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ABSTRACT Single-molecule tracking is a powerful way to look at the dynamic organization of plasma membranes. However,
there are some limitations to its use. For example, it was recently observed, using numerical simulation, that time-averaging
effects inherent to the exposure time of detectors are likely to bias the apparent motion of molecules confined in microdomains.
Here, we solve this apparently limiting issue analytically. We explore this phenomenon by calculating its effects on the observed
diffusion coefficients and domain sizes. We demonstrate that the real parameters can be easily recovered from the measured
apparent ones. Interestingly, we find that single-molecule tracking can be used to explore events occurring at a timescale
smaller than the exposure time.
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It has been pointed out (1) that time-averaging, due to the

exposure time of detectors in single-molecule tracking

experiments, can have dramatic effects. This is particularly

important in measures of the apparent motion of tracked

molecules (proteins or lipids) at the cell surface when they are

confined in small regions of the membrane, such as rafts,

synapses, or other signaling platforms. Diffusion coefficients

and size of confining domains can be significantly under-

estimated. However, the arguments used relied on numerical

simulation (1) and it seems important to validate them by

analytical calculation. The work presented here addresses this

issue and also enables the prediction of the range of

experimental parameters within which this detector time-

averaging effect perturbs the observations. Using systematic

quantification of the time-averaging effects in the ranges of

parameters of experimental relevance, we demonstrate that

the values of diffusion coefficients or domain sizes are not sig-

nificantly affected in a broad range of parameters. In addition,

we show that these effects can be easily corrected and that real

parameters can be recovered from those measured using sim-

ple formulas.

Consider a molecule diffusing in the membrane with dif-

fusion coefficient D. Its displacements are followed by single-

molecule tracking by means of a detector with exposure time

T. Rm(t) denotes the measured position of the molecule at

time t (multiple of T). The measured mean-square deviation

MSDm(t) is

MSDmðtÞ ¼ ÆðRmðs1 tÞ � RmðsÞÞ2æ; (1)

where the brackets denote a discrete average over frames s.
We further suppose that the diffusion is restricted to a square

domain of side L. The usual experimental procedure to ex-

tract information from MSDm(t) is to fit it with the expected

generic expression MSDfit
mðtÞ for a confined diffusion:

MSD
fit

mðtÞ ¼
L
2

m

3
1� exp � t

tm

� �� �
; (2)

from which one extracts the measured (or apparent) domain

size Lm and equilibriation time tm. The measured diffusion

coefficient Dm is given by Dm ¼ L2m=12 tm:
The real time-dependent positions of the molecule (as

opposed to those measured) are denoted by r(t). Because the
molecule is confined, they are correlated. The real equili-

briation time t in the box is the typical decay time of the

following two-time correlator C(t) where averages are over

times s:

CðtÞ[Ærðs1 tÞrðsÞæ� Ærðs1 tÞæ ÆrðsÞæ
ffi Const:expð�t=tÞ: (3)

In practice, there are several timescales because the dif-

ferent modes of the diffusion operator do not decay at the

same rate in the square box (2). The slowest mode decays

exponentially with a decay time t0 ¼ L2 / (p2D) and the next
modes have decay times t0/(2k 1 1)2 with k an integer.

Keeping the first-order term in the exact expansion of

C(t) (2)

CðtÞ ¼ 16L
2

p
4 +

N

k¼0

1

ð2k1 1Þ4
exp �ð2k1 1Þ2 t

t0

� �
; (4)

leads to the approximation

CðtÞ ffi L
2

6
expð�t=tÞ; (5)
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as C(0), the variance of r(t), equals L2/6. To restore the fact

that C(t) � C(0) ¼1/2 Æ(r(s 1 t) � r(s))2æ ¼ 2 D t at small t
for a diffusing molecule, we need to set

t ¼ L
2
=12D: (6)

Note that Eqs. 5 and 6 remain valid if the confining domain

is not a square, but a disk, an ellipse or any more complex

shape. In such cases, t still represents the equilibriation time

and L is the typical domain size. For example, if the domain

is a circle, its diameter is related to L by d ¼ (2/O3) L. For
a quadratic confining potential, U(r) ¼ 1/2Kr2, Eq. 5 is even

exact (3) and L is the typical width of the trap at temperature

u given by L2 ¼ 6kBu/K.
The measured position Rm(t) is related to the real one by

RmðtÞ ¼
1

T

Z t1T

t

rðuÞdu: (7)

After replacing Rm(t) using Eq. 7, the expansion of Eq. 1

leads to four correlators. Approximating them with Eq. 5 and

setting x ¼ t / T gives

MSDmðtÞ ¼
L
2

3
2x � 2x

2
1� e

�1
x

� �h

�exp �1

x

t

T

� �
x
2
e
1
x 1 e

�1
x � 2

� ��
: (8)

This exact expression of the measuredMSDm(t) in the case
of a detector time-averaging is valid only if t $ T. If t , T,
MSDm(t) is still calculable but this is beyond the scope of this
letter.

