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ABSTRACT The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us,
using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin
(PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that
different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were
able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and
G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain.
We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on
cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to
electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental
work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the
sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions.

INTRODUCTION

The cytochrome b6 f (cyt b6 f ) complex is an oligomeric

membrane protein complex, which is one of the three major

redox complexes residing in the thylakoid membrane (1,2).

Electrons pass through this complex from Photosystem II

to Photosystem I. Cytochrome f (cyt f), which is one of the

main subunits of this complex, transfers electrons to one of

two mobile electron carriers, namely, plastocyanin (PC) or

cytochrome c6 (cyt c6), which transfers the electron to the

Photosystem I complex (3). The availability of Chlamydo-
monas reinhardtii, cyt f, PC, and cyt c6 structures allowed us

to model electron transfer interactions between these redox

partners in the same species.

The luminal portion of cyt f is a ;28 kDa b-sheet protein

consisting of two domains (4–6). As can be seen in Fig. 1,

the larger of the two domains, residues 1–170 and 230–251

in C. reinhardtii, binds the heme. The residues of the large

domain are highly conserved. In contrast, the residues of the

small domain (residues 171–229) are less conserved among

different organisms (7). Five important lysine residues in C.
reinhardtii cyt f contribute to a positive electrostatic field that

it is believed to attract negative charges on PC or cyt c6. Of

these, K-58, K-65, and K-66 are located on the large domain,

and K-188 and K-189 are found on the small domain (4,

8–11).

PC is an 11 kDa ‘‘blue’’ copper, b-sheet protein that has

two clusters of negatively charged residues called the upper

and lower cluster, respectively (7,10,12–14). The upper

cluster consists of residue Nos. 59–61, but it should be noted

that PCs from all algae and some species of higher plants

have a two-residue deletion in this region (13). For example,

C. reinhardtii PC has only two negatively charged residues

at positions No. 59 and No. 61, but there is a third negatively

charged residue at position No. 85. The lower cluster con-

sists of residue Nos. 42–44 and either No. 45 or No. 79,

which are conserved in all higher plants and green algal PCs.

Close to these clusters, there is also another negative group,

D-53. These eight anionic residues produce a large negative

electrostatic field surrounding PC (15).

Cyt c6 is only present in some algae and cyanobacteria

(16), although a cyt c6-like protein in a higher plant (Arabi-
dopsis) has been recently reported (17). Cyt c6 from C.
reinhardtii is a 10 kDa a-helical heme protein with no se-

quence homology to PC (10,18,19). Nonetheless, both of

these proteins have a similar pattern of negatively charged

residues on their surfaces, resulting in very similar electro-

static potentials. According to Ullmann et al. (20), residues

E-47, D-41, and E-54 on cyt c6 correspond to D-53, D-59–

D-61, and E-85 on PC (the upper cluster), respectively.

Glutamate Nos. 69–71 on cyt c6 correspond to the negative

residues of the lower negative cluster of PC (D-42, E-43,

D-44 (20)).

Experimental data support the electrostatic nature of the

interactions of cyt f with PC. Some of these in vitro studies

include cross-linking (21); chemical replacement of posi-

tively charged groups on cyt f and negatively charged groups

on PC (22–25); increasing the salt concentrations (26–28);

mutations of negatively charged residues on PC (29,30) and

positively charged residues on cyt f (31,32); and cyt f-PC

complexes studied by NMR (33–36). Computational mod-

eling has also pointed toward the electrostatic interactions ofSubmitted May 20, 2005, and accepted for publication September 13, 2005.
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PC or cyt c6 with cyt f (8–11,37–40). However, experimental

work by Soriano et al. (41) and Zhou et al. (42) showed much

smaller electrostatic interactions between cyt f and PC in

vivo in C. reinhardtii.
Gong et al. (43) used a C. reinhardtii mutant of cyt f,

which lacked the small domain, and studied its interactions

with PC in vivo. They concluded that deleting the small

domain did not affect the electron transfer rate to PC and,

therefore, this domain was not involved in the interactions.

Their observation matched with in vivo mutation of the two

basic residues K-188 and K-189 on the small domain of cyt

f (41). Note that in all of these experiments, PC would have

been the electron acceptor for cyt f. However the in vitro

electron transfer studies (31,32) plus the NMR complexes be-

tween the cyt f and PC (33–36) indicated that these lysine

residues are involved in the interactions with PC. Compu-

tational modeling (8–11,37–40) also pointed toward the im-

portance of the positively charged residues on cyt f on its

interactions with PC.

In this work, we used Brownian dynamics (BD) sim-

ulations to examine the role of C. reinhardtii cyt f structure

on its ability to interact with both C. reinhardtii PC and cyt

c6. To do this, we carried out simulations using the seven

available C. reinhardtii cyt f structures, which show small

differences in conformation, particularly in the small do-

main. Three of these structures are found in the unit cell of

the crystal structure of the truncated cyt f (i.e., cyt f lacking

the transmembrane tail) obtained by Chi et al. (6); another

three are found in the crystal structure solved by Sainz et al.

(44), also of the truncated cyt f; and the seventh is the ex-

tramembrane domain of the cyt f subunit of the cyt b6f
complex (2). We modeled the interaction of PC and cyt c6

with all seven intact cyt f structures and their respective

mutants containing only the large domain (i.e., small domain

deletion mutants). We were interested in understanding the

role of the cyt f structure, both the small and the large do-

mains, in interacting with its redox partners at the molecular

level.

