfaces do not

have straight runs but are observed to trace out clockwise

circles. An early observation of this circular motion (1971),

reported in Berg and Turner (4), measured a radius of cur-

vature for the circles on the order of 25 mm. The swimming

direction was clockwise when viewed from above, which

the authors expected, as the flagellar bundle rotates counter-

clockwise and the cell body rotates clockwise. The influence

of temperature on the motility of E. coli was considered

in Maeda et al. (3); this work reported circular curves for

the motion near a glass slide, with a radius on the order of

10–50 mm, and which increased with temperature. A tracking

microscope was used later (5,6) to follow the trajectory of E.
coli near a glass surface. Again, near solid boundaries, the

bacteria were observed to swim in circles, with radius of

;13 mm; the authors also found that the swimming speed

increased with the distance from the boundary. The question of

attraction between the swimming bacteria and solid surface

has been studied in Vigeant and Ford (7) and Vigeant et al.

(8), and the distance to the surface has been measured (tens

of nanometers). It was found that standard Derjaguin-

Landau-Verwey-Overbeek theory could not explain the

tendency of the cells to stay near the surfaces, but that

some other force was still to be identified. The authors

proposed that, because of their nonspherical shape, the cells

swim at an angle to the surface, and therefore constantly

swim into the surface. More recently, a related study on the

motion of Vibrio alginolyticus near surfaces has reported

circular trajectories as well (14,15).

Numerically, there has been only one study that has con-

sidered the hydrodynamics of a swimming bacteria near a no-

slip surface (16) (see also early work on flagellar motion near

boundaries in (17–21)). The bacterium was modeled as a body

of spherical shape with a single, solid, helical flagellum and

the boundary integral method was used for the numerical

investigation. In this approach, the total flow field was given

by a distribution of fundamental singularities for Stokes flow

along the surface of the microorganism. In the simulations,

circular motion was obtained with a radius of curvature on

the order of the length of the microorganism (;10 mm),

with a tendency for the microorganism to swim toward the

wall and crash into it. Furthermore, the authors proposed a
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physical picture for a clockwise motion. However, no simple

analytical model was proposed and a numerical integration

was required to obtain the cell trajectories.

The goal of this article is to provide a hydrodynamic

model for the motion of E. coli near solid boundaries. We

first summarize our experiments to obtain a new set of data

on swimming speed and circular trajectories for E. coli strain

HCB437 near solid surfaces. We then present our geo-

metrical model for E. coli, and the physical picture for the

circular trajectory of the bacterium near a no-slip surface,

based on the change in hydrodynamic resistance of elements

along the cell body due to the nearby surface. Using

resistive-force theory, we calculate the trajectory of the

bacterium. Since the full model requires a matrix inversion

to be evaluated, we also present an approximate analytical

solution for the trajectory. In particular, we show that the

circular motion is clockwise when viewed from above the

surface, and that the cells need to swim into the surface as

a natural consequence of force-free and torque-free swim-

ming. We then illustrate the results of our two models (the

full model and its analytical approximation), show their

dependence on various geometrical parameters of the cell,

and compare the models with our experiments. We find that

our models are consistent with experimental swimming

speeds and radii of curvature of the circular motions, and that

they allow us to obtain an estimate for the relation between

the size of the bacterium and its distance to the surface. The

values of the various hydrodynamic mobilities used in

the model are presented in Appendix A, and the cell tra-

jectory far from a surface is given in Appendix B.

EXPERIMENT

We examined a dilute suspension of smooth-swimming (i.e.,

non-tumbling) E. coli cells (HCB437) (22) in an observation

chamber. The cells were observed from outside the chamber

above the surface, swimming with counter-clockwise tra-

jectories; consequently, when viewed from within the liquid

(what we will refer to as ‘‘above the surface’’ in the re-

mainder of the article), they are performing clockwise trajec-

tories. In Fig. 1, we provide superimposed video images

showing the curved trajectories that cells follow when swim-

ming near the glass surface.

Materials and methods

Preparation of motile cells

E. coli strain HCB437 (22) used in these studies is a smooth-

swimming strain that is deleted for most chemotaxis genes.

During cell growth, cells double their length and then divide

at their approximate midpoint (septate), while maintaining

a constant width. The length of cells naturally vary depend-

ing on the progress of cells through the growth cycle (23).

Media components were purchased from Difco (Tucker,

GA) or Sigma (St. Louis, MO). Saturated E. coli cultures

were grown for 16 h in tryptone broth (1% tryptone and 0.5%

NaCl) using a rotary shaker (200 rpm) at 33�C. Saturated

cultures were frozen at �70�C in 15% glycerol. Motile E.
coli cultures were obtained by diluting 50 mL of the thawed

saturated culture into 5 mL of fresh tryptone broth, and

grown in 14 mL sterile, polypropylene tubes at 33�C on

a rotary shaker (150 rpm) for 3.5 h. Cells were washed by

three successive centrifugations at 2000 g for 8 min and were

resuspended into motility buffer (24) (1 mM potassium

phosphate, pH 7.0, 0.1 mM Na-EDTA) containing 10 mM

glucose and 0.18% (w/v) methylcellulose (Methocel 90;

Biochemika, Fluka, St. Louis, MO). Glucose was added to

maintain motility in an anaerobic environment and methyl-

cellulose was added to reduce the tendency of cells to wobble

(25) (solutions of methylcellulose are Newtonian at concen-

trations ,0.5% (26)). Filamentous cells were obtained by

growing motile cells for 3.5 h as described above, adding

50 mg/mL cephalexin to the culture, and then growing cells

an additional 0.5 h (27). Filamentous cells were then washed

as described above.

