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ABSTRACT The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or
chemical manipulation yields a PSI core (P700-FX core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters
FA and FB, which constitute an integral part of PsaC. In this P700-FX core, the redox potentials (Em) of the two quinones A1A/B

and the iron-sulfur cluster FX as well as the corresponding protonation patterns are investigated by evaluating the electrostatic
energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation
state significantly upon isolating the P700-FX core, being mainly protonated in the native PSI complex but ionized in the P700-
FX core. In the P700-FX core, Em(A1A/B) remains practically unchanged, whereas Em(FX) is upshifted by 42 mV. With these
calculated Em values, the electron transfer rate from A1 to FX in the P700-FX core is estimated to be slightly faster on the A1A

side than that of the wild type, which is consistent with kinetic measurements.

INTRODUCTION

The x-ray crystal structure of Photosystem I (PSI) from

Thermosynechococcus elongatus at 2.5 Å resolution (1)

solved the riddle of the microscopic structure of this protein-

pigment complex located in the thylakoid membrane. The

central part of PSI is composed of two homologous

membrane integral subunits, PsaA and PsaB (Fig. 1 A).
The two homologous chains harbor as redox-active cofactors

a dimer of chlorophyll a (Chla, P700), two accessory Chla,
(A�1), two additional distant Chla (A0), two phylloquinones

(phyllo-Q, A1), and one iron-sulfur cluster (FX). The stromal

extrinsic subunit PsaC contains two additional iron-sulfur

clusters (FA and FB). Similarly to bacterial photosynthetic

reaction centers (RC), these six Chla and two phyllo-Q

cofactors are arranged in two branches (A and B) in pseudo

C2 symmetry with the rotation axis passing through P700

and FX. The axially located P700 and FX, in turn, are con-

nected by the two chains of redox-active cofactors A�1A/B,

A0A/B, and A1A/B.

Subunit PsaC is largely similar to ferredoxins that contain

two Fe4S4 clusters. To test the functional role of this subunit,

a PSI mutant lacking subunit PsaC (P700-FX core) is studied

in this work. A consequence of the P700-FX core preparation

is not only the absence of PsaC, which contains the two iron-

sulfur clusters FA and FB, but also the lack of PsaD and PsaE;

these two subunits are in close contact with PsaC and bind to

PsaA/PsaB only after PsaC is bound. A P700-FX core can be

generated either chemically i), by urea treatment (urea-

treated PSI) (2–5) or genetically in two ways by deleting ii),

the psaC gene (psaC� PSI) (4,6), or iii), the rubA gene

(rubA� PSI) (7,8). The latter leads to a P700-FX core in

which FX is initially absent but can be later reconstituted. If

not otherwise specified, we name all three differently gen-

erated incomplete PSI protein complexes ‘‘P700-FX cores’’

in this study. Despite the deletion of the subunit PsaC in the

neighborhood of FX, the measured electron transfer (ET) rate

from A1 to FX remains essentially unchanged (180 ns by

ultraviolet-visible (UV-VIS) spectroscopy (9) or 190 ns by

electron paramagnetic resonance (EPR) (10) in urea-treated

PSI) relative to the native PSI complex, where the correspond-

ing time constant was between 206 ns and 355 ns (11–16).

Here, we present the calculated Em(A1A/B) values for the

P700-FX core as we presented in our previous work for the

native PSI complex (17). The shift of calculated Em(FX) in

the P700-FX core versus the corresponding value in the

native PSI complex is also correlated with corresponding ET

rates measured on P700-FX cores generated by urea treating

of PSI (9,10). To investigate the electrostatic binding inter-

action between the PSI subunits, we present the calculated

pKa values for residues in the binding interface or, if needed,

we constrain the protonation probability of specific residues

whose charge state was considered to be significant for PsaC

binding (4,18) and monitor the resulting changes in proto-

nation pattern. With this simple method, we obtain infor-

mation on the electrostatic interaction of binding the PsaC

subunit to the PsaA/PsaB heterodimer.

A key question for PSI research is the role of partial

negative charges on the Em of the cofactors involved in light-

induced charge separation and thus in control of functional

properties. In particular, the nominal negative charge of the

Fe4S4 clusters can directly contribute to the Em shift of the

cofactors that precede it in the ET chain, such as A1, as
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recently demonstrated computationally (17) and experimen-

tally (19,20). Selective removal of particular Fe4S4 clusters is

a feasible experimental approach, which is pursued here

computationally.

