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ABSTRACT Membrane-active peptides participate in many cellular processes, and therefore knowledge of their mode of in-
teraction with phospholipids is essential for understanding their biological function. Here we present a new methodology based
on electron spin-echo envelope modulation to probe, at a relatively high resolution, the location of membrane-bound lytic pep-
tides and to study their effect on the water concentration profile of the membrane. As a first example, we determined the location
of the N-terminus of two membrane-active amphipathic peptides, the 26-mer bee venom melittin and a de novo designed 15-
mer D,L-amino acid amphipathic peptide (5D-L9K6C), both of which are antimicrobial and bind and act similarly on negatively
charged membranes. A nitroxide spin label was introduced to the N-terminus of the peptides and measurements were per-
formed either in H2O solutions with deuterated model membranes or in D2O solutions with nondeuterated model membranes.
The lipids used were dipalmitoyl phosphatidylcholine (DPPC) and phosphatidylglycerol (PG), (DPPC/PG (7:3 w/w)), egg
phosphatidylcholine (PC) and PG (PC/PG (7:3 w/w)), and phosphatidylethanolamine (PE) and PG (PE/PG, 7:3w/w). The mod-
ulation induced by the 2H nuclei was determined and compared with a series of controls that produced a reference ‘‘ruler’’.
Actual estimated distances were obtained from a quantitative analysis of the modulation depth based on a simple model of an
electron spin situated at a certain distance from the bottom of a layer with homogeneously distributed deuterium nuclei. The
N-terminus of both peptides was found to be in the solvent layer in both the DPPC/PG and PC/PG membranes. For PE/
PG, a further displacement into the solvent was observed. The addition of the peptides was found to change the water dis-
tribution in the membrane, making it ‘‘flatter’’ and increasing the penetration depth into the hydrophobic region.

INTRODUCTION

Membrane-active peptides participate in many cellular pro-

cesses. A major family includes host defense peptides (also

termed antimicrobial peptides), which serve as the first

chemical barrier between all organisms and microbes (1–5).

It is generally assumed that many antimicrobial peptides dis-

rupt and permeate the target cell membrane, which result in

irreversible damage that is hard to repair (6–8). These cat-

ionic peptides bind strongly and permeate efficiently neg-

atively charged phospholipid membranes (containing the

anionic phosphatidylglycerol) that mimic the bacterial mem-

brane (9–14). Because in many cases biological activity can

be predicted on the basis of the ability of the peptides to in-

teract and disrupt these membranes, many biophysical stud-

ies were conducted on model membrane systems (15–19).

These studies indicated a direct correlation between target-

cell specificity and modes of action. For examples, peptides

that bind strongly and insert into zwitterionic membranes

(i.e., the bee venom melittin (20), the mammalian effector

protein NK-lysin (21), and the neurotoxin pardaxin (22)), are

in most cases, hemolytic, whereas those that bind predom-

inantly negatively charged membranes (i.e., the antimicrobial

peptides magainin (23) and cecropin (24)) are nonhemolytic

but endowed with antibacterial activity. Several methods are

utilized, alone or in parallel, to study peptide-membrane

interactions, each of which has advantages and disadvan-

tages. Examples include attenuated total reflectance Fourier

transform infrared spectroscopy, oriented circular dichroism

(25,26), fluorescence spectroscopy (27), surface plasmon

resonance (SPR) (28,29), and nuclear magnetic resonance

(NMR) (30–32). Another method is electron paramagnetic

resonance (EPR) spectroscopy (33–37), which includes line-

shape analysis, providing dynamical information, and relax-

ation time measurements (T1 and T2) that give qualitative

distance information.

Here we introduce another approach to study peptide-

membrane interactions based on electron-spin echo envelope

modulations (ESEEM) spectroscopy. This technique is a

well-established method for measuring distances between an

electron spin and nearby nuclear spins (38–40). The exper-

iment constitutes the application of a series of microwave

pulses that generate an echo, and the echo decay is followed

as a function of one of the time intervals between the pulses.

When an anisotropic hyperfine interaction is present, the

echo decay is modulated, as shown in Fig. 1 a for the three-

pulse ESEEM experiment. In the case of a very weak an-

isotropic hyperfine interaction the modulation frequency is

the nuclear Larmor frequency, nI, and the modulation depth

(K) is a function of the electron-nuclear distance, the number

of interacting nuclei, and their nuclear spin (38). Accord-

ingly, K provides direct information on the close environ-

ment of the unpaired electron. For example, ESEEM has

been extensively used by Kevan and co-workers to study

a variety of photoionization and charge-separation problems
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in micelles and vesicle where modulations from 31P in the

polar head and from D2O were followed (41–43). In

addition, it was used to determine the location of nitroxide

spin probes in micelles through their interactions with

specifically deuterated surfactant molecules (44,45). Re-

cently, ESEEM was used to determine the degree of water

penetration into phosopholipid bilayers with and without

cholesterol (46,47).

The application of this method to study peptide-membrane

interactions requires a spin-labeled peptide, which is achieved

using the well-known site-directed spin-labeling methodol-

ogy (48). The interaction of the peptide with the membrane is

then followed using ESEEM induced by 2H nuclei in spe-

cifically labeled phospholipids. Furthermore, the exposure of

the spin-labeled peptide to the solvent is examined by the

ESEEM of a D2O solution of normal phospholipids. This

approach gives two points of reference, as roughly illustrated

in Fig. 1 b. In this naive schematic representation the

headgroup is drawn perpendicular to the surface and the

chain is tilted. A more realistic picture is given by probability

distribution functions, as summarized in the review of Nagle

et al. (49). There the center of the phosphate group

probability distribution is somewhat lower than that of the

choline (with respect to the surface).