In BD simulations (45–48), a mobile diffusing molecule,

such as PC or cyt c6, is allowed to dock with a target mole-

cule, such as cyt f, under the influence of an electrostatic field

plus random Brownian motions. BD simulations provide two

important pieces of information (among many others): 1), the

rate at which two proteins interact with each other, and 2),

the structure of the complexes formed.

Our studies showed that different C. reinhardtii cyt f struc-

tures, which are very similar, produced different reaction

rates when interacting with PC and cyt c6. We were able to

attribute this to structural differences between these mole-

cules, particularly to a small flexible loop on the small do-

main. We also showed that deletion of the small domains

affected cyt c6 more than PC, due to its different binding

position on cyt f. Our results could serve as a good guide for

future experimental work on these proteins to understand

better the process of electron transfer between them. These

results demonstrate the sensitivity and the power of the BD

simulations in the study of the molecular interactions.

METHODS

Molecular structures

The crystal structures for C. reinhardtii cyt f, PC, and cyt c6 were obtained

from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/; (49)). The

seven cyt f structures used were three structures in the unit cell of the PDB

code of 1CFM (6), three structures in the unit cell of the PDB code of 1EWH

(44), and the extramembrane domain of cyt f subunit from the cyt b6f

complex with the PDB code of 1Q90 (2). The PC structure used was that of

PDB code 2PLT (12), and the cyt c6 used was that of PDB code 1CYJ (19).

The residue numbering that we used in this work is that of the PDB files. We

generated the cyt f small domain deletion mutant structures by removing

residues 171–229 from the intact structures (no energy minimization was

performed, keeping the orientation of the side chains unchanged).

Molecular representations

All molecular representations were made using the program GRASP (50).

Root mean-square (RMS) distance deviations were calculated using the

program Deep View (Swiss-PDB Viewer (51); http://www.expasy.

org/spdbv/). Fig. 7 was also generated by this program.

Brownian dynamics simulations

The simulations were carried out using program MacroDox v. 3.2.1 (http://

pirn.chem.tntech.edu/macrodox.html) exactly as described in detail by

Gross and Pearson (10) and Haddadian and Gross (11). Typically, five sets

of 10,000 trajectories at 10 mM ionic strength and pH 7.0 were carried out

(to obtain and minimize the error values in the simulations).

The equation of the motion used in the BD algorithm for each trajectory is

the Ermak-McCammon equation (52):

r ¼ r� 1bDFðr�ÞDt1R; (1)

where r and r� are the final and initial distances, respectively, between the

center of mass of the mobile molecule (PC or cyt c6) and the center of mass

of the target molecule (cyt f) before and after a time step of Dt; b ¼ ðkTÞ�1
;

D is the relative diffusion coefficient of the two molecules; Fðr�Þ is the

external force on the mobile molecule at r�; and R is a random (Brownian)

vector with the following properties (53,54):

FIGURE 1 C. reinhardtii cyt f, structure C of the PDB code1CFM, with

its large and small domains colored in blue and red, respectively. The bridge

connecting the two domains is shown in magenta. Heme and some of the key

basic residues on cyt f are also shown. Tyr-1, the ligand to the heme, is

shown as green.
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ÆRæ ¼ 0 and ÆR2æ ¼ 2DDt: (2)

Dt should be sufficiently small so that there is a minimal change in the

external force (i.e., FðrÞ;Fðr�Þ). For each trajectory, the center of mass of

the mobile molecule is positioned on the surface of a sphere of radius 90 Å,

centered at the center of the mass of the target molecule as shown in Fig. 2

(sphere A). At the start of each trajectory, the program determines the

position and the orientation of the mobile molecule randomly on this sphere.

The mobile molecule is subjected to a force, Fðr�Þ, in our case an elec-

trostatic force, and moves accordingly, after which Fðr�Þ and R are recal-

culated. When the mobile molecule leaves a sphere of 200 Å radius from the

center of the mass of the target molecule, the trajectory is concluded (sphere

B in Fig. 2). In addition, at each step of the trajectory, the overlaps between

all of the atoms of the mobile molecule and the target molecule are checked

and prevented. In MacroDox, both of the molecules are treated as rigid

rotating bodies. An equation similar to Eq. 1 describes the rotation of the

mobile molecule due to the torque exerted on it by the target molecule (55).

MacroDox determines the closest approach of the two molecules based

on a set of preselected reaction criteria. In our simulations, these reaction

criteria were chosen as metal-to-metal distances to select for the electron

transfer-active complexes. The shorter the distance between metal centers,

the higher the chance of electron transfer (Moser et al. (56,57)). In the cyt

c6-cyt f interactions, we used iron-to-iron, Fe-Fe, distance as the reaction

criterion, and for cyt f-PC interactions, iron-to-copper, Fe-Cu, distance was

used.

The smallest value of the reaction criterion for the trajectory shown in

Fig. 2 is at point C. For each successful trajectory, MacroDox records the

distance of C, the structure of the complex formed in the form of a PDB file,

the 15 closest electrostatic contacts in the complex, and the electrostatic

interaction energy for the complex. After all of the trajectories have been

concluded, the number of successes is determined and plotted as a function

of their metal-to-metal distances. Interaction rates were calculated as a

function of metal-to-metal distances using equations derived by Northrup

et al. (45–50,55). These equations calculate the diffusion-controlled second

order rate constants, k2, from the fraction of trajectories that met the preset

metal-to-metal distances. In this study, a value of 16 Å cutoff for Fe-Cu and

a value of 18 Å for Fe-Fe distances were used (this will be discussed further

in the results section).