MATERIALS AND METHODS

Coordinates

For our computations, we used the crystal structure of trimeric PSI from

T. elongatus at 2.5 Å resolution (Protein Data Bank; 1JB0) (1).

The crystal structure of the P700-FX core is yet not available. In the

model of the P700-FX core, the subunits PsaC, PsaD, and PsaE were

removed together with the iron-sulfur cofactors FA and FB, which are

embedded in PsaC. It has been established in vitro that PsaC can be rebound

to the P700-FX core without the need for ATP hydrolysis and without the

need of chaperones (6,21). It has also been suggested from urea-treated PSI

that the P700-FX core represents the intact PSI core and retains.90% of FX
with little deterioration of the RC (2), because the binding contacts between

PsaC and the PsaA/PsaB heterodimer are mainly electrostatic in nature

(1,18,22). EPR data show that structural and kinetic properties of the A1 site

remain identical within experimental accuracy for the P700-FX core and the

native complete PSI complex (10). The structural model used for the P700-

FX core in this study is, therefore, the best starting point and in part justified

by experimental evidence.

For both the P700-FX core and the native PSI complex, the atomic

coordinates were treated as in previous work (17). In the crystal structure,

hydrogen atom positions were energetically optimized with CHARMM

(23). During this procedure the positions of all nonhydrogen atoms were

fixed; all titratable groups were kept in their standard protonation state, i.e.,

acidic groups were ionized and basic groups were protonated. The six Chla
and the two phyllo-Q were kept in the oxidized neutral charge state.

Analogous to the wild-type PSI, one specific crystal water (HOH-37) was

also considered for the P700-FX core (17). This water molecule forms an H

bond with one of the acidic oxygens of Asp-B575 that was found to change

its protonation state coupled with the redox states of A1A/B as discussed later.

If not otherwise stated, the results refer to computations that include this

crystal water.

Atomic partial charges

Atomic partial charges of the amino acids were adopted from the all-atom

CHARMM22 (24) parameter set. The charges of acidic oxygens were both

increased symmetrically by 10.5 unit charges to account implicitly for the

presence of the proton. Similarly, instead of removing a proton in the

deprotonated state, the charges of all protons of the basic groups of arginine

and lysine were diminished symmetrically by a total unit charge. For

residues whose protonation states are not available in the CHARMM22

parameter set, appropriate charges were computed (25). For the cofactors,

the same atomic charges as in our previous computation (17) were used. We

considered FX, FA, and FB in the oxidized charge state [Fe4S4(SCH3)4]
2– for

the native PSI complex (26). To obtain the shift of Em(FX) between the

native PSI and the P700-FX core, we considered [Fe4S4(SCH3)4]
2–/3– for the

oxidized/reduced state of FX (FX
0/�). As in previous computations (17),

a positive unit charge was located on the B-branch Chla of the P700 dimer

(P700B), according to electron nuclear double resonance (ENDOR) and

electron spin echo envelope modulation (ESEEM) studies (27–30).

Computation of protonation pattern
and redox potential

Our computation is based on the electrostatic continuum model by solving

the linearized Poisson-Boltzmann (LPB) equation with the program MEAD

(31). The protonation patterns were sampled by a Monte Carlo (MC) method

with our own program Karlsberg (32). The dielectric constant was set to eP¼
4 inside the protein and eW ¼ 80 for water as done in previous computations

(for instance, Ishikita and Knapp (17)). All computations refer to pH 7.0 at

300 K and an ionic strength of 100 mM. The LPB equation was solved using

a three-step grid-focusing procedure with 2.5 Å, 1.0 Å, and 0.3 Å resolution.

The MC sampling yields the probabilities [Aox] and [Ared] of the redox states

of compound A.
The Em was calculated from the Nernst equation. To minimize the

statistical error in evaluating the Em, a bias potential was applied to obtain an

equal amount of both redox states ([Aox] ¼ [Ared]), yielding the value of the

bias potential as the resulting Em. For convenience, the computed Em are

given with mV accuracy, without implying that the last digit is significant.

To obtain the absolute value of Em in the protein, we calculated the

electrostatic energy difference between the two redox states of phyllo-Q in

the protein and a reference model system where the experimental redox

potential is known. The shift of the Em in the protein relative to the reference

system was added to this experimental value. As a reference model system,

we used the Em(phyllo-Q) of �463 mV versus NHE (normal hydrogen

electrode) for one-electron reduction in DMF solution (33) as was done in

the previous study (17).