The ESEEM technique offers the following advantages: i),

Deuterium labeling of phospholipids preserve their prop-

erties. ii), The relation between the modulation pattern and

the distance is relatively simple and universal (38), such that

different nitroxide spin probes can be directly compared

with the spin-labeled peptide. This allows the creation of a

reference ‘‘ruler’’ using spin probes with different and well-

known properties to which unknowns can be compared. iii),

Peculiarities analogous to nonradiative energy homotransfer

or other self-quenching mechanisms, as sometimes found in

fluorescence spectroscopy (50), are not encountered because

the nuclear modulation does not depend on electron-electron

spin interactions. iv), The evaluation of the degree of expo-

sure to the solvent is also straightforward through the use of

D2O. v), The ESEEM experiments can be complemented

by EPR measurements, which provide information on the

motional characteristics and binding. vi), The results can be

quantitatively analyzed to yield estimated average distances.

We demonstrate the feasibility of this ESEEM methodol-

ogy by exploring the interaction of two membrane-active

peptides with model membranes. Specifically, the effect of

the peptides on the water concentration profile of the mem-

brane and the relative location of their N-terminus with respect

to the membrane surface were determined. The two membrane-

active amphipathic peptides used were: the 26-mer bee

venom melittin and a de novo designed 15-mer D,L-amino

acid (aa) diastereomeric amphipathic peptide (5D-L9K6C).

Melittin served as a model for a non-cell-selective peptide

that forms transmembrane pores in zwitterionic but not in

negatively charged membranes, whereas the diastereomeric

5D-L9K6C was used as a model for bacteria-selective and

non-pore-forming peptides. Both peptides are antimicrobial

and bind and act similarly on negatively charged membranes

(51–58). Cysteine was added to their N-termini without

affecting their biological function, to serve as a site for the

attachment of the spin probe. The negative model mem-

branes used were large unilamellar vesicles (LUVs) prepared

from dipalmitoyl phosphatidylcholine (DPPC) or egg

phosphatidylcholine (PC) mixed with egg phosphatidylgly-

cerol (PG) (DPPC/PG or PC/PG, both 7:3 w/w). In the

former, DPPC was deuterated in the polar head region. A few

experiments were also carried out on phosphatidylethanol-

amine (PE) and PG LUVs (PE/PG, 7:3 w/w).

EXPERIMENTAL PROCEDURES

Materials

4-Methyl benzhydrylamine resin and butylloxycarbonyl amino acids were

purchased from Calibochem-Novabiochem (La Jolla, CA). Other reagents

FIGURE 1 (a) The three-pulse ESEEM sequence and the ESEEMwaveform

with the definition of the modulation depth, K(2H). (b) A schematic representa-

tion of the various regions of the model membrane and the expected modulation

depth for a spin label located within the different regions. The gradient in the

gray color distinguishes between the hydrophilic and hydrophobic regions.
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used for peptide synthesis included trifluoroacetic acid (Sigma, St. Louis,

MO), N,N-diisopropylethylamine (Aldrich, St. Louis, MO), methylene

chloride (peptide synthesis grade, Biolab, Jerusalem, IL), dimethylforma-

mide (peptide synthesis grade, Biolab), piperidine (Merck, Rahway, NJ), and

benzotriazolyl-n-oxy-tris-(dimethylamino) phosphonium-hexaflourophos-

phate (Sigma). Reagents used for site-directed spin labeling included (1-

oxyl-2, 2, 5, 5-tetramethyl-3-pyrroline-3-methyl) methanethiosulfonate

(MTSSL) (Toronto Research Chemicals, Ontario, CA). The spin probes 4-

trimethylam monium-2, 2, 6, 6-tetramethylpiperidine-1-oxyl iodide (CAT1)

(Molecular Probes, Eugene, OR), 3-(carboxy)-2, 2, 5, 5-tetramethyl-1-

pyrrolidinyloxy (proxy), 5-doxyl-stearic acid (5DSA) and 7-doxyl-stearic

acid (7DSA) were purchased from Aldrich. 16-Doxyl-stearic acid (16DSA)

was purchased from TCI (Tokyo, Japan). The phospholipids dipalmitoyl

phosphatidylcholine (DPPC), egg phosphatidylcholine (PC), egg phospha-

tidylglycerol (PG), and phosphatidylethanolamine (PE) (Type V, from

Escherichia coli) were purchased from Sigma (see Fig. 2 for chemical

formulas). The synthesis and purification of rec-1, 2 dipalmitoyl-3-

phosphatidylcholine-d13 (DPPC-d13) was done based on the procedures

described in Verhoeven et al. (59) and Eibl (60). The products were checked

by TLC and 1H-NMR (300 MHz) (CDCl3/TMS) the chemical and isotopic

purity was found to be better than 98%.

Peptide synthesis and purification

The two peptides (sequences are shown on Table 1) were synthesized by

a standard F-moc solid-phase method on a Rink amide MBHA resin (61,62).

The peptides were cleaved from the resin by trifluoroacetic acid and after

treatment with the reducing agent DTT (1:1000), they were purified by RP-

HPLC on a C18 reverse phase Vydac analytical column (2503 4.6 mm, 300-

Å pore size, 5-mm particle size). They were shown to be homogeneous

(.97%) and their purification was confirmed by mass spectrometry.

Peptide labeling and purification

The spin probe (MTSSL) was attached to the two different peptides through

a specific cysteine, located at the N-terminal of the peptide chain (48). A 10-

fold excess of the radical was used in 0.1 M phosphate buffer (pH 7.2) and

0.1 M NaCl. The suspensions were stirred at room temperature for 12 h. The

spin-labeled peptides were purified by RP-HPLC and the purification was

confirmed by mass spectrometry. The spin-labeled peptides are referred to as

5D-L9K6C-NO and melittin-NO. The spin-labeled peptides preserved the

antimicrobial activities of the parental peptides.

Preparation of large unilamellar vesicles

Dry lipid mixtures of DPPC/PG (7:3 w/w), PC/PG (7:3 w/w), and PE/PG

(7:3 w/w) were dissolved in a CHCl3/MeOH mixture (2:1, v/v). The sol-

vents were evaporated under a nitrogen stream, and the lipids (at a con-

centration of 5 mg/ml) were resuspended in a phosphate buffer by vortexing.