BD methodology and the program MacroDox have been used success-

fully to study the cyt f-PC and cyt f-cyt c6 interactions (9–11,38,40) plus the

interactions between other proteins (58,59). For a description of the MacroDox

strengths and weaknesses, see Gross and Pearson (10), Haddadian and Gross

(11), and Gross (40).

Electrostatic calculations

MacroDox uses a modified Tanford-Kirkwood pK algorithm (60) to assign

charges on the molecules. In addition, the charge on H-37 and H-87 on PC

and one of the histidine residues on cyt f (H-25) were set to zero, because

they are ligated to the metal centers (the other histidine residue on cyt f is far

away from the metal center). The charge on the single histidine on cyt c6 was

also set to zero, due to the fact that it is a heme ligand. C-84 is a ligand to the

Cu atom on PC; its sulfur atom was assigned a net charge of �1 (15), and the

Cu atom was given a charge of 12. The heme charges for both cyt f and cyt

c6 were Fe (12): two ring nitrogen atoms (�1 each) and the two propionic

acid side chains (�1 each).

The electrostatic potentials were calculated using the Warwicker/Watson

finite difference method to solve for the linearized Poisson-Boltzmann equa-

tion (61). MacroDox uses a 61 3 61 3 61 cubic grid, with its center posi-

tioned at the center of the mass of the protein, to solve for the electrostatic

potential. We used a grid spacing of 3.6 Å, followed by a smaller spacing of

1.2 Å for the electrostatic potential calculations.

All of the simulations were carried out on a Silicon Graphics O2 work-

station (IRIX 6.5) (Mountain View, CA).

RESULTS

The interactions of the six different structures
of truncated cyt f with PC

We modeled the interactions between different cyt f struc-

tures and their large domains (small domain deletion mu-

tants) with PC in the C. reinhardtii system using the BD

simulation program MacroDox at 10 mM ionic strength and

pH 7.0. A plot of the number of successful complexes

formed versus the reaction criterion coordinate distance is

shown in Fig. 3 A for PC interacting with each of the three

cyt f structures in the unit cell of the PDB code 1CFM. The

reaction criterion for cyt f-PC interactions was the Fe-Cu

distance.

Of the three different cyt f molecules in the unit cell of the

crystal structure of 1CFM, structure 1CFM-B produced the

largest peak, with a maximum number of complexes at 14.75

Å; structure 1CFM-C produced an intermediate number of

complexes, with a maximum also at 14.75 Å; and structure

A produced the smallest number of complexes, with a peak

at 14.25 Å.

Table 1 compares the total number of complexes formed

with a Fe-Cu distance of #16 Å (the complexes within the

peaks in Fig. 3 A) for cyt f structures 1CFM-A, 1CFM-B, and

1CFM-C. These are defined as ‘‘close-distance’’ complexes

and are considered electron-transfer active. The cutoff value

of 16 Å was chosen to classify these complexes in cyt f-PC

interactions for two reasons. First, essentially all complexes

formed by electrostatic forces are included, whereas those

formed by random Brownian motions alone are excluded.

The number of complexes formed due to Brownian motion

FIGURE 2 BD methodology. PC or cyt c6 is randomly placed on a sphere

A, 90 Å distance from the center of mass of cyt f. It is allowed to move one

step at a time under the influence of an electrostatic field and a random

Brownian factor. Many such steps form a trajectory, which is terminated

when the mobile molecule exits sphere B (200 Å). The smallest Fe-Cu or Fe-

Fe distance is recorded for each trajectory (point C).
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alone can be determined by turning off the electrostatic field.

No complexes are formed with Fe-Cu distances #16 Å in the

absence of the electrostatic field (data not shown). Second,

rates calculated using this criterion closely resemble exper-

imental values (for a discussion of these points see Gross and

Pearson (10), Haddadian and Gross (11), and Gross (40)).

However, selection of the cutoff distances affects only the

magnitude of the reaction rates but not the relative effec-

tiveness order of the rates.

It can be seen that the greatest number of close-distance

complexes is formed for 1CFM-B, an intermediate number

for 1CFM-C, and the smallest number for 1CFM-A. The 16 Å

cutoff distance was also used to calculate second order rate

constants for the interactions (k2), which are also shown in

Table 1.

Three cyt f structures in the PDB file 1EWH also showed

different interactions with PC (Table 1). Structure 1EWH-C

produced the greatest number of close-distance complexes of

any of the seven cyt f structures examined. Structure 1EWH-

A produced an intermediate number of close-distance com-

plexes, whereas structure 1EWH-B had the smallest number

of close-distance complexes formed. Thus, both sets of crys-

tal structures showed one structure that formed a large number

of complexes, one an intermediate number, and one a small

number. However, the exact number of complexes formed

and the corresponding interactions rates are not the same for

the members of both sets. For example, 1EWH-C produced

933 6 7 complexes corresponding to an interaction rate of

28.4 6 1.2 3 108 M�1s�1, whereas the values of the number

of complexes formed and the interactions rates were 641 1

18 and 20.2 6 0.7 3 108 M�1s�1 for 1CFM-B. Differences

in complex formation and interaction rates were also ob-

served when comparing 1CFM-C with 1EWH-A and 1CFM-

A with 1EWH-B.