We can calculate pKa values for titratable residues using two different

pKa definitions. In a straightforward approach, a titratable residue is biased

by an individual energy term to be 50% protonated, whereas the protonation

FIGURE 1 (A) Location of PsaA, PsaB, PsaC, PsaD, and PsaE subunits

(displayed in pink, cyan, yellow, gray, and blue, respectively). (B) Selected

residues of the interface of PsaC binding to the PsaA/PsaB heterodimer.

Residues discussed in the text and Table 1 are displayed with ball and stick,

in red (PsaA), blue (PsaB), and yellow (PsaC).
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states of the other titratable residues are fully relaxed at a fixed pH (pH 7 in

this study). This bias energy can be used to define the pKa of this residue

(Henderson-Hasselbalch pKa). This pKa describes how much energy is

needed to change the protonation state of this residue in its protein envi-

ronment where the protonation pattern changes locally by equilibration due

to the charge change of this residue without involving changes of solvent

pH. This pKa definition is, for instance, useful to describe the energetics of

the adiabatic proton transfer processes between different titratable groups.

The protonation dependence of the considered titratable residue obeys the

Henderson-Hasselbalch equation (equivalent to the Nernst equation for a

redox-active group) as a function of the bias energy.

Another approach to determine pKa values is to calculate it from the

protonation pattern of all titratable residues as a function of solvent pH for

a large pH range. Here, the pKa of the titratable residue under consideration

can be defined as the pH value where this residue is to 50% protonated

[effective pKa]. This is a more common pKa definition and corresponds to

the conditions where pKa values of titratable groups in proteins are deter-

mined experimentally. When the molecular system contains only a single or

several noninteracting titratable groups, the same pKa values are computed

for both definitions.

In a region rich in titratable residues, it is often hard to give a specific

single value for the effective pKa if one observes only a moderate

protonation change over a wider pH range. In this study, we calculated pKa

values as Henderson-Hasselbalch pKa at pH 7.0 as in previous studies

(34,35), whereas protonation probabilities are computed by coupling solvent

pH at pH 7 to all titratable residues and not by using a bias energy term.

Protonation probabilities obtained in this way qualitatively relate to the pKa

definition effective pKa. But, there is no quantitative correspondence be-

tween these protonation probabilities and pKa derived from the simple

Henderson-Hasselbalch relation because of possible strong electrostatic

coupling between different titratable residues (for further discussions about

the difference between the Henderson-Hasselbalch and the effective pKa,

see Supplemental discussion). Note that we do not consider possible

structural changes of a protein upon pH changes. Such structural changes

may occur more prominently in protein regions containing clusters of

titratable residues.

Estimation of the ET rate

We estimated the ET rate from A1 to FX based on the values of Em(A1) and

Em(FX) by evaluating the following empirical rate expressions (36). They

describe ET processes at T ¼ 300 K, which are downhill in energy

(exergonic)

k
exergonic ET

T¼300K ¼ 10
ð13�0:6ðR�3:6Þ�3:1ð-jDGj1lÞ2=lÞ

; (1)

or uphill in energy (endergonic)

k
endergonic ET

T¼300K ¼ k
exergonic ET

T¼300K 10
3:1jDGj=0:06

; (2)

where R (.3.6 Å) is the edge-to-edge distance, DG the Em difference of the

participating electron donor and acceptor groups, and l the reorganization

energy. In these rate expressions, the energy parameters (DG and l) are

given in units of eV and the distances (R) in units of Å. The edge-to-edge

distance R of donor (A1) and acceptor group (FX) is R ¼ 6.8 Å, identical in

both A1A and A1B sides, as taken from the crystal structure (1).

RESULTS AND DISCUSSION

Role of the specific protonation pattern in the
P700-FX cores

Redox states A1B
0/2 influencing Glu-B682

Fourier transform infrared (FTIR) spectroscopic studies

indicated that one glutamate was perturbed upon formation

of A1
� in wild-type PSI. As possible candidates, glutamates

A699, A702, B679, and B682 were proposed (37). The pairs

of symmetry-related glutamates Glu-A702/Glu-B682 and

Glu-A699/Glu-B679 are located in equivalent positions in

the A- and B-branches, respectively. In our previous study of

the wild-type PSI, we found that among these glutamates

only Glu-B682 showed a small but notable increase in pro-

tonation (protonation state of 0.15 H1) with the formation

of A1B
� (17), whereas this residue was fully ionized in the A1B

0

state. Concerning A1A
0 and these glutamates, the pKa

calculated for Glu-B-682 is significantly higher for both

redox states than those of the other three glutamates (Table

1). A comparison between the symmetry-related pairs of glu-

tamates reveals that Glu-A699 and Glu-B679 possess similar

pKa values, whereas the pKa of Glu-A702 and Glu-B682

show a significant difference. The latter indicates that the elec-

trostatic environment of these symmetry-related glutamates

TABLE 1 Calculated pKa values of residues for the native PSI complex and the P700-FX core in the PB
1 state