Observation of swimming cells

A volume of 50 mL of the washed cell suspension (;106

cells/mL) was added to an observation chamber constructed

from two glass coverslips and double-sided tape (Scotch,

permanent; 3M, St. Paul, MN). The chamber dimensions

were ;1-cm wide, ;2-cm long, and ;80-mm high. The

microscope coverslips were alternately rinsed with soap and

DI water, DI water, ethanol, DI water, and then treated with

an air plasma for 1 min at 1–2 Torr (SPI Plasma Prep II;

Structure Probes/SPI Supplies, West Chester, PA). The

observation chamber was heated to 32�C using a heated

microscope stage (Research Instruments, Singapore). Cells

swimming near the upper glass coverslip were observed using

a Nikon Eclipse E400 upright, phase-contrast microscope

(Nikon, Marunouchi, Tokyo). Video images were acquired

using a 203 or 403 Nikon phase objective and a mono-

chrome CCD camera (Model No. V1070; Marshall Elec-

tronics, El Segundo, CA) connected to a digital video

FIGURE 1 Superimposed phase-contrast video microscopy images show

E. coli cells (HCB437) swimming in circular trajectories near a glass surface.

(Left) Superposition of 8 s (240 frames) of video images. (Right) Typical

superposition of 2 s (60 frames) of video images that was used to analyze the

length and width of cells, the swimming speed of cells, and the radius of

curvature of the trajectories.

Swimming in Circles 401

Biophysical Journal 90(2) 400–412



recorder (Model No. GV-D1000, Sony, San Diego, CA) that

collected 640 pixel 3 480 pixel images at 30 frames per

second.

Image analysis

Video was captured into a computer using Adobe Premiere

(Adobe, San Jose, CA) and analyzed using ImageJ (available

for download at http://rsbweb.nih.gov/ij/) or Scion Image

(available for download at http://www.scioncorp.com) using

standard analysis tools. Video images were thresholded so

that cells appeared black and the background appeared white.

The following parameters were measured for individual cells

in 60 consecutive video frames (2 s): The projected area of

the cell, the midpoint of the cell, and the short and long axis

of the cell (approximating the cell shape as an ellipse). The

average of these values measured over the 2-s interval was

used. The average cell speed was calculated by measuring

the average distance that the midpoint of the cell traveled

between each video frame and dividing this distance by the

video collection rate (30 fps or 0.033 s). The radius of cur-

vature of the cell trajectory was calculated by making a least-

square fit of a circle to the 2-s trajectory of the midpoint of

the cell. A small amount of error was introduced by the

collection and analysis of cells from multiple regions of the

swimming chambers and from multiple chambers. Small

changes in focus and lighting in different regions led to

variability in the thresholding, which led to some error in the

measurement of cell widths and lengths. The error due to

differences in focus and lighting were ,10%, as judged by

the variability in the widths of cell. We minimized these

effects by using the measured aspect ratio of cells and an

average value (1.5 mm) for the width of cells in all cal-

culations below.

Results

In Fig. 2 we plot the experimental results for the cell

swimming speed (U) and the radius of curvature of the cir-

cles (R) as a function of the equivalent sphere radius, a, that

is, the radius of the sphere that has the same viscous resis-

tance as the prolate ellipsoid of measured cell width and

aspect ratio, translating along its axis of symmetry (28),

a

w
¼ 4

3

1

2f
2 � 1

ðf2 � 1Þ3=2
ln

f1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2 � 1
p

f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2 � 1
p

 !
� 2f

f
2 � 1

; (1)

wherew is the width of the cell andf its aspect ratio (see Table

1 for a summary of the symbols used in the article). As

explained above, we take w to be the average of the measured

cell widths to minimize focus and lighting differences (w ¼
1.5 mm) and measure the value of f. The scatter in the exper-

imental data, evident in Figs. 1 and 2, can be explained by the

natural cell-to-cell variability in the number of flagella (29),

flagellar length, flagellar rotation rates (12), and distances of

cells from the surface (8) (parameters that might also be func-

tion of cell length); we address the effects that these parameters

have on the predicted radius of curvature below. Nonetheless,

the experimental data demonstrate a statistically significant

(R2 ¼ 0.55) increase of the radius of curvature of the trajec-

tories of cells swimming near a glass surface with the cell size.

MODEL

We present in this section our hydrodynamic model for the

motion of E. coli near a flat no-slip surface and give a simple

physical picture for the circular trajectory.

Setup

We model the bacterium as a single, left-handed rigid helix

attached to a spherical body (16,30,31) of radius a whose

center of mass is located at a distance d above a solid surface,

as illustrated in Fig. 3; the liquid gap between the solid sur-

face and the cell body has height h. At the concentration we

use, cells are separated by at least one body length, i.e.,

approximately 10 mm. Force-free flows, as the flow around

a swimming bacteria, decay spatially at least as fast as 1/r2,

where r is the distance from the cell, and possibly faster

when near solid boundaries, and as a consequence, cells are

not expected to interact hydrodynamically with each other.

The cell is assumed to be parallel to the surface and oriented

in the y direction. The helix is assumed to have thickness 2r,
radius b, wavelength l, with a number n of wavelengths

along the helix, such that the total length of the helix along

FIGURE 2 Results of our experimental

investigation of swimming E. coli near solid

boundaries. (Left) Radius of curvature of the

circular trajectory, R, as a function of the

equivalent sphere radius, a, of the elliptical

cell body (see text). (Right) Swimming speed,

U, versus equivalent body radius, a. In both

cases, we have added as dashed lines the best

least-square fit to the data of the form aa1 b.

(Left) a ¼ 86.78, b ¼ �61.99 mm, and

R2 ¼ 0.55. (Right) a ¼ �19.09 s�1, b ¼
39.39 mm s�1, and R2 ¼ 0.165.
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the y direction is Lk ¼ nl. The assumption of sphericity,

although not completely realistic for the cell body of E. coli
which is more like a 2:1 prolate ellipsoid, was made in order

to use well-known mobility formulae, and we expect

therefore our results to be correct within a shape factor of

order unity. Due to the action of rotary motors, the bundle is

rotating in the counter-clockwise direction (viewed from

behind) with an angular velocity v ¼ – v ey relative to the

body, with v . 0 (see Fig. 3). We denote by U ¼ (Ux, Uy,

Uz) and V ¼ (Vx, Vy, Vz) the instantaneous velocity and

rotation rate (measured from the center of the cell body),

respectively, of the bacterium.

Physical picture

In the absence of a nearby wall, the bacterium swims in

a straight line, U ¼ Uy ey, and rotates along its swimming

axis, V ¼ Vy ey. The velocity Uy . 0 is obtained by

balancing the propulsive force of the helical bundle with the

viscous resistance on the whole bacterium and the rotation

rate Vy . 0 is found by the balance of viscous moments

around the y axis (see Appendix B).