FIGURE 3 C. reinhardtii cyt f-PC and cyt f-cyt c6 interactions. The intact cyt fs and their corresponding large domains were interacted with PC and cyt c6 at

10 mM ionic strength and pH 7.0. Five sets of 10,000 trajectories each were carried out, after which the average of the number of successful complexes per

10,000 trajectories were plotted as a function of Fe-Cu (for cyt f-PC interactions) and Fe-Fe (for cyt f-cyt c6 interactions) distance at the closest approach. The

number of complexes with closest metal-to-metal distances between 15 and 15.25 Å are indicated by the point at 15 Å, etc. (A) Three cyt f structures in the PDB

code of 1CFM and their corresponding large domains interacting with PC. (B) Three cyt f structures in the PDB code of 1CFM and their corresponding

large domains interacting with cyt c6. (C) The extramembrane domain of the cyt f subunit from the cyt b6f complex (PDB code 1Q90) and its large domain

interacting with PC. (D) The extramembrane domain of the cyt f subunit from the cyt b6f complex (PDB code 1Q90) and its large domain interacting with

cyt c6.
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The interactions of the six different structures of
truncated cyt f with cyt c6.

As can be seen in Fig. 3 B, similar to cyt f-PC interactions,

three cyt f molecules in the unit cell of 1CFM showed

different numbers of complexes formed with cyt c6. How-

ever, in the case of cyt cc, the largest peak of complexes

formed occurred with cyt f 1CFM-C rather than 1CFM-B. An

intermediate number of complexes was formed for 1CFM-B,

and the smallest number of complexes was observed for

1CFM-A as was the case for PC. In all three interactions, the

greatest number of complexes was observed at 17 Å. Thus,

the peak for complex formation occurred at a larger distance

for cyt c6 than for PC due to the fact that the Fe atom in cyt c6

is buried ;1 Å deeper in the molecule than is the Cu atom in

PC. This is also indicated by the fact that the smallest Fe-Fe

distance for cyt f-cyt c6 interactions occurred at 16.5 Å

compared to 13.75 Å for cyt f-PC interactions.

The number of complexes formed with a Fe-Fe distance

of #18 Å (the complexes within the peaks in Fig. 3 B) for

cyt f interacting with cyt c6 as well as the corresponding in-

teraction rates are shown in Table 2. Similar to the PC in-

teractions, these complexes are defined as ‘‘close-distance’’

and are considered electron-transfer active.

For three cyt f molecules in the unit cell of 1EWH inter-

acting with cyt c6, unlike 1CFM cyt f structures, the greatest

number of close-distance complexes formed was for 1EWH-

C, which was the same 1EWH cyt f structure that showed the

greatest number of complexes formed interacting with PC.

1EWH-A cyt f showed an intermediate number of complexes

formed, and 1EWH-B structure showed the least, both in

agreement with the PC results (Table 2).

TABLE 1 Calculated interaction rates, k2, and the number of close-distance complexes formed for truncated intact cyt f and its

large domain interacting with PC

Intact Cyt f Large domain of Cyt f

No. of complexes /

10,000 trajectories

k2* (3108)

M�1 S�1

No. of complexes /

10,000 trajectories

k2* (3108)

M�1 S�1

1CFM-A 155 6 2 5.0 6 0.5 160 6 4 5.0 6 0.4

1CFM-B 641 6 18 20.2 6 0.7 148 6 3 4.7 6 0.5

1CFM-C 292 6 4 9.4 6 0.6 297 6 7 9.3 6 0.5

1EWH-A 516 6 9 16.4 6 0.7 198 6 2 6.2 6 0.5

1EWH-B 87 6 3 2.8 6 0.3 2 6 0.2 0.05 6 0.04

1EWH-C 933 6 7 28.4 6 1.2 329 6 6 10.3 6 0.7

1Q90 94 6 5 3.1 6 0.3 147 6 5 4.6 6 0.4

1Q90-modifiedy 334 6 5 10.8 6 0.6 – –

1CFM-B-largez domain1K-188 and K-189 2060 6 2 56.1 6 3.5 – –

*The close-distance complexes were defined as those with Fe-Cu distances #16 Å, which are considered electron transfer active. The second order diffusion-

controlled rate constants, k2, were calculated for the formation of these complexes, as described in the Methods section. Five sets of 10,000 trajectories each

were carried out to obtain the error values.
yThe structure of 1Q90 cyt f was altered in its small domain, which does not affect the interactions of its large domain with PC.
zOnly the large domain of 1CFM-B plus residues K-188 and K-189, but without the rest of the small domain, was used. Since a large number of close-

distance complexes were formed, we carried only 1000 trajectories.