Residues of PsaA Redox state* Native PSI P700-FX core Residues of PsaB Redox state* Native PSI P700-FX core

Asp-A568 3.9 4.7 Asp-B555 4.1 5.6

(Asn-A571)y Asp-B558 8.5 5.7

Asp-A579 �0.3 2.0 Asp-B566 �4.8 3.3

Arg-A583 22.3 13.6 Arg-B570 21.3 15.5

(Gln-A588)y Asp-B575 5.2 4.7

A1A
� 8.7 7.9

A1B
� 7.2 6.9

FX
� 9.2 8.2

Glu-A699 �2.6 �2.4 Glu-B679 �4.2 �4.3

A1A
� �2.7 �2.4 A1B

� �3.8 �3.9

Glu-A702 �1.3 2.6 Glu-B682 4.7 5.2

A1A
� �1.3 2.8 A1B

� 6.2 5.9

(Gln-A718)y Lys-B702 16.4 10.0

*If no redox state is indicated, all redox active cofactors are in the neutral charge state except for PB
1.

yNontitratable residue in PsaA, which is symmetry related to a titratable residue in PsaB.
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belonging to the A- and B-branches is asymmetric. Related to

this difference, we found an asymmetry of the corresponding

protein conformations in the immediate vicinity. The back-

bone nitrogen of Lys-B551 is at a distance of only 2.9 Å from

the acidic oxygen of Glu-A702, stabilizing its ionized state by

this H bond and thus rendering Glu-A702 very acidic. The

symmetry-related residue to Lys-B551 is Arg-A564. In

contrast to Lys-B551 the backbone nitrogen of Arg-A564 is

at a distance of 3.9 Å from the acidic oxygen of Glu-B682,

which is too far to barely form an H bond. As a consequence

the pKa of Glu-B682 is calculated to be significantly higher

than that of Glu-A702 (Table 1), the former being close to the

reference value of 4.4 in aqueous solution.

In the P700-FX core environment around A1B
�, Glu-B682 is

slightly more ionized (protonation 0.08 H1) than in the native

PSI complex. In the P700-FX core, the quartet of glutamates

appears on the protein surface, stabilizing the deprotonated

state. At the same time, the solvent exposure, especially of Glu-

B682, shields the charge influence from A1B, thus reducing the

pKa difference between the two redox states A1B
0/– from 1.5 in

the native PSI complex to 0.7 in the P700-FX core (Table 1).

Asp-B575 influenced by the redox states A1A/B
0/2 and FX

0/2

In the native PSI complex, Asp-B575 in the neighborhood of

A1A changes its protonation state in response to the formation

of A1A/B
� (17). The symmetry counterpart of Asp-B575 in PsaB

is the nontitratable residue Gln-A588 in PsaA. This Gln-A558/

Asp-B575 pair is highly conserved from cyanobacteria to

higher plants. One of the acidic oxygens of Asp-B575 is

H-bonded to the crystal water HOH-37 as a part of a larger

water network located between the cofactors A1A/B and FX,

which apparently displays a PsaA/PsaB asymmetry (1). In the

P700-FX core, upon formation of A1A
� and A1B

� the protonation

probabilities of Asp-B575 are 0.89 H1 and 0.27 H1,

respectively, whereas this residue is fully ionized in the A1A
0 /

A1B
0 state. The similarity of the Asp-B575 protonation state

between the P700-FX core and the native PSI complex (0.85

H1 for A1A
� and 0.17 H1 for A1B

� in the latter (17)) indicates

that Asp-B575 is electrostatically also buried in the P700-FX
core as deduced also from the crystal structure (1) for the native

PSI complex. Hence, it is well shielded from the stromal

surface of the PsaA/PsaB complex such that the influence of

PsaC on Asp-B575 is small. As will be discussed later, the

small decrease of protonation state of Asp-B575 by 0.10 H1 for

A1B
� relative to the native PSI complex can partially contribute

to the upshift of Em(A1B) in the P700-FX core.

In this study on the P700-FX core, we additionally found

that upon formation of FX
�, Asp-B575 is mostly protonated in

both the native PSI complex and the P700-FX core

(protonation states of 0.95 H1 and 0.94 H1, respectively).