Next, the large unilamellar vesicles (LUVs) were prepared by extrusion as

described in detail previously (63). The peptides were added to the LUV

solution at a peptide/lipid molar ratio of 1:250 to ensure maximum binding

of all the peptide molecules to the LUVs, as determined previously for the

parental peptides (56,64). Because the addition of the spin probe did not

affect the biological function of the parental peptides, we can assume a

similar binding for labeled peptides. Other probes were added to the LUV

solution in the same concentration as the peptides. In the case of 5-, 7-, and

16DSA, which are water-insoluble, a 1% (weight) of the spin probe was

added to the lipid mixture and then the LUVs were prepared. After equil-

ibration at room temperature, the samples for ESEEM measurements were

rapidly frozen by insertion of the EPR tube into liquid nitrogen (43). There-

after, the samples remained frozen. Tables 2 and 3 list all samples prepared.

EPR spectroscopy

Continuous wave (CW) X-band (9.2 GHz) EPR measurements were carried

out at room temperature on a Varian E12 spectrometer in flat cells. ESEEM

experiments were carried out on a Bruker ELEXSYS E580 spectrometer

operating at 9.5 GHz at 50 K. The three-pulse ESEEM sequence, p/2-t-p/

2-T-p/2-t-echo, was employed with a four-step phase cycling (65). Themea-

surements were carried out at a magnetic field where the echo intensity is

maximum, and the length of the p/2 and p microwave pulses were 16 and

FIGURE 2 Schematic illustration of the phospholipids

and the nitroxide spin probes used in this study. (a) PG, (b)

DPPC, (c) 5DSA, (d) MTSSL, (e) proxy, and ( f ) CAT1.
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32 ns, respectively. The pulse interval t was selected as ;220 ns,

(depending on the magnetic field), to maximize the deuterium modulation

according to t ¼ (2q 1 1)/2nI, q ¼ 0, 1, 2. . ..where nI is the deuterium

nuclear Larmor frequency (38). The effective modulation depth was taken as

K ¼ a/(a 1 b), where (a 1 b) is the interpolated echo intensity between the

first and second maxima and b is the echo intensity at the first minimum, as

shown in Fig. 1 a. Fourier transformation (FT) of the ESEEM trace yields

a peak at the 2H Larmor frequency, the intensity of which is I(2H). I(2H)

represents the total intensity of the 2H modulation in the ESEEM trace, as

opposed to K(2H), where only one representative time point is considered.

The two, however, are closely related and should exhibit the same trends. In

this work we have used both K(2H) and I(2H) to locate the peptides with

respect to the LUVs. The FT was carried out as follows: first the background

decay was subtracted using a polynomial fit, then the data were apodized

with a Hamming window, zero filling was performed followed by FT, cross-

term averaging (66), and finally the magnitude spectrum was calculated. All

ESEEM traces were treated identically. The number of accumulations was

30–90 depending on the modulation depth.

W-band ENDOR measurements were carried out at 25 K on a home-

built spectrometer (67) using the Mims ENDOR sequence (68). The p/2

microwave pulse length was 60 ns, and the interval between the two first

pulses, t was 0.364 ms. The duration of the RF p pulse was 30 ms and the

number of accumulations was ;400.

RESULTS AND DISCUSSION

CW-EPR

The EPR spectrum of the spin-labeled peptide can give an

indication of its binding to the LUVs. Therefore, before the

ESEEM experiments, room temperature EPR measurements

were carried out. The spectrum of a nitroxide spin probe, un-

dergoing rapid tumbling in solution and fully averaging all

anisotropic interactions, is characterized by a triplet with

narrow linewidths and equal intensities. In contrast, the EPR

spectrum of a probe bound to a LUV is characterized by

a spectrum with broader lines and different relative in-

tensities, due to the slower tumbling rate of the larger object

(69). The room temperature (22–24�C) CW-EPR spectra of

the spin-labeled 5D-L9K6C (5D-L9K6C-NO) and melittin

(melittin-NO) in buffer solutions and in solutions of LUVs

of PC/PG and PE/PG are shown in Fig. 3. The solution

spectrum of melittin-NO is broader than that of 5D-L9K6C-

NO because of its larger size, 27 aa compared to 16, which

results in a slower tumbling rate for melittin. The spectra of

the peptides in solutions with LUVs of DPPC/PG (data not

shown), PC/PG, and PE/PG are significantly broader than

those in normal solutions, exhibiting a residual anisotropy

that shows that both peptides bind to the LUVs. In addition,

the spectra of the peptides with DPPC/PG and PC/PG exhibit

more pronounced anisotropic characteristics than those with

PE/PG, suggesting a better binding in DPPC/PG and PC/PG.

Indeed, previous studies showed that the binding of some

native and redesigned cationic peptides increases by .10-

fold when PE/PG is replaced with PC/PG (56,70). The

spectra of both peptides show an additional sharp triplet

(marked with * in Fig. 3) superimposed on the broader signal

and attributed to some free nitroxide. Its relative intensity is

,3% and therefore it will not be considered any further.

For the characterization of the system and the creation of

a reference ruler, LUV solutions with standard spin probes

were prepared and compared with those of the spin-labeled

peptides (see Fig. 2). Tables 2 and 3 list the samples pre-

pared. The spectra of the positively charged CAT1 and the

negatively charged proxy (not presented) showed that the

probes are highly mobile and therefore no conclusions re-

garding their binding/penetration to the LUVs could be

drawn. In contrast, the spectra of 5DSA and 7DSA, pre-

sented in Fig. 4, reflect a large anisotropy, showing that they

have been incorporated into the vesicle bilayer and the

nitroxide is located in a position where its motion is highly

restricted (on the EPR timescale). Some of the spectra of

5DSA and 7DSA include superimposed sharp triplets

(marked with *) attributed to a free nitroxide. The relative

intensity of the latter is very small and it can therefore be

ignored. Both probes exhibit a higher degree of anisotropy

than the spin-labeled peptides. The spectrum of 16DSA

shows a smaller anisotropy because the label is located deep

in the bilayer, in the more mobile hydrophobic region. These

results are in agreement with earlier studies of spin probes

and membranes (71–73).