What changes when the microorganism is swimming near

a solid surface? Both the cell body and the helical bundle

contribute together to a rotation of the bacterium around the

z axis (see notations in Fig. 3; see also (32)).

First, as the cell body is near the surface, when it rotates

around the y-axis at a rate Vy . 0, there is a viscous force

acting on the cell body in the x-direction, F 1
x ex, with F 1

x.0

(see diagram on Fig. 4 a). This is a standard hydrodynamic

result (28) and an intuitive way to think about this result is

to picture a ball in a liquid film near a surface; pushing

the ball along the surface will also make it rotate, and vice

versa.

The bundle of flagella is also acted upon by a net force in

the x-direction, induced by the presence of the wall. Since the

bundle takes the shape of a helix, parts of the bundle are

located close to the surface and parts are located further away

(see Fig. 4). The local drag coefficient on an elongated

filament decreases with increasing distance from the nearby

surface (see details below), which means that the parts of the

bundle that are close to the surface will be subjected to a

larger local viscous force compared to portions of the helix

located further away from the surface. As the helical bundle

rotates counter-clockwise around the y axis (viewed from

behind), the portions of the helix that are closer to the surface

have a positive x velocity, and therefore the net viscous force

acting on the bundle, F 2
x ex, is negative, F 2

x , 0 (see diagram

in Fig. 4 b). Note that since the swimming bacterium as

a whole is force-free, we have necessarily F 2
x ¼ �F 1

x.

As a consequence of the viscous forces acting on both the

helical bundle and the cell body and their spatial distribution,

TABLE 1 List of symbols used in this article and their meaning

Symbol Meaning

U Velocity of the cell, U ¼ (Ux, Uy, Uz).

V Rotation rate of the cell, V ¼ (Vx, Vy, Vz).

U Planar swimming velocity of the bacteria, U ¼ U2
x1U2

y

� �1=2

.

R Radius of curvature of the trajectory, R ¼ U/jVzj.
a Equivalent sphere radius, given by Eq. 1.

w, f Width and aspect ratio of the cell.

d Distance between the center of the cell and the surface.

h Gap thickness between the cell and the surface.

r Radius of the flagella filament (bundle).

b, l Radius and wavelength of the helix.

n Number of wavelength in the flagella.

Lk Length of the flagella Lk ¼ nl.

v Rotation rate of the flagella (in the frame attached

to the cell body).

F 1
x; F 2

x Local forces responsible for the cell rotation near the

surface (see Fig. 4).

F F ¼ (Fx,Fy,Fz).

L L ¼ (Lx,Ly,Lz).

M, W Mobilities of the cell body; M (W) is non-zero

(zero) away from the surface.

N, V Mobilities of the flagella; N (V) is non-zero (zero)

away from the surface.

Mab
ij Typical notation for the viscous mobilities, Mab

ij ¼ @ai=@bj .

a Either F, for force, or L, for torque.

b Either U, for velocity, or V, for rotation rate.

ck, c? Local drag coefficient for motion parallel and perpendicular

to local length.

uk, u? Component of local velocity parallel and perpendicular to

local length.

m Shear viscosity of the liquid.

ck Value of ck at a distance d to the surface.

f (z) Variation of ck from ck, that is f ðzÞ ¼ ck=ck.

A, B Mobility matrix for the cell body and the helical

flagellar bundle.

h0, a1, a2 Parameters for the linear increase of h with a (Eq. 25).

e Slenderness of the helical flagella, e ¼ 2pb/l.

s Curvilinear coordinate along the flagella.

I, J Integrals involved in the flagellar mobility calculations

(Eq. 29).

FIGURE 3 Setup and notations for the mechanical model of E. coli
swimming near a solid surface.
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a negative torque, Lz , 0, will act on the bacterium and

will rotate the entire cell clockwise around the z axis (Fig. 4,

right). When viewed from above, the bacterium will there-

fore swim to the right, as is observed experimentally. Since

the bacterium as a whole is torque-free (the inertia of the

organism is much smaller than the resisting fluid forces, so

forces and torques on the organism need to balance at each

instant), this torque will be balanced by a positive torque

arising from the viscous resistance to a rotation around the

z axis.

This physical picture allows us to obtain an estimate for

the radius of curvature R of the motion, as the ratio of

the swimming velocity Uy to the out-of-plane rotation rate

Vz. Since the Reynolds number for the flow number is low

(typically Re � 10�4), the equations of motion for the fluid

are linear (Stokes flow), and therefore instantaneous viscous

forces and torques for various parts of the bacterium are

linearly related to their velocities and rotation rates, with

linear coefficients usually termed mobilities (see Eqs. 8 and 9

below).

We denote by M and N the viscous mobilities of the

bacterium flagella and body, respectively, which are non-

zero even in the absence of a wall, and by W and V those

which are equal to zero when the microorganism swims far

from the surface. For example, the mobility relating the y
component of the viscous force to the y component of the cell

velocity will be denoted by an M-symbol, as it is non-zero

even without the presence of the nearby surface, but the

mobility relating the x component of the viscous torque to

the y component of the cell velocity will be denoted by a

W-symbol, as this mobility is equal to zero far away from

a solid boundary. This distinction will allow us to get a

clear understanding of the physical mechanisms at play when

we obtain formulae for the motion of the organism.

For all these mobilities (say M for illustration purposes)

we will use notations of the form Mab
ij , where the superscript

ab is either FU, in which case MFU
ij denotes how the ith

component of a viscous force is linearly related to the jth

component of the cell velocity (Fi ¼ MFU
ij Uj), FV (relation

between force and rotation rate), LU (relation between torque

and velocity), or LV (relation between torque and rotation

rate). We will also always use the convention that the

mobilities are positive, and will therefore appear with a minus

sign when necessary (see Eqs. 8 and 9).