Indeed, the calculated pKa values for Asp-B575 are 9.4 (8.6)

in the FX
� state, followed by 8.9 (8.3) in the A1A

� state, 7.4

(7.0) in the A1B
� state, and 5.4 (5.1) in the neutral state (A1A

0 /

A1B
0 ) of the native PSI complex (P700-FX core) (Table 1).

Analysis of protonation pattern changes on
PsaC binding

Arg-C65

Arg-C65 participates in the H-bond network surrounding

HOH-22. Its influence on the protonation pattern of titratable

residues in its neighborhood is investigated by constraining it

to be in the deprotonated charge state. In response to the

deprotonation of Arg-C65, a dramatic change in protonation

pattern is induced at Asp-B555 (0.00 H1 / 1.00 H1), Asp-

B558 (0.97 H1/ 0.07 H1), and Glu-C54 (0.00 H1 / 0.23

H1) (Table 2). Arg-C65 is involved in the specificity of

binding between PsaB and PsaC by forming at pH 7.0

simultaneously strong salt bridges with Asp-B555 (NArg–

OAsp distance 3.0 Å) and Asp-B566 (NArg–OAsp distance

2.6 Å) (see also Table 3 of Antonkine et al. (18)). In contrast

to Asp-B555, Asp-B566 is always ionized.

Lys-C51 and Arg-C52

Two double mutants, K(C51)S/R(C52)D and K(C51)S/

R(C52)A, which did not prevent association of PsaC with

PsaA and PsaB to the PSI complex, were originally con-

structed to test the influence of these two basic residues Lys-

C51 and Arg-C52 on Em(FA/B) (38) (see also Golbeck (4)).

On the other hand, from analysis of the crystal structure (18)

it is evident that Lys-C51 forms salt bridges with Asp-B566

and Glu-C54, whereas Arg-C52 forms salt bridges with Asp-

A568 and Asp-A579 (Fig. 1 B). Hence, although these

central salt bridges that stabilize the association between

PsaC and PsaA/PsaB are lost in those double mutants, there

still exist the salt bridges between Arg-C65 and Asp-B555/

Asp-B566, which may be sufficient to guarantee binding of

a functional PsaC (4).

To investigate the influence of the basic residues Lys-C51

and Arg-C52 on the acidic residues serving as salt bridge

partners, we force each of the two basic residues individually

in the deprotonated state. Hereby, Asp-A568 becomes pro-

tonated upon deprotonation of Arg-C52, whereas all other

acidic residues do not change their protonation state

(including Asp-A579) and remain ionized (Table 2). This

may suggest that Arg-C52 couples more strongly with Asp-

A568 (NArg–OAsp distances of 2.8 Å and 3.2 Å) than with

Asp-A579 (NArg–OAsp distances 2.8 Å and 3.1 Å), although

TABLE 2 Changes in protonation pattern with forced

deprotonation of residues Lys-C51, Arg-C52,

and Arg-C65 in PsaC

Deprotonated residue* Affected residues Protonation probability change

Lys-C51 Glu-C54 0.00 / 1.00

Arg-C52 Asp-A568 0.00 / 1.00

Arg-C65 Asp-B555 0.00 / 1.00

Asp-B558 0.97 / 0.07

Glu-C54 0.00 / 0.23

*Protonation state of the residue was forced to change from 1.0 H1 to 0.0

H1 (deprotonation).
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the N–O distances in the two salt bridges are practically

identical. The strongly ionized state for Asp-A579 is due to

the proximity of Arg-A583 (closest NArg–OAsp distance

3.0 Å). The formation of salt bridges between them renders

the pKa for Asp-A579/Arg-A583 extremely low/high, result-

ing in a pKa for Asp-A579 by 4 pH units lower than that of

Asp-A568 (Table 1).

Enforced deprotonation of Lys-C51 results in protonation

of the salt bridge partner Glu-C54 (Table 2), whereas no

change of protonation state is observed for the other salt bridge

partner, Asp-B566. This may be due to the simultaneous

involvement of Asp-B566 in an intermolecular salt bridge

with Lys-C51 and Arg-C65 (Fig. 1 B). In addition, Asp-B566
has an intramolecular salt bridge partner, Arg-B570 (closest

NArg – OAsp distance of 2.7 Å). This strong intramolecular salt

bridge stabilizes the ionized state of Asp-B566 enormously,

i.e., even a simultaneous forced deprotonation of both Lys-

C51 and Arg-C65 does not lead to a protonated Asp-B566.

