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ABSTRACT When single-molecule fluorescence localization techniques are pushed to their lower limits in attempts to
measure ever-shorter distances, measurement errors become important to understand. Here we describe the non-Gaussian
distribution of measured distances that is the key to proper interpretation of distance measurements. We test it on single-
molecule high-resolution colocalization data for a known distance, 10 nm, and find that it gives the correct result, whereas
interpretation of the same data with a Gaussian distribution gives a result that is systematically too large.

INTRODUCTION

Many single-molecule experiments with biological macro-

molecules aim to probe the molecule’s structural conforma-

tions and follow their temporal evolution. This goal is often

pursued by measuring intramolecular distances. In recent

years, several single-molecule fluorescence-localization

techniques have been developed to this end. Examples are

SHRIMP (single-molecule high-resolution imaging with

photo bleaching), NALMS (nanometer-localized multiple

single-molecule fluorescence), and SHREC (single-molecule

high-resolution colocalization) (1–4). To measure ever-smaller

distances, these techniques are pushed to their limits with the

unavoidable consequence that errors are significant.

These single-molecule techniques share two crucial steps.

First, the positions in the image plane of two fluorophores are

determined. The second step involves a calculation to de-

termine the Euclidian distance between these two-dimen-

sional (2D) vector positions. Although this calculation is simple,

its error analysis is demanding and has generally not been

correctly applied.

The vector positions of the fluorophores—call them x1
/

and x2
/—are generally determined by fitting the fluoro-

phore’s photon count distribution with Gaussian distribu-

tions and using the centers of these Gaussians functions as

positions (5). With a finite signal/noise ratio, the results for

x1
/ and x2

/ are not exact. They are approximations that differ

from the unknown true positions by a Gaussian distributed

amount. The cause of these errors and other factors affecting

nanometer localization measurements have been analyzed by

Thompson et al. (5), whereas in this work we discuss the

additional challenges facing the analysis of distance data.

Consequently, the vector difference between positions,

x1
/� x2

/; is distributed in the same manner with a variance

that is the sum of the variances on the distributions for x1
/ and

x2
/: Thus, a critical question is: with the x1

/� x2
/ Gaussian

distributed in 2D, how is the Euclidean distance, jx1
/� x2

/j;
frequently of experimental interest, distributed? Since the

distance is a nonnegative number, it follows that it cannot be

Gaussian distributed. The proper distribution, discussed in

this article, allows for an accurate analysis of data derived

from the recent high precision single molecule assays.

RESULTS AND DISCUSSION

Fig. 1 shows an example of distance distributions and

how they depend on the relative importance of the error on

position measurements. Measured positions of two fluoro-

phores separated by exactly 10 nm were Monte Carlo

simulated, and the Euclidean distance between them was

calculated. This was done a large number of times, and the

distances measured in this manner were binned and plotted

to obtain their distribution. When the signal/noise ratio (m/s)

in distance measurements is good, the distribution is ap-

proximately Gaussian (Fig. 1 A). However as the signal/

noise ratio decreases, the distribution becomes increasingly

skewed as it broadens (Fig. 1, B–D), and the position of its

maximum differs increasingly from the true distance be-

tween the fluorophores (Fig. 1, dotted line). If this were a real

experiment and the binned data were fitted with a Gaussian

whose central value were interpreted as the distance between

the fluorophores, this distance would be grossly overes-

timated in Fig. 1 D. Even in Fig. 1 A, where the distribution

looks reassuringly Gaussian, a 5% systematic overestimation

would be introduced with a Gaussian approximation, as

discussed below. This overestimation would be 13% and

32% for Fig. 1, B and C, respectively. Consequently, Fig. 1,

A–C, represents the range of signal/noise ratios found in

current single molecule localization experiments (1–4).

The derivation of the function for proper treatment of

data sets of distances in the plane goes as follows. Two

different fluorophores, 1 and 2, with true 2D positions x
1
ðtrueÞ���!

and x
2
ðtrueÞ���!

then give rise to experimentally recorded positions

x1
/ and x2

/ with Gaussian probability distributions
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pðxi
/Þ ¼ ð1=2ps

2

i Þexpð�ð xi
/� x

ðtrueÞ
i

���!
Þ2
=2s

2

i Þ: (1)

Here, s2
i is the variance in the fluorophores’ location

stemming from errors Gaussian distributed in the plane and

i ¼ 1; 2 (5). Consequently, r~¼ x1
/� x2

/ is Gaussian distrib-

uted about ~mm ¼ x
1
ðtrueÞ���!� x

2
ðtrueÞ���!