To have an estimate of the radius of curvature of the

trajectories, we need to estimate both the swimming velocity

and the out-of-plane rotation. The swimming velocity is

obtained by balancing the propulsive force of the microor-

ganism due to the rotation of the flagella, MFV
yy ðv�VyÞ,

with the viscous drag on the whole bacterium, given by

ðMFU
yy 1N FU

yy ÞUy, so that

MFV

yy ðv�VyÞ � ðMFU

yy 1N FU

yy ÞUy: (2)

The rotation rate can be estimated by balancing the wall-

induced torque mentioned above, also due to rotation of

the flagella, Lz � WLV
zy ðv�VyÞ, with the viscous torque

resisting rotation of the whole bacterium. This is mostly due

to the viscous resistance of the long flagella, �MLV
zz Vz,

which is

WLV

zy ðv�VyÞ � �MLV

zz Vz: (3)

By evaluating the ratio of the two previous balances, we

obtain an estimate for the radius of the circular motion as

R � Uy

jVzj
�

MLV

zz M
FV

yy

WLV

zy ðM
FU

yy 1N FU

yy Þ
: (4)

Away from the surface, WLV
zy becomes small and therefore

the radius of curvature of the trajectory will become large,

which is expected as bacteria (during a run) swim in straight

lines. (Note that both translational and rotational diffusion,

neglected in this article, will actually prevent E. coli from

swimming in a straight line for more than a few seconds.) As

is demonstrated below, the simple estimate given by Eq. 4

is consistent with a more detailed calculation for the cell

trajectory.

FIGURE 4 Physical picture (side and front
views) for the out-of-plane rotation of the

bacterium: (a) The positive y-rotation of the

cell body leads to a net viscous x-force on the

cell body, F 1
x.0. (b) The negative y-rotation of

the helical bundle leads to a net negative

viscous x-force on the flagella, F 2
x,0. The

spatial distribution of these forces leads to

a negative z-torque on the bacterium, which

makes it rotate clockwise around the z-axis.

Therefore, when viewed from above, the

bacterium swims to its right.
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TRAJECTORY CALCULATION FOR
THE BACTERIUM

We proceed in this section by presenting the detailed

calculation for the trajectory of the bacterium using resistive-

force theory for the flagellar hydrodynamics, and exploit it to

obtain an approximate analytical solution.

Modeling of flagella hydrodynamics

The modeling chosen here for the helical hydrodynamics is

that of resistive-force theory (RFT), as first introduced by

Gray and Hancock (34), since it is the simplest approach to

the zero-Reynolds-number hydrodynamics of elongated

bodies. The method is an approximation to the equations

of slender-body theory (SBT). SBT considers the zero-

Reynolds-number dynamics of long and slender filaments by

distributing fundamental Stokes flow singularities at their

centerline (33,35). The idea was first introduced by Hancock

(36), is reviewed in detail by Lighthill (37), and has been

applied to the case of helical flagella in Higdon (30).

RFT is the leading-order approximation of SBT, which gives

results accurate at orderOð½logðL=rÞ��1Þ, where L is the length

along the filament and r its radius. The complexity of fully

solving for the spatial distribution of singularities on a moving

flagellar filament is replaced by introducing a set of local drag

coefficients. Let us consider a portion of the filament of length

d‘, oriented along the tangential vector, t, and moving at

a velocity u in a viscous liquid. The local velocity can be

decomposed into a parallel and perpendicular components,

u ¼ uk 1 u?, where uk is parallel to the tangential vector,

uk ¼ (u � t)t, and u? is perpendicular to it, u? ¼ u – uk. RFT

assigns values for the local drag coefficients, ck and c?, which

relate the local viscous force per unit length to the local parallel

and perpendicular velocities, such that the total force on an

element of length d‘ can be written

dF ¼ �d‘ðckuk 1 c?u?Þ: (5)

For a periodic flagellar filament (wavelength l) perform-

ing planar oscillations in a liquid of viscosity m and far from

a solid surface, we have approximately (21,34)

ck ¼
2pm

lnð2l=rÞ � 1=2
; c? ¼ 2 ck: (6)

The case of helical flagella was first considered in this

context in Chwang et al. (38). Note that the drag anisotropy

between tangential and perpendicular motion is the funda-

mental origin of the flagellar propulsion of microorganisms

(2,34,37). Although it is only an approximate method, RFT

has been shown in the past to provide both qualitative and

quantitative information about the locomotion of micro-

organisms (21,34,37,39,40).

The presence of a solid surface modifies the values of the

resistance coefficients for both the cell body and its flagella

(18–21,41–45). Elements of the helical flagella are located at

a distance d(z) ranging between d � b and d 1 b to the solid

surface, which are both smaller than the helix wavelength l,

so that the viscous resistance to motion of the flagella

is dominated by the interactions with the surface. Since r �
d 6 b, we consider the far-field asymptotic results of Katz

et al. (19) (see also the review in Brennen and Winet (21))

and use

ckðzÞ ¼
2pm

lnð2d ðzÞ=rÞ; c? ¼ 2 ck: (7)

Deviations from 2 for the ratio c?/ck were discussed in this

context by Katz and Blake (20). We will denote by ck the

value of the drag coefficient, Eq. 7, when d(z) ¼ d, and will

denote deviations from this value by the function f, so that

ckðzÞ ¼ ckf ðzÞ.

Mobilities

We consider separately the mobilities of the cell body and its

flagella, neglecting therefore the hydrodynamic interactions

between these two parts of the microorganism. Although this

is an approximation, we expect it will contribute only to a

small error in the final results as the presence of a nearby

surface leads to spatially localized flow fields, decaying at

least as fast as a Stokeslet-dipole (;1/r2).

As described earlier, we denote by M and N the mobilities

that are non-zero even in the absence of a wall, and by W and

V those which are equal to zero when the microorganism

swims far from the surface (with the conventions that the

mobilities are positive). The mobility matrix for the spherical

cell can be written as

and that of the helical flagella as

F x

F y

F z

Lx

Ly

Lz

0
BBBBBB@

1
CCCCCCA ¼

�N FU

xx 0 0 0 VFV

xy 0

0 �N FU

yy 0 �VFV

yx 0 0

0 0 �N FU

zz 0 0 0

0 �VLU

xy 0 �N LV

xx 0 0

VLU

yx 0 0 0 �N LV

yy 0

0 0 0 0 0 �N LV

zz

0
BBBBBBBB@

1
CCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

�

Ux

Uy

Uz

Vx

Vy

Vz

0
BBBBBB@

1
CCCCCCA; (8)
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with values calculated in Appendix A. As can be seen in Eq.