The comparison of the spin-label peptides with those of

the reference spin labels should be done cautiously because

the addition of the peptide affects the properties of the mem-

brane. Therefore, a valid comparison is with systems that

consist of the reference spin probe and the LUVs with and

without nonlabeled peptides. Fig. 4 compares room tem-

perature EPR spectra of 5-, 7-, and 16DSA in DPPC-d13/PG

without and with melittin or 5D-L9K6C. For both peptides,

5DSA exhibits a decrease in Æ2Akæ, reflecting an increase in

the mobility. The effect is stronger for melittin. The same

behavior was observed for the PC/PG system. Marsh and co-

workers (72) have studied the effect of melittin on pure 1, 2

dimyristoyl-sn-glycero-3-phosphocholine and 1, 2 ditetradecyl-
sn-glycero-3-phosphoglycerol using spin-labeled phospholi-

pids and 5DSA. They reported that whereas in the gel phase

TABLE 1 The peptides used in this work

Peptide designation Sequence*

Melittin CGIGAVLKVLTTGLPALISWIKRKRQQ-NH2

5D-L9K6C CLKLLKKLLKKLLKLL-NH2

*D-amino acids are underlined and italic.

TABLE 2 The DPPC-d13/PG samples studied in this work

Membrane DPPC-d13/

PG

DPPC-d13/

PG1melittin

DPPC-d13/

PG15D-L9K6CSpin probe

CAT1 1 – –

proxy 1 – –

5DSA 1 1 1

7DSA 1 1 1

16DSA 1 1 1

5D-L9K6C-NO 1 – –

Melittin-NO 1 – –
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the addition of melittin resulted in increased mobility, a de-

crease in the motional freedom was observed in the liquid

crystalline phase. In addition, melittin caused a smearing of

the gel-liquid crystal transition. Temperature-dependent EPR

measurements of 5DSA in DPPC/PG (not shown) revealed

a continuous decrease of Æ2Akæ with increasing temperatures

showing that the cooperative change in mobility, manifested

by the clear phase transition, is absent. This is attributed to

the mixture of lipids used, as noted earlier for the mixture of

DPPC/PG (74).

Although the EPR spectra show that the two peptides are

bound to the LUVs and affect the mobility of its constituents,

they do not provide information regarding the mode of bind-

ing. Namely, it is not clear whether they are adsorbed at the

LUV water interface or are inserted into the LUV bilayer,

and if so, how deep they penetrate. Such information can be

obtained from the ESEEM experiments described next.

ESEEM measurements

The ESEEM measurements are usually carried out at low

temperatures on frozen solutions to slow down the echo

decay. It has been shown that the structure of the membrane

is preserved upon fast freezing (43,46,47) and therefore the

results of such measurements are relevant. We chose to

freeze quench the samples at room temperature because at

this temperature the biological activity of the peptides was

tested (56). Three-pulse ESEEM measurements were carried

out on all samples listed in Tables 2 and 3.

Location of reference spin probes in the LUVs

The first step toward determining the location of the peptide

with respect to the LUVs surface is to build a reference

‘‘ruler’’ for the modulation depth expected from different

regions within and outside the lipid bilayer and to establish

the range of distances that is accessible by this method. For

this purpose, the K(2H) and I(2H) values of the various

reference spin probes in DPPC/PG/D2O and DPPC-d13/PG

were determined and analyzed quantitatively. For a compar-

ison, we also investigated the PC/PG/D2O, which is expected

to be similar to the DPPC system for which we had spe-

cifically deuterated lipids. Sample FT-ESEEM spectra are

presented in Fig. 5, a and b. All the spectra show two peaks,

at the 2H Larmor frequency (;2 MHz) and at;15 MHz, the
1H Larmor frequency, due to protons. Because the 2H peaks

FIGURE 3 Room temperature X-band EPR spectra of

some of the samples studied as noted on the figure. The

asterisks (*) mark the signal of free nitroxide impurity.

TABLE 3 The D2O samples studied in this work

Membrane

D2O

PC/PG/

D2O

DPPC/PG/

D2O

PC/PG/

D2O1melittin

DPPC/PG/

D2O1melittin

PC/PG/D2O

15D-L9K6C

DPPC/PG/D2O

15D-L9K6C

PE/PG/

D2OSpin probe

CAT1 1 1 – – – – – –

proxy 1 1 – – – – – –

5DSA – 1 1 1 1 1 1 –

7DSA – 1 1 1 1 1 1 –

16DSA – 1 1 1 1 1 1 –

5D-L9K6C-NO 1 1 1 – – – – 1

Melittin-NO 1 1 1 – – – – 1
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within the DPPC-d13/PG, DPPC/PG/D2O, and PC/PG/D2O

groups have the same width (within experimental error), we

took the peak height as a measure of its intensity.

Furthermore, since the proton modulation is relatively

weak (because of the t-value chosen), it usually can be

well separated from the 2H modulations also in the time

domain traces. It does not affect the determination of the 2H

modulation depth, unless the 2H modulation is very shallow.

In this case the presence of the 1H modulation can lead to

errors in K(2H) but not in I(2H).
For DPPC/PG/D2O and PC/PG/D2O, K(2H) and I(2H)

exhibit the trend: proxy ; CAT1 . 5DSA . 7DSA .