with variance s2 ¼ s2
1 1s2

2:
We wish to estimate m ¼ j~mmj ¼ jx

1
ðtrueÞ���!� x

2
ðtrueÞ���!j from mea-

surements of r ¼ jr~j: To this end, we write the Gaussian prob-

ability distribution for r~ as a function of r and the angle f

between r~ and ~mm;

pðr~Þ ¼ pðr;uÞ ¼ ð1=2ps
2Þexpð�ðr~�~mmÞ2

=2s
2Þ

¼ ð1=2ps
2Þexpð�ðm2

1 r
2 � 2r m cosuÞ=2s

2Þ
(2)

and integrate over a circle in the r~plane with radius r (Fig. 2,

black dotted line) to obtain the probability distribution, p2D(r),
on the r axis in 2D,

p2DðrÞ ¼ r

Z 2p

0

du pðr;uÞ ¼

r

2ps
2

� �
exp �m

2
1 r

2

2s
2

� �Z 2p

0

du exp
rm

s
2cosu

� �
:

(3)

The last integral is the modified Bessel function of integer

order zero, I0, so we have the result

p2DðrÞ ¼
r

s
2

� �
exp �m

2
1 r

2

2s
2

� �
I0ðrm=s2Þ: (4)

The solid curves in Fig. 1, A–D, show graphs of this function

for fixed m and increasing values of s. They describe the

binned Monte Carlo simulated data of apparent distances

precisely. This non-Gaussian distribution of distance mea-

surements is not only the case for two dimensions. The dis-

tributions that replace p2D(r) in one or three dimensions are,

respectively,

p1DðrÞ ¼
ffiffiffiffi
2

p

r
1

s
exp �m

2
1 r

2

2s
2

� �
cosh

mr

s
2

� �
(5)

and

p3DðrÞ ¼
ffiffiffiffi
2

p

r
r

sm
exp �m

2
1 r

2

2s
2

� �
sinh

rm

s
2

� �
: (6)

Fig. 2 shows how the qualitative features in Eq. 4 arise.

The distribution in shades of gray represents the Gaussian

probability distribution for the vector difference between

the two observed positions, assuming the first point is at the

origin and the second is at a distance m along the x axis.

The three circles represent three different values of r along

the distance axis. The corresponding probability distribution

for apparent distances, p2D(r), is obtained by integrating this

Gaussian over all points a distance, r, from the origin, i.e.,

over circles centered on the origin. The three circles shown

illustrate how the qualitative features of the apparent distance

distribution come about. For the small blue circle the density

of gray is almost constant across the circle. Consequently,

the integrated probability for such a circle is proportional to

its perimeter, and hence to its radius. Therefore p2D(r) in Eq.

4 increases from zero value at zero distance in a manner that

FIGURE 1 Distribution of apparent distances for a given true distance,

m ¼ 10 nm (dotted line), for four different values for the root mean-square

deviation, s, of the 2D Gaussian distribution of measured end-to-end vector

differences. (Circles) Binned results from Monte Carlo simulations.

(Curves) Graphs of p2D(r) given in Eq. 4. The signal/noise ratios m/s in

panels A–D are 3.33, 2, 1.25, and 0.667, respectively. A Gaussian analysis of

these distributions would result in values that differ from the simulated

value, m, by 5% (A), 13% (B), 32% (C), and 112% (D). Note that although m

is kept fixed at 10 nm here for comparison to Fig. 3, simulations of different

values of m would yield the same functional forms assuming that the signal/

noise ratio were kept the same, because p2D(r) really depends only on r=m

and s=m.

FIGURE 2 A diagram to explain how a Gaussian distribution of apparent

end-to-end vector differences integrates to the distribution of Euclidean

distances given in Eq. 4.
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is proportional to distance for small distances, i.e., in a linear

manner.

The black circle with radius m passes through the point

(m, 0), which is where the vector difference has its probabil-

ity maximum. However, the apparent distance distribution,

p2D(r), has its maximum at a larger distance, because a circle

with larger radius (e.g., the red circle) has a longer section

passing through densely gray regions of high probability,

even though it does not pass through the point of maximal

probability. For the same reason, yet longer apparent dis-

tances do have lower probability, but their probability den-

sity does not decrease as fast as a Gaussian function because

their larger circles cut through larger parts of the Gaussian

distributed vector difference. This is also the reason the

apparent distance distribution decreases more slowly at large

values of r than it increases at small values of r, i.e., why it is

skewed.

Fig. 3 shows a histogram of dsDNA apparent end-to-end

distances measured using SHREC. The materials and meth-

ods involved to collect these data are as described (4). The

distribution of these dsDNA end-to-end distance measure-

ments (Fig. 3) is non-Gaussian. A maximum likelihood fit to

the data with p2D(r) in Eq. 4 (Fig. 3, solid line) results in an

estimate for the end-to-end distance, m, of 10 6 1 nm and

m/s of 1.3. This estimate for m is in excellent agreement with

the expected end-to-end distance of a 30 bp dsDNA mol-

ecule, assuming a 3.4 Å rise per base and a persistence length

of 50 nm (6). A maximum likelihood fit with a Gaussian

function is included for comparison (Fig. 3, dotted line) and

yields the estimate for m of 14 6 0.5 nm. Although least-

squares fitting to the histogram of data in Fig. 3 is inap-

propriate because of the low count in some bins, we did

compute x2 of our maximum-likelihood fits after they had

been done for the benefit of readers who find this quantity

easier to judge than the statistical support of a fit. We found

a reduced x2 of 1.7 of the p2D(r) fit and 2.3 for the Gaussian

fit. The Gaussian function, which above was mathematically

proven to be the incorrect model for this experimental data

set, expectedly fits the data less well and provides an esti-

mator that is inaccurate. The correct measure of quality of

our fits is the ‘‘goodness of fit’’ associated with all max-

imum-likelihood fits. For the p2D(r) fit, we found the

goodness of fit to be 68%. Details of the data analysis are

provided in Appendix A.