9, the matrix B is almost full; the elements reported to be zero

are either exactly zero at all instants or time-average to zero

over the rotation period of a flagellar filament, T ¼ 2p/v. If

we define

X ¼ ðUx;Uy;Uz;Vx;Vy;VzÞT
; and Y ¼ ð0;0; 0; 0;v;0ÞT

;

(10)

then the requirement that the microorganism is free-

swimming, L ¼ 0 and F ¼ 0, becomes a 6 3 6 linear

system to solve for X of the form

ðA1BÞX ¼ BY: (11)

The solution for the velocity, U, and the rotation rate, V,

can be found by simply substituting the values of the mo-

bilities from Appendix A and numerically solving the linear

system Eq. 11. The radius of curvature of the in-plane motion

will then be given by

R ¼ U

jVzj
; U ¼ ðU2

x 1U
2

yÞ
1=2
: (12)

Approximate analytical solution

When the bacteria swims far from the solid surface, an

analytical solution to motion can be found and we give it in

Appendix B. In the presence of a solid surface, an analytical

solution to the linear system, Eq. 11, exists in theory by direct

matrix inversion, but it is very complicated and not very

enlightening. We present below instead an approximate

analytical solution of the linear system.

First, we note that, in the case of E. coli, a number of

mobilities can be neglected between the elements of A and

B. They are

N LV

zz � MLV

zz ; N
LV

xx � MLV

xx ; (13a)

MFU

zz � N FU

zz ; M
LV

yy � N LV

yy ; (13b)

WLU

xy � VLU

xy ; W
LU

yx � VLU

yx ; (13c)

WFV

xy � VFV

xy ; W
FV

yx � VFV

yx : (13d)

Furthermore, since the x and z components of both veloc-

ity and rotation rate are zero far from the solid surface, we

make the assumption that, near the surface, these components

are at most on the order of the y components: we therefore

assume that (Ux, Uz) & Uy and (Vx, Vz) & Vy. We further

assume that Vy � v, as is the case far from the surface.

Finally, since we have in general ðWab
ij ; Vab

ij Þ � ðMab
iy ;

N ab
iy Þ, where j ¼ x or z, these assumptions allow us to

simplify further the mobilities in the matrices A and B.

In that case, the equations +Ly ¼ 0 and +F y ¼ 0 lead to

the approximate solutions for the swimming speed and body

rotation

Uy �
MFV

yy

MFU

yy 1N FU

yy

v; (14a)

Vy �
MLU

yy M
FV

yy

N LV

yy ðM
FU

yy 1N FU

yy Þ
v; (14b)

and Vy is indeed verified to be much smaller than v. We can

then use +F z ¼ 0 and obtain

Uz ¼
1

N FU

zz

MFV

zx Vx 1MFV

zz Vz

� �
: (15)

It follows, by substituting Eq. 15 into +Lz ¼ 0 and

evaluating the leading-order contribution, that

Ux ¼
1

MLU

zx

MLU

zz M
FV

zx

N FU

zz

Vx �MLV

zz Vz �WLV

zy v

" #
: (16)

As a consequence, substituting Eqs. 15 and 16 into +Lx ¼ 0,

using Eq. 14a and evaluating the leading-order term leads to

MLV

xx Vx 1
MLV

zz M
LU

xx

MLU

zx

Vz 1
VLU

xy M
FV

yy

MFU

yy 1N FU

yy

v ¼ 0: (17)

Finally, substituting Eqs. 14a, 14b, and 16 into +F x ¼ 0 and

keeping the leading-order terms leads to

MFV

xx Vx 1
MLV

zz ðM
FU

xx 1N FU

xx Þ
MLU

zx

�MFV

xz

� �
Vz

1
WLV

zy ðM
FU

xx 1N FU

xx Þ
MLU

zx

v ¼ 0: (18)

Solving the 2 3 2 linear systems of equations given by Eqs.

17 and 18, and keeping only the leading-order terms, leads to

approximate formulae for the x and z components of the

rotation rates as

F x

F y

F z

Lx

Ly

Lz

0
BBBBBB@

1
CCCCCCA ¼

�MFU

xx WFU

xy 0 MFV

xx WFV

xy �MFV

xz

WFU

yx �MFU

yy 0 �WFV

yx �MFV

yy WFV

yz

0 0 �MFU

zz MFV

zx 0 MFV

zz

MLU

xx �WLU

xy MLU

xz �MLV

xx �WLV

xy 0

WLU

yx MLU

yy 0 �WLV

yx �MLV

yy WLV

yz

�MLU

zx WLU

zy MLU

zz 0 WLV

zy �MLV

zz

0
BBBBBBBB@

1
CCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

�

Ux

Uy

Uz

Vx

Vy � v

Vz

0
BBBBBB@

1
CCCCCCA; (9)
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Vx � �
VLU

xy M
FV

yy

MLV

xx ðM
FU

yy 1N FU

yy Þ
v; (19a)

Vz � �
WLV

zy

MLV

zz � MFV

xz M
LU

zx

MFU

xx 1N FU

xx

 !v: (19b)

Note that the denominator in the equation for Vz, Eq. 19b, is

dominated by MLV
zz but not by much, so we need to keep

both terms to obtain correct orders of magnitude. These equa-

tions allow us to verify that, for E. coli, Vx is much smaller

than Vy and Vz is of the same order as Vy. Note also that we

obtain Vz , 0, which means that the bacteria is swimming to

its right (clockwise trajectory viewed from above) and that

Vx , 0, so that the bacteria will also have the tendency to

swim into the surface. Also, we observe that

aVx

Uy

�
aVLU

xy

MLV

xx

� a

Lk

	 
3

� 1; (20)

so the timescale for reorientation of the bacteria perpendic-

ular to the surface is much larger than the typical swimming

timescale; the assumption that the bacteria is and remains

parallel to the surface is therefore valid on a typical swim-

ming timescale.

Now, substituting Eq. 19a and Eq. 19b into Eq. 15 and Eq.

16 and keeping leading-order terms leads to

Uz � �
VLU

xy M
FV

zx M
FV

yy

N FU

zz M
LV

xx ðM
FU

yy 1N FU

yy Þ
v; (21a)

Ux �
WLV

zy

MLV

zz ðM
FU

xx 1N FU

xx Þ
MFV

xz

�MLU

zx

 !v; (21b)

and we get that Ux . 0 and, more important, that Uz , 0.