16DSA (Figs. 5 a and 6 a). This is expected considering the

properties of each of these probes, where 16DSA is buried in

the hydrophobic alkyl chain part and the two small polar

probes are located in the water solvent. In these systems, the
2H peak is actually a superposition of two signals, a broad

peak (marked with an arrow in Fig. 5 a), attributed to water

molecules in close contact with the spin probe (via hydrogen

bonds), and a narrow peak representing the distant water

(47). The spectra show that water molecules are hydrogen

bonded down to position 7, and remote water can also be

observed from position 16. The ESEEM experiments carried

out on a spin-labeled phosphatidylcholine in bilayers of pure

DPPC showed a sharp decrease in I(2H) at position 8 (47).

For DPPC-d13/PG the trend 5DSA . 16DSA ; 7DSA .

proxy . CAT1 is observed (Figs. 5 b and 6 b). Here the 2H

peak does not have a broad component because there are no

close, specific interactions between the nitroxide group and

the membrane’s deuterons. The similar modulation depth of

7DSA and 16DSA is rather surprising. A similar behavior was

observed in pure DPPC vesicles with 31P modulation being

the reference point (43). There, it was explained in terms of

the bending of the alkyl chains such that the nitroxides in

5DSA and 16DSA are at the same depth. However, the re-

ported D2O modulation exhibited by 16DSA was signifi-

cantly lower than in 7DSA, similar to our observations.

Therefore, we attribute the unexpectedly large K(2H) of

16DSA in DPPC-d13/PG to its deep position, which also

senses the deuterated layer of the counterpart of the bilayer.

The very low value of K(2H) of D2O indicates that the

amount of water that penetrates below the deuterated layer is

small.

The comparison of the modulation depth of this reference

system is summarized in Fig. 6, a and b. Here we present

both the K(2H) and I(2H) values. Although the I(2H) value
exhibits a better resolution compared to K(2H), in the model

calculation we computed K(2H) rather than I(2H) (see Ap-

pendix) because of computational time constraints. The cal-

culation of K(2H) requires less computation time because the

length of the calculated ESEEM trace can be shorter (see

below). Fig. 6 shows that K(2H) and I(2H) exhibit the same

FIGURE 4 Room temperature X-band EPR spectra of 5DSA, 7DSA, and

16DSA in DPPC-d13/PG LUVs without peptides (solid line), with 5D-

L9K6C (dashed line) and with melittin (dotted line).

FIGURE 5 FT-ESEEM spectra of reference spin probes in (a) DPPC/PG/D2O and (b) DPPC-d13 /PG. 16DSA (solid line), 7DSA (dashed line), 5DSA

(dotted-dashed line). The arrow marks the broad signal due to water H-bonded to the NO group.
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trend, but they do not scale linearly. This is attributed to the

larger error in K(2H) due to the interference of the protons’

modulation when the 2H modulation is shallow.

We have also used 31P as a reference point for locating the

reference spin probes. Whereas no 31P peaks were detected

in the FT-ESEEM spectra, a signal at the 31P Larmor fre-

quency was observed in the W-band Mims ENDOR spec-

trum, recorded with an optimized t-value as described in

Zänker et al. (75). Fig. 7 shows the spectrum of 5DSA in PC/

PG. The ENDOR effect is very weak but clear, and field

dependence measurements, also depicted in Fig. 7, confirm

its assignment to 31P. The maximum width of the signal, 0.5

MHz, is similar to that obtained by Zänker et al., for 5-doxyl-

phosphocholine in a bilayer of unlabeled 1-palmitoyl-2-

stearoyl-sn-glycero-3-phophocholine (75). There, simulations

of the spectra yielded a maximum distance of 5.1 6 0.5 Å,

which we adopted as a crude higher limit. The spectrum of

7DSA in PC/PG shows a much weaker, hardly detectable

signal. From these results we concluded that the carboxylate

of 5DSA is, on the average, at the perimeter of the phosphate.

The similarity between the 2H modulation results of DPPC/

PG D2O and PC/PG in D2O suggests that the 5DSA location

is the same in the two systems.

To further quantitate the location of the spin probes with

respect to the surface of the membrane, obtained from K(2H)
of DPPC-d13/PG, we used the theoretical model described

in the Appendix. This model calculates the K(2H) value ex-
pected for an electron spin, situated at a distance z0 from the

bottom of a deuterated layer with a thickness a and a homog-

enous distribution of deuterium nuclei with a density d. Fig.
8 a shows the dependence of K(2H) on z0 for several deuter-
ated layers with different thicknesses and densities. As ex-

pected, the curve is symmetric about the center of the layer,

and it falls off rather fast, such that for z0 . 13–14 Å, no

modulation is observed. This translates into a distance of 6–8

Å from the boundaries (inner and outer) of the deuterated

layer (depending on the thickness used) and sets the range of

distances to which this methodology applies.

The comparison of the experimental modulation depth

of 5DSA and 7DSA in DPPC-d13/PG, 0.1 and 0.046, re-

spectively (marked in Fig. 8 a by horizontal solid lines), with
the calculated curves provides an estimated average distance

from the boundaries of the layer (marked by the dotted
vertical lines in Fig. 8), depending on the d and a values, as

listed in Table 4. Taking into consideration the D2O modu-

lation depth, the distances must be from the inner part of the

layer. The average distance range for 5DSA is 2–3.8 Å and

for 7DSA 3–4.6 Å. If the alkyl chains are tilted with respect

to the surface (49,75), the relative distance of 2.6 Å between

5DSA and 7DSA nitroxide on the alkyl chain (49) translates

into a shorter distance relative to the deuterated layer. For

example, for a tilt of 57� the difference should be ;1.4 Å,

which is not much larger than the above estimates. The

probability distribution functions for the different groups in

DPPC membranes (49) show that that average position of the
31P is ;1 Å below the choline. Hence, the distances we ob-

tained are somewhat lower than expected from the 5DSA-31P

distance estimated from the ENDOR measurements (#5 Å).

This may be a result of the crude model used, which assumed

a constant density of deuterons in the layer, rather than a more

complex realistic distribution. In addition, the 2H nuclear

quadrupole interaction was not taken into account. This, how-

ever, would lead to a shorter rather than a larger distance.