Even when s2 � m2, in which case p2D(r) in Eq. 4 can be

approximated by a Gaussian function, the mean of this

Gaussian is not a good estimate for m. The maximum of

p2D(r) is not located at m, but approximately at r¼ m(1 1 s2/

(2m2)) (See Appendix B for details). So naively fitting data

like those in Figs. 1 and 3 with a Gaussian function may

result in an acceptable fit, depending on the noise in the data.

Yet it will not yield the correct value for m, but a systematic

overestimation by a relative amount, s2/(2m2).

The p2D(r) function (Eq. 4) appears to be sufficient to

explain the 2D distance data sets arising from recent single-

molecule fluorescent localization experiments. A number of

researchers have fitted their data sets with Gaussian or log-

normal functions with a constant background added to yield

results closer to the data distribution’s maximum (1–3). In

these types of experiments it is unclear what would cause a

uniform background in distance measurements. The skew-

ness of the p2D(r) distribution may provide an explanation

for what previously has been perceived as a background.

CONCLUSION

It is natural to assume that a distribution of errors is Gaussian

when it appears Gaussian by eye. However we conclude that

by applying a Gaussian fit, one commits systematic errors on

distance measurements with single-molecule fluorescence lo-

calization techniques. These techniques have overcome many

technological hurdles to measure ever-shorter distances with

high accuracy. The correct analysis of such data, as described

here, ensures that the hard earned precision is not lost.

APPENDIX A

The maximum likelihood fit was calculated in the following manner.

Assuming a model such that P(xi, a) describes the experimental data, one can

calculate the probability that for a given set of estimators, fajg, a particular

data point (xi) occurs. Multiplying the probabilities of each data point gives

the probability that the entire data set occurs with this set of estimators. The

total probability is called the likelihood and is mathematically defined by the

following equation,

Lðx1; . . . ; xN; aÞ ¼
YN

i

Pðxi; aÞ:

The fit is found by numerically maximizing the likelihood (L) via varying the

estimators, fajg(7).

FIGURE 3 Histogram of apparent end-to-end distance measurements of

dsDNA molecules (N ¼ 112) determined by SHREC. The solid line

represents the solution found when a maximum likelihood fit was performed

with p2D(r) given in Eq. 4. Goodness of fit is 68%. For comparison, the fit to

the data with a Gaussian function is also shown (dotted line).
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Errors on the found estimators can be found by investigating the shape of

the likelihood function along the axis of an estimator. Due to the central limit

theorem, the probability distribution for each estimator, aj, is a Gaussian

function. To determine the error of an estimator, one needs to simply find the

root mean-square deviation, s, of the Gaussian likelihood function. In this

article, errors were reported as being at s from the maximum or at 68%

confidence limits. In the online supplemental materials, we give a MATLAB

(The MathWorks, Natick, MA) script that will automatically fit p2D(r) in Eq.

4 to a data set and find the errors associated with the fit.

To test the significance of the maximum likelihood fit of p2D(r) in Eq. 4 to

the experimental data, a data set of the same size as the experimental data set

(N ¼ 112) was Monte Carlo simulated using the fit parameters fâjg as input

(as done to make the histograms in Fig. 1). The likelihood, L(x1, . . ., xN, â),

was calculated and compared against the likelihood of the experimental

data set. This was repeated a large number of times. The fraction of simu-

lated data sets with a lower likelihood was 0.68, so the statistical support for

the hypothesis that p2D(r) is the correct theory for the data is 68%.

APPENDIX B

With our knowledge of p2D(r) (Eq. 1), we can estimate the size of the

systematic error that one commits if one interprets distance measurement

data with a Gaussian function. The asymptotic expansion of the modified

Bessel function is

I0ðzÞ ¼ ðez
=

ffiffiffiffiffiffiffiffi
2pz

p
Þ 11 ð1=8zÞ1 ð9=2ð8zÞ2Þ1 . . .
� �

;

so for s2 � m2 we have a good approximation in

p2DðrÞ �
1ffiffiffiffiffiffi

2p
p

s

ffiffiffiffi
r

m

r
exp �ðr � mÞ2

2s
2

� �
;

which looks similar to a Gaussian (8). However the factor
ffiffiffiffiffiffiffiffi
r=m

p
is what

makes p2D(r) differ from a Gaussian function. This factor shifts the

maximum of p2D(r) to approximately r ¼ m(1 1 s2/(2m2)). (Here we have

ignored higher powers of s2/m2).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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