This result, together with the result that Vx , 0, shows that

hydrodynamic interactions vertically trap the cell close to the

wall. Note that this trapping does not require cells to be

nonspherical (8). Note also that

Ux

Uy

�
WLV

zy ðM
FU

yy 1N FU

yy Þ

MFV

yy

MLV

zz ðM
FU

xx 1N FU

xx Þ
MFV

xz

�MLU

zx

 ! � 3

e
J � 1;

(22)

where e ¼ 2pb/l and J is defined in Appendix A, and

Uz

Uy

�
VLU

xy M
FV

zx

N FU

zz M
LV

xx

� h

Lk
� 1; (23)

so the calculation assumptions are consistent.

We can finally evaluate the approximate solution for the

radius of curvature of the circular trajectory. It is given by

R ¼ U

jVzj
� Uy

jVzj

�
MLV

zz M
FV

yy

WLV

zy ðM
FU

yy 1N FU

yy Þ
1 � MFV

xz M
LU

zx

MLV

zz ðM
FU

xx 1N FU

xx Þ

 !
; (24)

which is very similar to that given by the simple physical

picture in Eq. 4.

The results of the analytical model are summarized in

Table 2. When we set V ¼ W ¼ 0, and assume that the pre-

vious approximations still hold, the results from Appendix B

(swimming far from surface) are recovered.

RESULTS OF THE MODEL AND COMPARISON
WITH EXPERIMENTS

Parameters of the model

The geometric characteristics of the flagellar helical bundles

that we use are l ¼ 2.5 mm, Lk ¼ 7.5 mm (number n ¼ 3 of

wavelengths), and b¼ 250 nm (12,13,46). It is more difficult

to estimate the appropriate radius of the bundle. Individual

TABLE 2 Summary of the results of the simplified model for E. coli swimming near a solid surface; the mobilities are calculated

in Appendix A

Ux �
WLV

zy

MLV

zz ðM
FU

xx 1N FU

xx Þ
MFV

xz

�MLU

zx

 !v Uy �
MFV

yy

MFU

yy 1N FU

yy

v Uz � �
VLU

xy M
FV

zx M
FV

yy

N FU

zz M
LV

xx ðM
FU

yy 1N FU

yy Þ
v

Vx � �
VLU

xy M
FV

yy

MLV

xx ðM
FU

yy 1N FU

yy Þ
v Vy �

MLU

yy M
FV

yy

N LV

yy ðM
FU

yy 1N FU

yy Þ
v Vz � �

WLV

zy

MLV

zz � MFV

xz M
LU

zx

MFU

xx 1N FU

xx

 !v

R �
MLV

zz M
FV

yy

WLV

zy ðM
FU

yy 1N FU

yy Þ
1 � MFV

xz M
LU

zx

MLV

zz ðM
FU

xx 1N FU

xx Þ

 !
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flagella have radius of ;12 nm (1,12) and there are between

two and six flagella per bundle (four, on average). Results of

RFT away from surfaces in Chwang et al. (38) show that

appropriate velocities and rotation rates are obtained if r is

between 100 nm and 200 nm (46). However, the radius of

a tight bundle of seven flagella is approximately r � 20 nm

(13,46), and comparison between SBT calculations and

Image Velocimetry experiments in Kim et al. (31) has shown

that the flow generated by a two-filament bundle in steady

state is the same as the flow generated by a single rigid helix

with radius twice that of individual filaments. We chose in

this article to use r ¼ 50 nm as an intermediate value; the

dependence of the results on the value of r will be addressed

below. For the cell radius a, we take the equivalent sphere

radius a that has the same viscous resistance as the prolate

ellipsoid of measured cell dimensions translating along its

axis of symmetry (28) (as explained above); the experimental

values of a vary from 0.81 to 1.16 mm. The only parameter in

the model whose value is unknown is the gap thickness h.

The minimum distance cells can swim from the surface is

;10 nm because of the protrusion of the flagellar hook from

the cell body (personal communication, R.M. Ford). Values

of h have been measured to be 30–40 nm (8) . To compare

the model with our experimental data, we will assume h to be

in the range from 10 to approximately 100 nm.

Comparison experiments/models with a fixed
gap thickness h

In this section, we fix the value of the gap thickness to be the

same for all cells, so that the center of each cell is located at

the same distance d ¼ h 1 w/2 from the nearby surface.

Despite the scatter in our experimental data, we find that the

results of the two hydrodynamic models (numerical solution

of Eq. 11 and analytical solution from Table 2) are com-

parable and are consistent with our experimental data, both

for the radius of curvature of the trajectory, R � 15 to 35

mm, and the swimming speed, U ¼ (U2
x1U2

yÞ
1=2 � 20 to 25

mm/s; both set of values compare also favorably with past

experimental results as described in the Introduction.

The results comparing experiment and theory are il-

lustrated in Fig. 5. Results are displayed for two values of h,

h ¼ 10 nm (top) and h ¼ 60 nm (bottom). In both cases, the

values of the flagella rotation speeds, v, were chosen to lead

to the best least-square fit of the measured cell velocities by

the full hydrodynamic model; we obtain v ¼ 156 Hz when

h ¼ 10 nm and v ¼ 127 Hz when h ¼ 60 nm. These values

are consistent with the measurements of Vigeant et al. (8)

and with typical values for the rotation rate of flagella in

E. coli (2,11,12). The overall best-fit to the data by the full

model with a constant h is obtained for h ¼ 16 nm and

v ¼ 148 Hz.

We now discuss the difference in trends between the

models and the experimental data. The full hydrodynamic

model predicts that the swimming speed, U, decreases with

the cell size a, in agreement with our measurements. This

result is a consequence of the increase of the viscous resis-

tance with the cell size. However, the model predicts that,

when the gap thickness h is fixed, the radius of curvature, R,

should remain approximately constant, in contrast with the

results of our experiments. Indeed, as the cell size increases,

so does the distance between the helical flagella and the wall,

so the rotation-inducing torque decreases, leading to a de-

crease in the rotation rate of the bacteria. In the range of

parameters studied here, both the swimming velocity and the

rotation rate decrease by approximately the same amount

with an increase in a, leading to an approximately constant

value for R. Since the experimental data display an increase

of the radius of curvature with cell size, we will explore the

possibility of a relationship between h and a below.