We extract the measured parameters from MSDm(t) as

described above and compare them to the real ones. The

domain size Lm is obtained by equaling the large t limits of

Eqs. 8 and 2:

Lm ¼ Lð2x � 2x
2ð1� e

�1=xÞÞ1=2 [ ðgðxÞÞ1=2: (9)

From Eq. 2, we get tm via the simple relation

MSDmðtmÞ ¼ L
2

m=3 1� 1=eð Þ: (10)

We have checked that within the range of parameters

studied here, the so-obtained value of tm is the same as the

one deduced from the fit of MSDm(t) by Eq. 2. If we set

f(x) ¼ x2 (exp(1/x) 1 exp(�1/x) � 2), Eqs. 10 and 8 give

tm

T
¼ x 11 ln

f ðxÞ
gðxÞ

� �
: (11)

When x is large, or t � T, the previous equation reads

tm ¼ t1T=3 at the first order in 1/x. We have checked that

this approximation remains excellent as long as x$ 1/3. For

any x , 1/3, as for instance in the case of a very large

diffusion coefficient D (see, for example, Ritchie et al. (1)),

we have checked by numerical simulation that tm , 2T/3.
Thus, any measured tm $ 2T/3 ensures that x$ 1/3 and that

the real corrected t $ T/3 is given by

t ¼ tm � T=3; (12)

which is of immediate practical interest to extract equili-

briation times from measured ones. The real L is then cal-

culated using Eq. 9, which reads

L ¼ Lm 2
t

T
� 2

t

T

� �2

1� e
�T

t

� �� ��1=2

; (13)

and the real D can now be recovered from Eq. 6. The

corrected parameters are thus simply determined using Eqs.

13 and 6. In the case of an exposure (or averaging) time T
smaller than the time T9 between two successive frames, the

calculation leading to Eq. 8 is unchanged as well as its con-

sequences. In particular, Eqs. 12 and 13 still hold. If the con-

finement geometry is more complex than a square, the whole

analysis, based on the correlator in Eq. 5 itself independent

of geometry, remains valid. The only difference is that

L does then not measure the side of a square but a typical

domain size.

To summarize, we have quantified how time-averaging

affects observables of biological interest. However, if t is

large compared to the exposure time T, then t, L, and D
remain essentially unmodified. This point is illustrated in

both Table 1 and in the following example.

The cases of domain-to-domain jumps or other mecha-

nisms leading to slow long-term diffusion (with coefficient

DMAC) superimposed to confined short-term diffusion (4)

deserve attention (1). We consider, as an example, the

TABLE 1 Comparison of apparent analytically and numerically

calculated L and D, and corrected ones, to their real values for

different temporal regimes

t/T Lm/L Lm,s/L Lc/L Dm/D Dm,s/D Dc/D

10 0.984 0.984 1.000 0.936 0.933 0.996

6.4 0.975 0.958* ND 0.903 ND ND

2 0.923 0.924 1.000 0.730 0.721 0.983

1 0.858 0.859 0.998 0.552 0.542 0.967

0.5 0.753 0.755 1.002 0.341 0.342 1.002

0.333 0.675 0.676 1.026 0.228 0.235 1.136

0.0048 0.10 0.13* ND 0.010 ND ND

t is the equilibriation time and T the detector exposure time. Parameters

without index are real ones. The index ‘‘m’’ denotes an analytically

calculated apparent parameter; ‘‘m,s’’ a numerically calculated one. The

index ‘‘c’’ denotes a corrected value (ideally equal to the real one) obtained

from the numerically calculated one using Eqs. 12, 13, and 6. ND, not

determined (because D2-4 measured in Ritchie et al. (1) cannot be used in

this framework).

*Data from Figs. 2 and 3 C of Ritchie et al. (1).
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movement of the m-opioid receptor at the surface of a normal

rat kidney fibroblast cell from Daumas et al. (5). We cal-

culateMSDm(t) from one trajectory acquired at common video

rate, i.e., T ¼ 40 ms (see Fig. 1).

Fitting this MSDm(t) with the generic form:

MSD
fit

mðtÞ ¼
L
2

m

3
ð1� e

� t
tmÞ1 4DMACt; (14)

we find tm ¼ 192 ms and Lm ¼ 483 nm. We deduce t ¼ 178

ms (from Eq. 12), L ¼ 501 nm (from Eq. 13), and finally

D ¼ 0.117 mm2s�1 whereas Dm ¼ 0.101 mm2s�1 (from Eq.

6). The influence of time-averaging is weak in this case, as

well as in all the trajectories of Daumas et al. (5), because T
� tm. This validates a posteriori the measures in Daumas

et al. (5). By contrast if tm is smaller than a few T, the
corrections to t and L must imperatively be taken into

account. In addition to the existing numerical data from

Ritchie et al. (1), we have performed numerical simulations

in all relevant ranges of the parameters (t $ T/3). The

agreement with our analytical predictions is excellent (see

Table 1). Our formulas allow us to recover accurately the real

L and D from those measured within a few percents.

To conclude, we have demonstrated that the drawbacks of

single-molecule tracking techniques due to time-averaging

are limited. In the case of confined diffusion in membrane

domains, we have proposed simple formulas to recover the

real domain sizes and diffusion coefficients from those

measured. The accuracy remains excellent for confinements

with characteristic diffusion times down to t ¼ T/3 where

T is the exposure time, i.e., t is of the order of 10 ms

at common video rates. Interestingly, this work has shown

that events occurring at a timescale smaller than the exposure

time can be explored by single-molecule tracking.
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FIGURE 1 Experimental trajectory (120 s) of a m-opioid re-

ceptor at the surface of a normal rat kidney cell (5), truncated in

successive 20-s segments shown in different colors (indigo,

cyan, green, yellow, orange, red) to highlight the displacement of

the confining domain of size L ffi 500 nm, in which the receptor

diffuses rapidly. The black trajectory shows the slow diffusion of

the barycenter of this domain calculated on sliding 4-s intervals.
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