Similar calculations were not carried out for the DPPC/PG/

D2O system because it should be described by a complicated

model that includes specific and nonspecific interaction and

a wide inhomogeneous layer.

We also considered a nonhomogeneous distribution of the

deuterons in the layer, accounting for the methyl groups in

the top part and methylene groups in the bottom part. Taking

a ratio of 9:4 in the densities of the upper and lower halves of

the layer (keeping the total number of deuterons in the layer

the same as for the symmetric case), we obtained the curves

shown in Fig. 8 b for a layer of 8 Å. The average distances

for 5DSA and 7DSA for this case are even shorter, 1–2.7 Å

and 2.2–3.5 Å for 5DSA and 7DSA, respectively (see Table

FIGURE 6 The K(2H) (solid symbols, arrow points to left axis) and I(2H)

(shaded symbols, right axis) values of all reference spin probes in (a) DPPC/
PG/D2O (n) and PC/PG/D2O (d) and (b) DPPC-d13/PG.
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4). The 31P ENDOR results imply that the homogeneous dis-

tribution seems more appropriate.

The effect of the peptide on the LUVs

A comparison of the modulation depth of 5-, 7-, and 16DSA,

with and without nonlabeled peptide, indicates composi-

tional changes, primarily in the water density profile within

the LUVs. The results of the PC/PG system for melittin and

5D-L9K6C are shown in Fig. 9 and a similar behavior was

observed for DPPC/PG. The change in I(2H) shows that the
presence of the peptides leads to a small decrease in the water

exposure of 5DSA, and an increased exposure for 7DSA and

16DSA, with the latter experiencing the largest change. In

addition, the effect of 5D-L9K6C is stronger than that of

melittin. These changes are associated with a slight increase

in I(2H) of DPPC-d13 for 5DSA and a decrease for 7DSA and

16DSA as shown by comparing Figs. 6 b and 10 a. From this

FIGURE 7 The dependence of the fre-

quency of the W-band Mims ENDOR 31P

signal of 5DSA in PC/PG on the magnetic

field. The solid line was calculated based

on the gyromagnetic ratio of 31P. The inset

on the left shows the echo detected EPR spec-

trum and the fields at which the ENDOR

was measured. The inset on the right dis-

plays the ENDOR spectra of 5DSA and

7DSA in PC/PG recorded at a magnetic field

corresponding maximum echo intensity.

FIGURE 8 Calculated K(2H) values as a function of z0 (the distance of the electron spin from the bottom of the layer) for several layer thicknesses, a, and

densities, d, (a) for a homogeneous distribution, d¼ 0.055 n/A3, a¼ 5 Å (n), d¼ 0.045 n/A3, a¼ 6 Å (d), d¼ 0.033 n/A3, a¼ 8 Å (:), d¼ 0.025 n/A3, a¼
8 Å (;), d¼ 0.0125 n/A3, a¼ 8 Å (¤). (b) For a bimodal distribution with a¼ 8 Å and d¼ 0.0125 n/A3 (d), d¼ 0.025 n/A3 (:), d¼ 0.033 n/A3 (;). Here

one of the traces for a homogeneous distribution (d ¼ 0.0125 n/A3, (n)) is shown for comparison. The vertical lines define the range of the layer for a ¼ 5, 6,

and 8 Å and the horizontal lines the experimental K(2H) values of 5DSA (upper) and 7DSA (lower).
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we concluded that the peptide’s interaction with the mem-

brane changes the water density profile in the membrane,

making it less steep. The water penetration into the hydro-

phobic part of the membrane increases, whereas its content is

somewhat reduced at the hydrophilic part. The small increase

in I(2H) of DPPC-d13 for 5DSA may be associated with

a small increase in the lipid layer density due to the decrease

in the water content in this hydrophilic region. This, how-

ever, should have led to an increase in I(2H) for 7DSA and

16DSA as well, which was not observed. An additional

option is that there is a decrease in the average tilt angle of

the alkyl chains, which will lead to a stronger reduction of

I(2H) at the end of the chain because of the 1/r6 dependence.

The location of the peptides

Initially we compared the modulation depth of the spin-

labeled peptides with those of the soluble reference spin

probes CAT1 and proxy in a D2O/glycerol-d3 (9:1) buffer

solution without the LUVs, and the values obtained were all

the same within the experimental error (K(2H) ¼ 0.44 6

0.015, I(2H) ¼ 24 6 0.2). This shows that, at least in

solution, the size and conformation of the peptides do not

significantly affect the exposure of the nitroxide group to the

solvent. The appropriate reference system for locating the

peptide with respect to the surface of the LUVs should in-

clude the peptide, because it is clear from the EPR and the

ESEEM results that the peptides change the properties of the

LUVs. Fig. 10 a compares the K(2H) and I(2H) values of

melittin-NO in DPPC-d13/PG with those of 5-, 7-, and

16DSA in DPPC-d13/PG with a nonlabeled peptide. The

trend observed is 5DSA� 7DSA; 16DSA.melittin-NO,

whereas for both the DPPC/PG/D2O and PC/PG/D2O sys-

tems the trend is 5DSA ; melittin-NO . 7DSA . 16DSA

(Fig. 10 b). This places the nitroxide group of melittin-NO at

the outer surface of the LUVs. Yet the amount of water in its

vicinity seems somewhat too low compared with 5DSA,

which is well inside the membrane. This suggests a peptide

conformation where the N-terminal is buried and less

exposed to water. The behavior of 5D-L9K6C-NO, presented

in Fig. 10, a and b, as well, is similar to that of melittin, with

a generally larger modulation depth for 5D-L9K6C-NO in all

systems.

A comparison with the calculated curves of Fig. 8 yields

for 5D-L9K6C-NO an average distance of 3–4 Å from the

surface of an 8-Å layer for a homogeneous 2H distribution.