FIGURE 5 Comparison between the re-

sults of the experiments (8), the full

hydrodynamic model (numerical solution

of Eq. 11, n; and best fit, straight line) and

the simplified model (Table 2, dash-dotted

line) with a fixed gap thickness h. (Top)

h ¼ 10 nm and v ¼ 156 Hz: (a) radius of

curvature, R, and (b) swimming velocity,

U, as a function of the bacterial radius a.

(Bottom) h ¼ 60 nm and v ¼ 127 Hz: (c)

radius of curvature, and (d) swimming ve-

locity as a function of the bacteria radius a.
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Dependence of the models on the cell parameters

In the experimental data presented for E. coli, l and b should

be approximately constant, but a, r (essentially proportional

to the number of flagella), and Lk, are likely to vary from cell

to cell. We expect this variability to give rise to the scatter

observed in the experimental data for R and U. In this

section, we investigate the dependence of both the full model

and the approximate analytical model on r, Lk (through n) to

help explain the scatter observed in the experimental data,

and we present the dependence of the model on l and b to

help predict the behavior of organisms other than E. coli.

(The dependence of the model on the cell body, a, and the

gap thickness, h, are illustrated in Fig. 5. Moreover, from Eq.

11, it is straightforward to see that both U and V scale with

v, and therefore R is independent of v. Finally, since the

viscous mobilities are all proportional to the viscosity of the

liquid, m, both U and V, solutions to Eq. 11, are independent

of m, and therefore so is the radius of curvature R.) To

display the variations, we will fix the values to be b ¼ 250

nm, h ¼ 30 nm, r ¼ 50 nm, l ¼ 2.5 mm, Lk ¼ 3l (that is,

n ¼ 3), and v ¼ 150 Hz, and will then vary each one of the

parameters fb, r, l, ng at a time. The results are displayed in

Fig. 6 for the full hydrodynamic model (numerical solution

of Eq. 11, solid squares and best fit, solid lines) and the

approximate analytical model (Table 2, dash-dotted lines).
These results first confirm that both models are in agree-

ment for the trends and values of the swimming velocity,

FIGURE 6 Dependence of the results

fR,Ug on the geometrical parameters fb,

r, l, ng for the two models (full model:

squares and best fit, solid line; approxi-

mate analytical model: dash-dotted line),

in the case where r¼ 50 nm, l¼ 2.5 mm,

b¼ 250 nm, Lk ¼ 3 l (n¼ 3), h¼ 30 nm,

and v ¼ 150 Hz, and one of the

parameters is varied at a time. (a and b)

Dependence on the helix radius, b, for

two values: b ¼ 200 nm (n and thick
lines) and b ¼ 300 nm (h and regular

lines). (c and d) Dependence on the

bundle radius, r, for two values: r ¼ 20

nm (n and thick lines) and r ¼ 100 nm

(h and regular lines). (e and f) De-

pendence on the helix wavelength, l, for

two values: l ¼ 1 mm (n and thick lines)

and l ¼ 4 mm (h and regular lines).
(g and h) Dependence on the number

of wavelengths, n, for two values: n ¼ 2

(n and thick lines) and n ¼ 4 (h and

regular lines).
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although the approximate analytical model can lead to large

errors for the radius of curvature of the trajectory (by up to

50%). For both models, the dependence of the swimming

velocity, U, on the four parameters is found to be consistent

with the increase of the propulsive viscous force with b, r, l,

and n (see the values of the mobilities as calculated in

Appendix A). The radius of curvature decreases with r,
consistent with an increase in the hydrodynamic interactions

with the nearby surface as described by Eq. 7. Furthermore,R
decreases with b, confirming the important role of the viscous

resistance on parts of the helix that are close to the surface

(whose distance to the surface decreases with b) in inducing

the torque on the cell in the z-direction. Finally, the increase of

R with l and n probably follows that of U, through Eq. 12.

Comparison experiments/models using
a relationship between cell size and gap thickness

As was observed earlier, the value of the radius of curvature

from the model depends strongly on the unknown gap thick-

ness h. Returning to the comparison with the results of our

experiments, we see that data for larger cells tend to be more

consistent with the model for large values of h (Figs. 5 and 6).

Thus we propose here that, if we suppose that all bacteria have

the same geometrical characteristics, fb, r, l, Lkg, our

hydrodynamic model could be used to estimate the relation

between the typical cell size, a, and its steady-state distance to

the wall, h, by fitting the model to the experimental data of

Fig. 2, which show an increase ofRwith cell size. The results

are illustrated in Fig. 7, where we have plotted together the

results of the experiments with two predictions of the full

hydrodynamic model (Eq. 11) where the cell parameters are

given above and where we assume a linear relationship

between a and h,

hðaÞ ¼ h0 1
a� a1

a2

	 

h1: (25)

The parameters for this fit are h0 ¼ 10 nm, a1 ¼ 0.81 mm,

a2 ¼ 0.35 mm, and the value of h1 is chosen to lead to the

same correlation (slope) between the results of the model and

the experimental data (a, h1 ¼ 119 nm) or the best possible

least-square difference between the model and the data

(b, h1 ¼ 48 nm).

CONCLUSION

We have presented a hydrodynamic model for the swimming

of E. coli near solid boundaries and compared it to a new set of

measurements of cell velocities and trajectories. We have

shown that force-free and torque-free swimming was respon-

sible for the clockwise circular motion of the cells, Vz , 0, as

well as for their hydrodynamic vertical trapping close to the

surface, that is, Vx , 0 and Uz , 0. This trapping is probably

responsible for the extended period of time during which cells

are observed to remain near surfaces, which enhances the

probability of cell adhesion to substrates. Determining the

mechanisms responsible for the relationship between h and

a we inferred from the measurements would be valuable.

The main assumptions made in this article, and which

illustrate the differences between real swimming E. coli cells

and our model, are the following:

1. We have replaced the bundle of several flagella by a

single rigid helix; according to the results of Kim et al.

(31), this might not be a large source of error.

2. We have assumed that the cell body was spherical; this

assumption is probably more important, and an analysis

using a nonspherical head might lead to an explanation of the

increase of the distance to the wall, h, with the cell size.

3. We have ignored all interactions between the cell body

and the flagella.