TABLE 2 Calculated interaction rates, k2, and the number of close-distance complexes formed for truncated intact cyt f and its

large domain interacting with cyt c6

Intact Cyt f Large domain of Cyt f

No. of complexes /

10,000 trajectories

k2* (3108)

M�1 S�1

No. of complexes /

10,000 trajectories

k2* (3108)

M�1 S�1

1CFM-A 413 6 3 13.5 6 0.8 37 6 3 1.2 6 0.2

1CFM-B 467 6 4 15.1 6 0.6 41 6 2 1.3 6 0.2

1CFM-C 677 6 10 21.4 6 0.8 110 6 2 3.5 6 0.3

1EWH-A 476 6 5 15.4 6 0.6 69 6 4 2.2 6 0.2

1EWH-B 61 6 3 2.0 6 0.3 1 6 0.4 0.02 6 0.01

1EWH-C 1022 6 11 31.2 6 0.8 163 6 7 5.2 6 0.5

1Q90 39 6 3 1.3 6 0.3 24 6 1 0.8 6 0.2

1Q90-modifiedy 366 6 4 12.0 6 0.6 – –

1CFM-C-largez domain1K-188 and K-189 1220 6 4 35.9 6 3.1 – –

*The close-distance complexes were defined as those with Fe-Fe distances #18Å, which are considered electron transfer-active. The second order diffusion-

controlled rate constants, k2, were calculated for the formation of these complexes, as described in the Methods section. Five sets of 10,000 trajectories each

were carried out to obtain the error values.
yThe structure of 1Q90 cyt f was altered in its small domain, which does not affect the interactions of its large domain with PC.
zOnly the large domain of 1CFM-C plus residues K-188 and K-189, but without the rest of the small domain, was used. Since a large number of close-

distance complexes were formed, we carried only 1000 trajectories.

570 Haddadian and Gross

Biophysical Journal 90(2) 566–577



Thus, considering the number of close-distance complexes

formed and the interaction rates with PC and cyt c6, there are

real differences between the six structures for the truncated

cyt f.

The interactions of the cyt f large domains with PC

Gong et al. (43) showed that removing the small domain

from C. reinhardtii cyt f had no effect on its interactions with

PC in vivo. Note that no experiments were carried out under

conditions in which cyt c6 was the electron acceptor. In our

simulations, when cyt f 1CFM-A was used, there was a small

increase in the number of complexes formed between 14.25

and 15.0 Å after which the number of complexes formed

remained constant (Fig. 3 A). 1CFM-B showed identical

results to within the limit of error. Studies with the large do-

main of 1CFM-C, however, showed a larger number of com-

plexes formed with a broad peak at 15–15.5 Å.

In all three 1CFM cyt f structures, removal of the small

domain decreased the number of complexes formed at the

smallest Fe-Cu distances (i.e., those #14.75 Å, Fig. 3 A).

However, the total number of close-distance complexes formed

by electrostatic forces (i.e., those with Fe-Cu distances of

#16 Å, Table 1) was 23% of that observed for the intact

truncated cyt f for 1CFM-B and ;100% for 1CFM-C and

1CFM-A intact cyt f structures. The same is true for the cor-

responding interaction rates. The large domains of 1EWH-A
and 1EWH-C cyt f showed 38% and 35%, respectively, of

the number of complexes formed for the corresponding intact

truncated cyt f structures. However, 1EWH-B cyt f showed

only 2% of the complexes formed for the corresponding

intact truncated cyt f. In conclusion, except for 1EWH-B cyt

f, the large domain alone showed a significant percentage of

the number of complexes formed with the intact cyt f struc-

tures to explain the results of Gong et al. (43).

The interactions of the cyt f large domains
with cyt c6.

In contrast to the results with PC, when the large domain was

interacted with cyt c6, very few close-distance complexes

were formed (Table 2). Maximum complex formation was

observed for the large domains of 1CFM-C and 1EHW-C,

which showed 16% of the number of complexes formed with

the corresponding intact cyt fs. Thus, the small domain ap-

pears to be more important for the interaction of cyt f with cyt

c6 than with PC. These results may reflect the difference in

the binding sites on cyt f for PC and cyt c6 as was discussed

by Haddadian and Gross (11).

The interactions of the cyt f subunit from the
crystal structure of the cyt b6f complex

The interactions of the extramembrane domain of the cyt f
subunit from the crystal structure of C. reinhardtii cyt b6f

complex (PDB code 1Q90; (2)) with both PC and cyt c6 were

also studied. Fig. 3 C shows that intact 1Q90 cyt f produced

a peak of complexes at 15.5 Å. Interestingly, the large do-

main of 1Q90 cyt f produced a greater number of close-

distance complexes than did the intact truncated cyt f (Fig. 3

C and Table 1). These results suggest that there is something

about the small domain of 1Q90cyt f that inhibits complex

formation. In contrast to PC, removing the small domain de-

creased the number of close-distance complexes formed and

the corresponding interaction rate for 1Q90 cyt f interacting

with cyt c6 (Fig. 3 D and Table 2).

Complex formation

The question arises as to whether the complexes observed in

BD simulations for different cyt f structures and their large

domains interacting with PC and cyt c6 have unique ori-

entations or not. Fig. 4 depicts the peptide backbone overlays

of five complexes each for the cyt f structures 1CFM-A and

1CFM-B and their corresponding large domains interacting

with PC. Among the three structures in the unit cell of the

1CFM cyt f crystal, these structures resulted in the highest

and the lowest interaction rates with PC, respectively (Table

1). These structures were chosen randomly from the com-

plexes with the Fe-Cu distances less than the peak distances

in the plots of the complexes formed (Fig. 3 A). As can be

seen, the overall orientation of PC with respect to cyt f did

not change in any of the complexes of either intact truncated

cyt f or in their corresponding large domains. In the presence

and the absence of the small domain, PC docks on cyt f with

an inclination toward the small domain, which matches well

with the NMR structures (33–36). However, the lack of the

small domain caused more heterogeneity in the structure of

the complexes formed.