For a layer divided into two sublayers with different densities

the distance is 3–4.5 Å. For melittin the distances are slightly

longer (by up to 0.5 Å). These distance estimates are derived

from a model where the lateral distribution of the deuterons

in the layer is homogeneous. However, an insertion of an

a-helical peptide, with a radius of;4 Å, will result in a local

depletion of deuterons in the layer. Although this local

change will not have a considerable effect on the modulation

of the 5-, 7- and 16DSA probes due to the low peptide

concentration and the random distribution of the spin probes

in the LUVs, it can significantly affect a spin label attached

to the peptide that is close to this depleted region. The

relatively large D2O modulation depth, however, makes this

possibility of insertion of the N-termini less likely. This

N-termini location at the outer surface of the membrane is

also consistent with the relatively large motional freedom

deduced from the EPR spectra. Fig. 11 shows a schematic

representation of half of the LUVs bilayer with the positions

of the various spin labels as determined from this work.

Finally, the ESEEM of 5D-L9K6C-NO and melittin-NO

added to PE/PG LUVs in D2O were measured as well. The

I(2H) values were significantly higher than for the corre-

sponding DPPC/PC and PC/PG systems, especially for 5D-

L9K6C-NO, as shown in Fig. 10 b, indicating a higher water

exposure. This is consistent with earlier studies (56) showing

that the binding constant of melittin to PE/PG is weaker than

the binding to PC/PG (53).

TABLE 4 The distance of the bottom of the deuterated layer to the NO group of 5DSA and 7DSA as determined from comparison

of the experimental modulation depth in the DPPC-d13/PC with the calculated traces shown in Fig. 8

Homogeneous Inhomogeneous

d, n/Å3 a, Å

Distance

5DSA, Å

Distance

7DSA, Å d, n/Å3 a, Å

Distance

5DSA, Å

Distance

7DSA, Å

0.055 5 3.8 4.6 – – – –

0.045 6 3.6 4.2 – – – –

0.033 8 3.2 4.0 0.033 8 2.7 3.5

0.025 8 2.8 3.8 0.025 8 2.2 3.0

0.0125 8 2.0 3.0 0.0125 8 1.0 2.2

FIGURE 9 Comparison of the I(2H) values for 5DSA, 7DSA, and 16DSA
in PG/PC/D2O LUVs without peptides (n), with melittin (:), and with 5D-

L9K6C (d).
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The orientation of melittin and the depth of its penetration

in negatively charged membranes has been a subject of con-

troversy. Whereas some reported that the peptide is located

on the membrane surface with only hydrophobic residues

inserted into the lipid bilayer, others showed that melittin is

preferentially oriented parallel to the lipid chain (56,57,76).

Our study supports a ‘‘carpet’’ mechanism for membrane dis-

ruption (8). According to this mechanism, peptides first bind

to the phospholipids’ membrane surface until a threshold con-

centration is reached, and only then do they permeate it in a

detergent-like manner (15).

In this work we have concentrated on the establishment of

a methodology and thereby focused only on the effect of the

peptides on the LUVs and the location of the N-terminus of

the peptides. Nevertheless, such studies can be extended in

the future to other peptides and lipids, which are labeled and

deuterated, respectively, at different positions, allowing us to

locate the whole peptide within the membrane and obtain

further insight into its mode of action. In terms of the model

used to calculate the K(2H), it can be improved by repre-

senting density of deuterons with a probability distribution

function obtained from MD simulation (49,77).

CONCLUSIONS

We have demonstrated a new approach, based on ESEEM

measurements of selectively deuterated lipids, for studying

peptide-membrane interactions. In the particular case used, the

specific labeling of the polar head region with 13 deuterons,

in combination with the use of deuterated water, allowed us

to probe distances of up to ;8 Å to the surface of the mem-

brane and 6 Å to the phosphate region (from the hydrophobic

region). The location of a set of reference probes provides

a reference ruler that can be used for further studies. It was

found that the N-terminus of both melittin and 5D-L9K6C are

located in the solvent phase, and that the peptides acquire

a conformation that reduced the exposure of the N-terminal

to water, with the 5D-L9K6C N-terminal being more ex-

posed. In addition, the binding of both peptides significantly

changes the water density profile of the model membrane,

making it ‘‘flatter’’ and increasing the water penetration

FIGURE 11 A schematic representation of the relative location (d) of the

nitroxide spin label in the reference probes on the labeled peptides with

respect to the surface of the model membrane’s layer.

FIGURE 10 (a) Comparison of the I(2H) (solid symbols, right axis) and

K(2H) (shaded symbols, left axis) values for 5D-L9K6C-NO (LKC-NO)

and melittin-NO (Mel-NO) in DPPC-d13/PG with those of 5DSA, 7DSA,

and 16DSA in DPPC-d13/PG LUVs with 5D-L9K6C (left) and melittin

(right). (b) Comparison of the I(2H) values for LKC-NO and Mel-NO in

DPPC/PG/D2O (squares) with those of 5DSA, 7DSA, and 16DSA in DPPC/

PG/D2O with 5D-L9K6C (left) and melittin (right). The circles (connected by
a line) correspond to the same in a PC/PG/D2O system, including also

melittin-NO and 5D-L9K6C-NO in PE/PG/D2O.
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depth, with 5D-L9K6C having a stronger effect. Finally,

DPPC/PG and PC/PG were shown to behave similarly, both

showing stronger binding of the peptides than a PE/PG

membrane.

APPENDIX: CALCULATION OF
MODULATION DEPTH

Here we present a model for calculating the modulation depth of an unpaired

electron situated away from, or within, a layer of 2H nuclei. The approach is

somewhat similar to that used for calculation of the 31P Mims ENDOR line

shapes of a spin-labeled lipid in a model membrane (75), with the major

difference that ESEEM is calculated, rather than ENDOR. It is assumed that

the size of the LUV is considerably larger than the electron-nuclear distance

and because of the 1/r6 dependence of the modulation depth, the curvature of

the LUV surface can be neglected and treated as an ‘‘infinite’’ layer. More-

over, we assumed that the distribution of the 2H nuclei within the layer is

homogeneous. Fig. A1 presents the geometry of the model, where the

unpaired electron is on the Z axis (perpendicular to the layer) at position z0,

the nucleus location is given by ½r cosf; r sinf; z�;where 0, z, a, and a is
the layer thickness. The orientation of the magnetic field, H0, with respect

to the XYZ system is given by ½sin u0 cosf0; sin u0 sinf0; cos u0� and the

electron-nucleus distance r is r ¼ [r2 1 (z0 � z)2]0.5.