In this study, the simultaneous deprotonation of both Lys-

C51 and ArgC-52, which may mimic the K(C51)S/R(C52)A

double mutant (38), results in protonation of Asp-A568 and

Glu-C54. Clearly, the protonation of the former is due to the

deprotonation of Arg-C52 and the latter to the deprotonation

of Lys-C51. No additional changes of protonation pattern are

observed compared with the corresponding changes result-

ing from deprotonation of Lys-C51 or of ArgC-52 alone

given in Table 2. This indicates that the influence of the

charge state of these residues is essentially localized at their

salt bridge partners in contrast to the more delocalized

H-bond network discussed above.

Protonation of Asp-B558 at the PsaC/D interface

In our computations for the native PSI complex, all as-

partates are ionized except for Asp-B575 and Asp-B558. In

particular, Asp-B558 is essentially protonated in native PSI

for all cofactor redox states. The protonated state of Asp-

B558 relates to a small cavity occupied by the crystal water

HOH-22 (OAsp – Owater distance of 2.4 Å) (Fig. 1 B). Inter-
estingly, the charge state of Asp-B558 changes dramatically

from nearly protonated in the native PSI complex (0.97 H1

at pH 7 with pKa of 8.5 in the A1A
0 A1B

0 state) to nearly

ionized in the P700-FX core (0.05 H1 at pH 7 with pKa of

5.7 in the A1A
0 A1B

0 state). The calculated pKa of 5.7 for Asp-

B558 in the P700-FX core is relatively close to the reference

value of 4.0 in aqueous solution. This is evidently due to

solvent contacts (Table 1), whereas in the native PSI com-

plex Asp-B558 is subjected to interactions with a network of

residues.

Redox potentials of A1 and FX in the P700-FX core

A1 redox potential

Em(A1A) and Em(A1B) are calculated to be �545 mV and

�652 mV, respectively, in the P700-FX core (Table 3).

Although these values are similar to the calculated Em(A1) in

the native PSI complex (Em(A1A) ¼ �531 mV; Em(A1B) ¼
�686 mV (17)), the shift in Em(A1B) is slightly larger than

that in Em(A1A). As a consequence, the asymmetry in the

Em(A1A/B) values decreases from 155 mV (17) in the native

PSI complex to 107 mV in the P700-FX core. The decrease in

the difference between Em(A1A) and Em(A1B) by 48 mV

relative to the native PSI complex can be assigned pre-

dominantly to an upshift of 34 mV in Em(A1B) as compared

to a downshift of only 14 mV in Em(A1A). In previous work,

the direct contributions of the two iron-sulfur clusters FA/FB
on the Em(A1) in the native PSI complex were found to con-

tribute to the downshift nearly symmetrically by 50 mV for

Em(A1A) and by 59 mV for Em(A1B) (17). However, the

apparent change of the asymmetry for the Em(A1A/B)

considering the P700-FX core could be explained by a small

change in protonation probability of Asp-B575. Upon removal

of PsaC, the protonation of Asp-B575 remains practically

unchanged for reduced A1A
� (0.85 H1 for the native PSI

complex and 0.89 H1 for the P700-FX core). But, it increases

protonation by 0.1 H1 for reduced A1B
� (0.17 H1 for the native

PSI complex and 0.27 H1 for the P700-FX core). The residue

Asp-B575 was proposed to play a crucial role in tuning the

Em(A1A/B) values as revealed in the study on the native PSI

complex (17). Increasing protonation of this acidic residue

stabilizes the reduced state A1
�, i.e., increases Em(A1).

FX redox potential

From the optical spectrum at room temperature, the shift of

Em(FX) in urea-treated PSI was measured to be 160mV,

where FA/FB were removed by chemical dissociation of the

subunit PsaC (3). The resulting P700-FX cores apparently

have an increased solvent exposure of FX and a lack of

charge interaction with the FA and FB iron-sulfur clusters.

TABLE 3 Rates kET of ET from A1 to FX in P700-FX core

Redox potential [mV] 1/kET [ns]y

Em(A1) Em(FX)* Computation Experiment

A1A �545
�628z 86{

126**, 180–190yy�608§ 51{

A1B �652
�628z 7k n.d.

�608§ 6k n.d.

The corresponding lifetime 1/kET was estimated from the rate expressions,

Eqs. (1) and (2), based on the computed redox potentials Em(A1) and

Em(FX).

*Calculated by adding the calculated shift of the Em(FX) between the native

PSI complex and P700-FX core (42 mV) to the measured Em(FX) in the

native PSI complex.
yA1

� lifetime calculated with reorganization energy l ¼ 1.0.
zBased on the measured Em(FX) ¼ �670 mV in the native PSI complex (3).
§Based on the measured Em(FX) ¼ �650 mV in the native PSI complex

(43,44).
{Estimated by Eq. 2.
kEstimated by Eq. 1.