Fig. 5 shows the peptide backbone overlays of five

complexes each, for the cyt f structures 1CFM-A and 1CFM-

C and their corresponding large domains interacting with cyt

c6. Among three cyt f structures in the PDB code of 1CFM,

these structures resulted in the highest and the lowest inter-

action rates, respectively (Table 2). These were chosen ran-

domly from the complexes with the Fe-Fe distances less than

the peak distances in the plots of the complexes formed (Fig.

3 B). As in the case of the PC interactions, the overall ori-

entation of cyt c6 with respect to cyt f did not change in any

of the intact truncated cyt f complexes or in their corre-

sponding large domains. Also, the absence of the small domain

caused more heterogeneity in the structure of the complexes

formed.

The same results as above were also observed for intact

and large domains of cyt f structures from the PDB codes

1EWH and 1Q90 interacting with both PC and cyt c6 (data

not shown).

It should be mentioned that the complexes formed in our

simulations are not the final electron transfer-active state.

However, they have both the involvement of electrostatic
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plus the hydrophobic interactions and are close to the final

complex (Haddadian and Gross (11) ). Schlarb-Ridley et al.

(62) suggested a mechanism for the cyt f-PC interactions con-

sidering a rearrangement of the initial complex to form the

final electron-active complex. We believe that the complexes

we obtained are not the initial docking complex due to the

fact that they are not electrostatically optimized. The electro-

static complexes would involve maximum interactions of the

positive residues on the spine of cyt f with the residues on the

negative patches of PC and cyt c6. However in these com-

plexes, H87 on PC and the heme of cyt c6 would lie far from

the cyt f heme (data not shown). The complexes obtained

from the simulations are not also the final electron-active

complex due to the lack of effects such as desolvation, packing,

etc. in the simulations. However, our complexes have the

hydrophobic surfaces surrounding the H-87 on PC and heme

of cyt c6 facing the hydrophobic residues surrounding the

heme of cyt f (Haddadian and Gross (11)). Therefore they are

very close to the final complex. It should also be mentioned

that the complexes we obtained resemble very well the NMR

complexes obtained by Ubbink et al. (33), Crowley et al.

(35), and Lange et al. (36).

FIGURE 5 Orientation of the complexes formed for cyt

c6 interacting with cyt f. The peptide backbones are shown

for complexes formed with 1CFM-C (which showed the

highest interaction rates) and the 1CFM-A (which had the

smallest interaction rates). For each cyt f complex, five

complexes, with cutoff distances less than the peak dis-

tances (Fig. 3 B) were randomly chosen. The overlays were

done using the program GRASP (50). The cyt f and cyt c6

hemes are in gray and shown as ribbon models.

FIGURE 4 Orientations of the complexes formed for PC

interacting with cyt f. The peptide backbones are shown for

complexes formed with 1CFM-B (which showed the

highest interaction rates) and the 1CFM-A (which had

the smallest interaction rates). For each cyt f, five com-

plexes, with cutoff distances less than the peak distances

(Fig. 3 A) , were randomly chosen. The overlays were done

using program GRASP (50). The cyt f heme and the cu

atoms in PCs are in gray and shown as space-filling

models.
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DISCUSSION

Structural differences in the seven cyt f structures

The observation that in both cyt f-PC and cyt f-cyt c6

interactions the reaction rates were different for the seven C.
reinhardtii cyt fs can be explained by differences in their

structures, which is evident from their superimpositions.

Table 3 shows the RMS distance deviation of the atoms in

cyt f structures of the PDB codes 1CFM and 1EWH from

their corresponding atoms in the extramembrane domain of

cyt f subunit from the cyt b6f complex, PDB code 1Q90. The

RMS was calculated using backbone atoms only for intact

truncated cyt f, as well as for the large and small domain

structures. As can be seen, among all of the intact, truncated

cyt f structures, the 1CFM-A and B and the 1EWH-B
structures had the lowest and the highest deviations from the

1Q90 cyt f structure, respectively. The large difference

between 1EWH-B cyt f and its large domain interaction rates

with PC and cyt c6 compared to the rest of cyt f structures can

be attributed to its overall different structure from the rest of

cyt f molecules (Table 3, its large and small domains also have

some of the highest RMS deviations).

The superimposition of only the large domains showed

that they were very similar, which is demonstrated by their

very similar RMS values (Table 3). Also, all of the side

chains of the cyt f basic residues located on the large domain,

particularly K-58, K-65, and K-66 that are important in

electrostatic interactions with both PC and cyt c6 (4,9–11,32)

have more or less the same orientations (Fig. 6; this is the

case for all of the seven cyt f structures). However, when we

used only the small domains to calculate the RMS values, we

obtained some of the largest deviations, which were not

expected, considering the smaller number of atoms involved.

Four of the six cyt f small domain structures resulted in RMS

deviations of #1 Å. In contrast, only one cyt f structure and

none for the cyt f large domain had duration $1 Å. A closer

study of the structures revealed that in the small domain the

loop formed by residues A-184-G-191 had the most

variances (i.e., .2 Å RMS deviations) in all of the cyt f
structures. This loop contains the important basic residues K-

188 and K-189 that are involved in the electrostatic

interaction with both PC and cyt c6 (4,9–11,32). The side

chains of these residues have different orientations in all of

the seven cyt f structures (Figs. 4 and 5). In all seven cyt

f structures, this loop also had some of the highest crystal-

lographic temperature factors (b-factors), which implied its

flexibility (Fig. 6 (2,6,44)).