The angle between the magnetic field and r, u is cosq ¼ H0 � r=jH0jjrj.
Because the positions of the 2H nuclei are not correlated, it is not

necessary to consider both f and f0; hence we set f0 ¼ 0 and the inte-

gration was carried out on f only.

The three-pulse echo intensity for a single nucleus, neglecting relaxation,

is (38,77)

VðTÞ ¼ 1

2
½VaðTÞ1VbðTÞ�; (A1)

where for S ¼ 1/2 and I ¼ 1, neglecting the nuclear quadrupole interaction,

VaðTÞ ¼ 1� 16

3
k sin2 vat

2

� �
sin

2 vbðt1 TÞ
2

� �

1
16

3
k
2
sin

4 vat

2

� �
sin

4 vbðt1 TÞ
2

� �
(A2)

VbðTÞ ¼ 1� 16

3
k sin

2 vaðt1 TÞ
2

� �
sin

2 vbt

2

� �

1
16

3
k2 sin4 vaðt1 TÞ

2

� �
sin

4 vbt

2

� �
; (A3)

and

k ¼ vnB

vavb

� �
; vn ¼

gnH0

Z
;

va ¼
A

2
� vn

� �2

1
B

2

� �2
" #1=2

;

vb ¼
A

2
1vn

� �2

1
B

2

� �2
" #1=2

:

In case of weak nonspecific interactions, the point dipole approximation

applies and

A ¼ T?ð3cos2 u� 1Þ;

B ¼ T?ð3cos u sin uÞ; T? ¼ gegN

Zr
3 :

For a nucleus at r; f; and a H0 orientation of u0 (for brevity, the T

dependence is removed):

Vðz0; r; z; u0;fÞ ¼
1

2
Vaðz0; r; z; u0;fÞ1

1

2
Vbðz0; r; z; u0;fÞ

� �
;

(A4)

and the normalized echo intensity for a single nucleus that can be anywhere

within the layer, is

Va1ðz0Þ ¼
Z ZZZ

Vaðz0; r; z;f; u0ÞPðrÞdzdrdf
� �

3 sin u0du0 ¼
Z

V9aðz0; u0Þsin u0du0; (A5)

and the expression for Vb1ðz0; u0Þ is similar, just exchanging a with b.

P(r) is the probability of finding the nucleus at r and is given by

PðrÞ ¼ 2prd; where d is the nuclei density. For n nuclei the echo intensity

is given by (78):

VðTÞ ¼ 1

2

Yn
i¼1

VaiðTÞ1
Yn
i¼1

VbiðTÞ
" #

: (A6)

Hence, for two nuclei:

Va2ðz0; r1; z1;f1; r2; z2;f2; u0Þ
¼ Vaðz0; r1; z1;f1; u0ÞVaðz0; r2; z2;f2; u0Þ:

(A7)

Because the nuclear positions are independent, integration can be carried out

on each nucleus separately yielding

Va2ðz0Þ ¼
Z ZZZ

Vaðz0;r1;z1;f1;u0ÞPðr1Þdz1dr1df1

�

3

ZZZ
Vaðz0;r2;z2;f2;u0ÞPðr2Þdz2dr2df2

�
sinu0du0

¼
Z
ðV9aðz0;u0Þ2sinu0du0Þ;

Z
V9aðz0;u0Þsinu0du0

� �2

: (A8)FIGURE A1 The model for calculating K(2H) from a layer with a homo-

geneous distribution of deuterons.
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The latter approximation relies on the spherical model of Kevan and co-

workers (38) and stems from V9aðz0; u0Þ being a function of the type (1-e),
where e � 1. Analogously, for n nuclei, we obtain

Vanðz0Þ¼
ZZZZ

Vaðz0;r;z;f;u0ÞPðrÞdzdrdfsinu0du0

� �n

;

(A9)

where n ¼ dv ¼ dpðrmaxÞ
2zmax; and v is the volume of the layer. After

inclusion of the Vb term the final expression becomes:

Vnðz0Þ ¼
1

2
V

n

a
ðz0Þ1

1

2
V

n

b
ðz0Þ

� �

¼ 1

2

ZZZZ
Vaðz0;r;z;f;u0ÞPðrÞdzdrdfsinu0du0

� �n

1
1

2

ZZZZ
Vbðz0;r;z;f;u0ÞPðrÞdzdrdfsinu0du0

� �n

:

(A10)

The integration limits of z were taken from 0 to the layer thickness a, and the

values tested were 5, 6, and 8 Å. The value r was integrated from 0 to 40 Å,

where the upper value was determined by checking for convergence. We

added the limit of a minimum r of 2.5 Å imposed by steric constraints. The

integration limits for f and u0 were 0–2p and 0–p=2; respectively.

Both the density and the thickness of the deuterated layer are unknown

and have to be evaluated. The lower limit of a is obtained by taking the

length of the fragment (CD3)3NCD2CD2. The lower limit of d was obtained

by dividing the number of deuterons in the fragment, 13, by its volume,

taking into account the relative content of the deuterated lipid, 70% in our

case. This yields a maximum value of 0.055 deuterons/Å3. In reality, this

part of the membranes also contains water and has elements of disorder.

Hence, we also calculated the modulation depth for lower densities.

Molecular dynamics simulations (77) reported a width of 10–13 Å for the

interface, from which a value of 8 Å for the deuterated section is reasonable

(75,77).
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