**(5).
yy(9,10).
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However, chemical treatment of proteins could conceivably

cause modifications and structural rearrangement of the

remaining subunits, particularly those near to the PsaA/PsaB

interface with PsaC. Nevertheless, simply by using the

atomic coordinates of the crystal structure of the native PSI

complex for the remaining subunits of the P700-FX core, the

calculated Em(FX) is 42 mV more positive than that for the

native PSI complex, which is consistent with the experi-

mentally measured shift of 60 mV in Em(FX) for urea-treated

PSI (3). This implies that possible structural changes in the

P700-FX core that are induced by urea treatment are either

small or not significant for the Em(FX), which justifies the

structural model for the P700-FX core used in this study.

One may argue that the shift of the Em(FX) is due to the

removal of the negatively charged groups FA/FB by changing

from the native PSI complex to the P700-FX core. To test this

idea, we calculated the ‘‘direct contribution’’ of different

residues/cofactors on Em(FX) in the native PSI complex with

all titratable groups in standard protonation state at pH 7.0

(i.e., the acidic groups being ionized, basic groups protonated,

and His neutral) (Fig. 2). Here, the negatively charged groups

FA and FB are responsible for downshifts of the Em(FX) in the

native PSI complex, by 110 mV and 34mV, respectively. Due

to the additivity of the direct contributions, these contributions

to the Em(FX) yield a total downshift of 144 mV in the native

PSI complex. Thus, elimination of atomic charges on both FA
and FB from the native PSI complex should upshift the Em(FX)

by 144 mV. However, in the native PSI complex, protein

charges in the PsaC, PsaD, and PsaE subunits essentially

neutralize the downshift of Em(FX) caused by the presence of

FA/B, with an upshift of 112 mV, contributed predominantly

by an upshift of 90 mV from PsaC. Thus, the total direct

influence of the charges on PsaC with FA/B, PsaD, and PsaE

on Em(FX) amounts to a downshift of�32 mV only. Note that

all these values, especially the influence of FA/B on Em(FX),
are valid only in the presence of the protein dielectric volumes

from PsaC, PsaD, and PsaE whose dielectric constant was set

to eP ¼ 4.

Removal of the subunits and cofactors from the native PSI

complex is also accompanied by exposure of the resulting

P700-FX core to bulk water. This effect is considered in our

model by the replacement of the dielectric constant eP¼ 4 by

eW ¼ 80 in the volume of the removed protein and cofactors.

This procedure is accompanied by generation of a new water

accessible surface on the remaining PSI-RC scanned by a

probe molecule of radius of 1.4 Å. Here, we obtain an upshift

of Em(FX) by 46 mV due to the replacement of protein

dielectric volume by the high dielectric of water in changing

from the native PSI complex to a P700-FX core.

Creation of a new protein surface is often accompanied by

a change of protonation pattern of nearby titratable residues.

The change of protonation pattern from the native PSI

complex to the P700-FX core, though it is subtle, results in

a downshift ofEm(FX) by 36mV. Therefore, the total influence

on the shift of Em(FX) in the P700-FX core, originating from

the replacement of the protein volume of PsaC by water, yields

an upshift of only 10 mV with respect to the native PSI

complex. Together with the upshift of 32 mV obtained by the

removal of the atomic charges from the subunits and of FA/B to

generate P700-FX, Em(FX) in the P700-FX core is by 42 mV

higher than that in the native PSI complex.

Although FX is not embedded in PsaC, the atomic charges

of this subunit provide a significant stabilization to FX
�.

Hence, the upshift of the Em(FX) caused by PsaC implies that

in addition to the negatively charged iron-sulfur clusters FA
and FB, PsaC is effectively rich in positive charges origi-

nating from basic groups. Among the eight basic residues

and nine acidic residues in PsaC, the FX binding niche is

particularly rich in basic residues (Lys-C51, Arg-C52, and

Arg-C65) rather than acidic residues (Glu-C54). These basic

groups simultaneously contribute to the binding with sub-

units PsaA and PsaB, whose interfaces are rich in negatively

charged acidic groups distributed symmetrically about the

FX iron-sulfur cluster (9).