The effect of replacing the A-184-G-191 loop

To check for the importance of the A-184-G-191 loop, we

removed this loop from 1Q90 cyt f and replaced it with the

corresponding loop in the 1CFM-B structure using the pro-

gram Deep View (51). The loop from 1CFM-B was chosen

because of its high rate of interaction with both PC and cyt c6

and its small overall deviation from the 1Q90 structure (RMS

¼ 0.61 Å). We then interacted the modified 1Q90 cyt f with

both PC and cyt c6, which resulted in a large increase in the

number of close-distance complexes formed (Fig. 7). We

obtained a 3.5-fold increase in the cyt f-PC interaction rate

and a ninefold rise in the cyt f-cyt c6 interaction rate (Tables 1

and 2). Therefore, the position of this loop and the orien-

tation of the basic residues K-188 and K-189 within this loop

are important factors in both cyt f-PC and cyt f-cyt c6 inter-

actions. In fact, the difference in the orientation of K-188 and

K-189 side chains in intact 1Q90 cyt f from that of the

1CFM-B structure (Fig. 6) may explain the observation that

the 1Q90 cyt f had the smallest cyt f-PC and cyt f-cyt c6

interaction rates (Tables 1 and 2, within simulation error).

Fig. 8 shows the electrostatic fields simulation of reduced

1Q90 cyt f and its A-184-G-191 loop-modified structure. As can

be seen, the loop-modified cyt f structure has a larger positive

field in the vicinity of the heme and lacks the small negative

field on top of the small domain (marked with an asterisk in

TABLE 3 RMS distance deviation of the backbone atoms in cyt

f structures of the PDB codes 1CFM and 1EWH from the

corresponding backbone atoms in the extramembrane domain

of Cyt f subunit from the Cyt b6f complex (PDB code 1Q90)

Intact (Å) Large domain (Å) Small domain (Å)

1CFM.A 0.6 0.9 0.7

1CFM.B 0.6 0.8 1.1

1CFM.C 0.8 0.8 1.1

1EWH.A 0.7 0.9 0.8

1EWH.B 1.0 0.9 1.1

1EWH.C 0.8 0.6 1.0

FIGURE 6 Overlay of the cyt f structure B from the PDB code 1CFM on

the extramembrane domain of the cyt f subunit from the cyt b6f complex

(PDB code 1Q90). The 1CFM-B cyt f backbone and all of its basic residues

were colored by their temperature factors (b-factors), in which the molecule

is colored from dark blue for low b-factors to red for high b-factors (the

heme is colored red for visualization purpose). The backbone and the all of

the basic residues of the 1Q90 cyt f are shown in gray and its heme in black.

As can be seen, the loop of residues A-184-G-191 of the 1CFM-B cyt f has

some of the highest b-factors compared to the rest of the molecule and is

oriented very differently than the 1Q90 loop. The key basic residues in both

cyt fs are labeled. This figure was generated by the program Deep View (51).
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Fig. 8). This enhancement of stronger positive and weaker

negative fields assist cyt f in better attracting the negative

fields of PC and cyt c6, resulting in higher rates of interactions.

Also, different conformations of the cyt f molecules

provide different steric hindrances for PC or cyt c6 upon

docking. As was mentioned in the Methods section, at each

step of the trajectory, the overlaps between all of the atoms of

the mobile molecule and the target molecule are checked and

prevented. Thus, the surface features of the two molecules

are considered in the simulations, and at close approach PC

or cyt c6 would feel different steric hindrances due to dif-

ferent cyt f structures. Therefore, besides the different elec-

trostatic forces that bring the molecules close, these steric

hindrances also affect the number of close-distance com-

plexes formed and the interaction rates.

The role of the small domain of cyt f

The deletion of the small domain caused a greater degree

of heterogeneity in the structures of the complexes formed

(Figs. 4 and 5). Also, in contrast to the intact cyt f interactions,

the cyt f large domains, when interacting with either PC or cyt

c6, produce no significant peaks in the plots of the number of

complexes formed versus distance (Fig. 3). These observa-

tions suggest that the cyt f small domain plays a role in guiding

PC and cyt c6 to a uniform dock with cyt f, involving elec-

trostatic interactions with K-188 and K-189 on this domain.

Gong et al. (43) used a C. reinhardtii mutant of cyt f, which

lacked the small domain, and studied its interactions with PC

in vivo. They concluded that deleting the small domain did

not affect the electron transfer rate to PC and, therefore, this

domain was not involved in the interactions in vivo. Their

observations agreed with in vivo mutation of the two basic

residues K-188 and K-189 on the small domain of cyt f (41).

However the in vitro electron transfer studies (31,32) plus the

NMR complexes between the cyt f and PC (33–36) indicated

that these lysine residues are involved in the interactions with

PC. Computational modeling (8–11,37–40) also pointed

toward importance of these residues in the interactions.