4. We have ignored Brownian motion.

Although relaxing these assumptions would improve on

the agreement between theory and experiments, we do not

expect it would change the physical picture given in this

article for the circular motion. Including the presence of a

second (top) boundary should also modify the cell trajec-

tories (47). If the surface was a perfectly-slipping interface

(such as the free surface between air and water) instead of

a no-slip surface, the change of the direction of the image

system for a point force (48) should lead to bacteria swim-

ming in circles, but in a counterclockwise direction (X.L. Lu,

University of Pittsburgh, private communication).

Finally, our experimental finding that the radius of cur-

vature of cell trajectories depends on the size of the cell,

suggests a new strategy for sorting cells by size using hy-

drodynamic interactions.

APPENDIX A: CELL MOBILITIES

We present in this Appendix the values of the hydrodynamic mobilities of

the bacteria. First, since we have h � a, the lubrication approximation can

FIGURE 7 Best fit to the experimental data (8) by an h(a) law in the full

hydrodynamic model (numerical solution of Eq. 11, straight line), as given

by Eq. 25. The relation between h and a is chosen to obtain the same linear

slope for the results of the model and the experimental data (a) and the best

least-square difference between the model and the data (b).
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be made to derive the mobilities for the cell body (41–44). We find that they

are given by

N FU

xx ¼ N FU

yy ¼ 6pma
8

15
ln

a

h

� �
1 0:96

� �
; (26a)

N FU

zz ¼ 6pm
a

2

h
; (26b)

N LV

xx ¼ N LV

yy ¼ 8pma
3 2

5
ln

a

h

� �
1 0:38

� �
; (26c)

N LV

zz ¼ 8pma3
; (26d)

VLU

xy ¼ VLU

yx ¼ 8pma
2 1

10
ln

a

h

� �
� 0:19

� �
; (26e)

VFV

xy ¼ VFV

yx ¼ 6pma
2 2

15
ln

a

h

� �
� 0:25

� �
: (26f)

Note that we assumed that N LV
zz was equal to its far-field value, as it

was shown that the presence of a nearby surface has only a small effect on

the value of this mobility (41).

Second, the bundle of helical flagella is described by the equation

x ¼ bsinðs� vtÞ
y ¼ � l

2p
ðs1 s0Þ

z ¼ b cosðs� vtÞ
;

8><
>: (27)

where s ranges from 0 to 2np, and v is the rotation rate of the flagella bundle

relative to the cell body. In that case, the mobility calculation was done

according to RFT and we get

MFU

xx ¼ MFU

zz ¼ 2 ck Lk
11 3e

2
=4

ð11 e
2Þ1=2

; (28a)

MFU

yy ¼ ck Lk
11 2e

2

ð11 e
2Þ1=2

; (28b)

MLU

yy ¼ MFV

yy ¼ ck bLk
e

ð11 e
2Þ1=2

; (28c)

MLV

xx ¼ MLV

zz ¼ 2

3
ck L

3

k
11 3e

2
=4

ð11 e
2Þ1=2

; (28d)

MFV

zx ¼ MFV

xz ¼ MLU

xz ¼ MLU

zx ¼ ck L
2

k
11 3e

2
=4

ð11 e
2Þ1=2

; (28e)

MLV

yy ¼ 2 ck b
2 Lk

11 e
2
=2

ð11 e
2Þ1=2

; (28f)

MLU

xx ¼ MLU

zz ¼ MFV

xx ¼ MFV

zz ¼ 1

2
ck b Lk

e

ð11 e
2Þ1=2

;

(28g)

WLU

yx ¼ WFV

xy ¼ �2 ck bLk
11 e

2
=2

ð11 e
2Þ1=2

I ; (28h)

WFU

xy ¼ WFU

yx ¼ �ck Lk
e

ð11 e
2Þ1=2

I ; (28i)

WLU

zy ¼ WFV

yz ¼ �ck L
2

k
e

ð11 e
2Þ1=2

J ; (28j)

WLU

xy ¼ WFV

yx ¼ �ck b Lk
11 2e

2

ð11 e
2Þ1=2

I ; (28k)

WLV

zy ¼ WLV

yz ¼ �2 ck b L
2

k
11 e

2
=2

ð11 e
2Þ1=2

J ; (28l)

WLV

xy ¼ WLV

yx ¼ �ck b
2
Lk

e

ð11 e
2Þ1=2

I ; (28m)

where e ¼ 2pb/l, and where we have defined the two integrals

I ¼
Z 1

0

cosð2puÞf ðcosð2puÞÞdu;

J ¼
Z 1

0

ðu1 u0Þcosð2pnuÞf ðcosð2pnuÞÞdu: (29)

Note that for the calculation of MLV
yy , the contribution due to the local

rotation of the flagella can be neglected because r � b (38).

APPENDIX B: SWIMMING FAR FROM A SURFACE

When the bacteria swims away from a surface, we have W¼ 0 and V ¼ 0, so

the mobility matrices become

A¼

�N FU

xx 0 0 0 0 0

0 �N FU

yy 0 0 0 0

0 0 �N FU

zz 0 0 0

0 0 0 �N LV

xx 0 0

0 0 0 0 �N LV

yy 0

0 0 0 0 0 �N LV

zz

0
BBBBBBB@

1
CCCCCCCA
;

(30)

and

B¼

�MFU

xx 0 0 MFV

xx 0 �MFV

xz

0 �MFU

yy 0 0 �MFV

yy 0

0 0 �MFU

zz MFV

zx 0 MFV

zz

MLU

xx 0 MLU

xz �MLV

xx 0 0

0 MLU

yy 0 0 �MLV

yy 0

�MLU

zx 0 MLU

zz 0 0 �MLV

zz

0
BBBBBBB@

1
CCCCCCCA
:

(31)

Solving Eq. 11 for the velocities and rotation rates in this case leads to

Ux ¼ Uz ¼ Vx ¼ Vz ¼ 0 and

Uy ¼
MFV

yy N
LV

yy

ðMLV

yy 1N LV

yy ÞðM
FU

yy 1N FU

yy Þ1MFV

yy M
LU

yy

v; (32a)

Vy ¼
MLV

yy ðM
FU

yy 1N FU

yy Þ1MFV

yy M
LU

yy

ðMLV

yy 1N LV

yy ÞðM
FU

yy 1N FU

yy Þ1MFV

yy M
LU

yy

v: (32b)

In the absence of a wall, the bacteria swims therefore in a straight line and

rotates its body in the direction opposed to that of the flagella.
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