In this study, among all of the cyt f structures used, only

the 1EWH-B structure resulted in a significant difference

between the reaction rates of intact cyt f structures and their

corresponding large domains with PC (Table 1). Two of the

cyt f structures, 1CFM-A and 1CFM-C, resulted in identical

reaction rates with PC for the intact and their corresponding

FIGURE 7 Interactions of the extramembrane domain of the cyt f subunit from the cyt b6f complex (PDB code 1Q90) with PC and cyt c6 at 10 mM ionic

strength and pH 7.0. The conditions are the same as for Fig. 3. (A) The 1Q90 cyt f and its modified form in which the loop of residues A-184-G-191 is replaced

with the corresponding loop from the 1CFM-B cyt f structure (see Methods section) interacting with PC. (B) The 1Q90 cyt f and its modified form interacting

with cyt c6. The interactions of 1CFM-B with PC and 1CFM-C with cyt c6 are shown for comparison.

FIGURE 8 Electrostatic fields of the extramembrane domain of the cyt f

subunit from the crystal structure of the C. reinhardtii cyt b6f complex: (A)

reduced cyt f and (B) reduced cyt f, whose loop of residues A-184-G-191 is

replaced with the corresponding loop from the 1CFM-B cyt f structure (see

Methods section). The electrostatic field contours at 11 kT/e (blue) and �1

kT/e (red) were calculated at 10 mM ionic strength and pH 7.0. The small

negative field of wild-type cyt f on top of its small domain is marked with an

asterisk. The heme is shown as a space-filling model, and the backbone of

cyt f is colored black.
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large domain structures. However, when cyt c6 interacted

with the cyt f large domain, close-distance complex forma-

tion was inhibited compared to the intact cyt f in all of the

seven cyt f structures examined.

The different binding positions of PC and cyt c6 on cyt f
may explain the observation that the deletion of the small

domain affected the cyt f-cyt c6 interactions more than those

for cyt f-PC. As can be seen in Figs. 4 and 5, the overall

orientation of PC or cyt c6 with respect to different cyt f
molecules, within the limit of heterogeneity of the complexes

formed, did not change in any of the complexes formed with

intact cyt f or in their corresponding large domains. In the

presence and the absence of the cyt f small domain, PC docks

vertically on cyt f with its Cu atom close to the heme with an

inclination toward the small domain. This position of PC

agreed well with the NMR structures (33–36). In contrast, as

we previously reported (10,11), cyt c6 docks horizontally on

top of the cyt f farther away from the small domain, covering

a larger area of the cyt f molecule.

Deleting the small domain has two effects on cyt f
interactions. First, it weakens the positive electrostatic field

of cyt f, particularly by removing the residues K-188 and

K-189. Second, it reduces steric hindrance due to the presence

of the small domain itself. These two opposing factors affect

PC because of its inclination toward the small domain, more

than cyt c6. The reduction in steric hindrance partially bal-

ances the weakening of the positive electrostatic field, re-

sulting in a small effect in complex formation and interaction

rates in cyt f-PC interactions. In contrast to PC, cyt c6 (with its

binding position farther away from the small domain) is not

affected as much by the steric relaxation resulting from the

deletion of this domain and is mostly affected by the removal

of positive charges on this domain (particularly K-188 and

K-189). Therefore, cyt f-cyt c6 reactions were inhibited to a

greater degree by the deletion of the small domain.

To check for the effectiveness of these two opposing

factors, we carried out simulations with the large domain of

1CFM-B plus residues K-188 and K-189 (but without the

rest of the small domain) interacting with PC, and the large

domain of 1CFM-C plus residues K-188 and K-189 (but

without the rest of the small domain) interacting with cyt c6.

As can be seen in Tables 1 and 2, the presence of positive

electrostatic fields of these two residues resulted in an in-

teraction rate that is 2.8 times larger than the intact 1CFM-B
interacting with PC, whereas the rate for 1CFM-C large

domain plus K-188 and K-189 interacting with cyt c6 in-

creased only by 1.7-fold compared to the intact 1CFM-C-cyt

c6 interactions. Thus, when K-188 and K-189 were added to

the large domain, the positive electrostatic field increased

enhancing interactins with PC.

CONCLUSIONS

Our studies showed that different C. reinhardtii cyt f struc-

tures, which are very similar, produced different reaction

rates in interactions with PC and cyt c6. We were able to

attribute this to structural differences between the seven cyt f
structures, particularly to a small flexible loop on the cyt f
small domain. In all of the seven cyt f structures, this loop

had some of the highest crystallographic temperature factors

(b-factors), which implied its flexibility (Fig. 6 (2,6,44)). We

also showed that deletion of the small domains affected cyt

c6 to a greater extent than PC, due to its different binding

position on cyt f. The function of the small domain in cyt f
may be to guide PC or cyt c6 to a uniform dock with cyt f,
especially due to electrostatic interactions with K-188 and

K-189 on this domain. The question of which of these seven cyt

f structures resembles the physiological molecule is difficult

to answer; it may be possible that the cyt f structure, espe-

cially in the loop of residues A-184-G-191, undergoes struc-

tural changes during the interactions with its redox partners—a

case of induced local fit.

One of our purposes in doing this study was to lay the

groundwork for future experiments on these proteins to un-

derstand better the electron transfer process between them.

Experimental work such as changing the size of the flexible

loop, fixing it in position, or modifying it with a probe to

check for its motion are required to verify its effects on the

interactions. Also, these results signified the sensitivity and

the power of the BD simulations in the study of the molec-

ular interactions.
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