Kinetics of ET from A1 to FX in the P700-FX core

The lifetime (t1/e ¼ 1/kET) of the reduced state A1
� in PSI is

limited by ET processes and exhibits two dominant time

FIGURE 2 Direct influence on the shift of Em(FX) from FA, FB, and PsaC,

PsaD, PsaE (PsaC-E) charges (Dcharges) and from dielectric volume (Dvolume)

by changing from the native PSI to the P700-FX core. Calculated

contributions and shifts (D) to Em(FX) are given in units of mV.

Contributions to Em(FX) from specific components of the PsaC-E subunits

are given in the left box that schematically represents these subunits.

Changes (shifts) in Em(FX) upon removal of the PsaC-E subunits are denoted

by D. The total shift is given as the sum of shifts from all charges, volume,

and changes in the protonation pattern associated with them, i.e., DEm(FX)¼
Dcharges 1 Dvolume 1 Dprot. The direct influence from dielectric volume is

obtained if for vanishing charges in the PsaC-E subunits the protein

dielectric volume of PsaC-E with eP ¼ 4 is removed resulting in water

occupancy with eW¼ 80. The indirect influence due to associated changes in

the protonation pattern of titratable residues (Dprot) upon the removal of

these subunits and FA/B is given for the charges and the dielectric volume of

all three removed subunits.
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phases. It has been established that ET from A1 to FX is

biphasic, the slower phase being 206–355 ns and the faster

phase being 10–36 ns (11–16,39). Mutational studies of

either Trp-A697 or Trp-B673 to Phe near A1A/A1B suggested

that the former/latter originates from the forward ET from

A1A/A1B to FX (5,16,40,41). In previous work (17) based on

calculated Em(A1A/B), we obtained t1/e ¼ 220–375 ns from

the Em difference between A1A and FX and t1/e¼ 6–8 ns from

the Em difference between A1B and FX, in agreement with the

assignment in the mutant study (16). These estimates for the

A1
� lifetime were obtained by using a reorganization energy

of l ¼ 1.0 estimated from the kinetics of ET from A1 to FX
(42).

From kinetic studies with UV-VIS (9) or EPR (10)

spectroscopy, it was revealed that the rate for the slow phase

of ET from A1A to FX remained unchanged in urea-treated

PSI (characteristic time of 180–190 ns). In a recent kinetic

study also on urea-treated PSI by Gong et al. (5), the cor-

responding ET process was reexamined under the same

conditions, giving rise to a slightly accelerated ET with a

shorter lifetime of 126 ns.

With the same value of reorganization energy l ¼ 1.0 as

used for the native PSI complex for ET from A1A to FX, we

calculate lifetimes of 51–86 ns (Table 3) using Eqs. 1 and 2.

These lifetimes are moderately shorter than the values

computed for the native PSI complex (220–375 ns (17)).

Hence, our calculated results show a small acceleration of ET

for the P700-FX core model, consistent with the measure-

ment by Gong et al. for the urea-prepared P700-FX core (5).

The calculated rate for ET from A1A to FX is slightly larger

than the measured rate. To reproduce the corresponding

experimental lifetime of 126 ns (5), we can, for instance,

increase Em(A1A) by 15 mV (i.e., rendering the ET reaction

by 15 mV less exergonic) keeping all other conditions fixed.

Such shifts in Em are smaller than 1 kBT ¼ 26 mV and are

therefore within the uncertainty limit of the measured Em,

reorganization energy, or calculated Em associated with a tiny

but possible protein structural change depending on P700-FX
core preparation. Other factors, which we ignore in this

study, such as protein dynamics may contribute to the

remaining discrepancy, although the mere account of such

factors without experimentally established structural-related

information may result in additional artifacts. This study

suggests that the upshift of Em(FX) in the P700-FX core pre-

paration may be a key to understanding the acceleration of

the ET process found for urea-treated PSI by Gong et al. (5).

It was suggested that urea treatment could be accompanied

with a partial (10% (2) or 30% (10)) loss of FX with respect

to the native PSI complex. With FX absent, ET cannot

proceed past A1. Thus, a longer lifetime of the charge-

separated state P700
1 A1

� in P700-FX core is observed (10).

Computationally it is possible to delete PsaC, PsaD, and

PsaE from the crystal structure of the native PSI complex.

Based on this simple model for the P700-FX core structure,

we can reproduce the measured shift of Em(FX) (3) and, as

a consequence, obtain an acceleration of ET from A1 to FX as

observed in the kinetic measurements (5) for urea-treated PSI.

Thus, this study demonstrates that this simple model for the

P700-FX core based on the native PSI complex can essentially

explain the experimental results. Furthermore, these compu-

tational results suggest that the structural essentials of the

PsaA/PsaB core of the native PSI complex are conserved in

the urea-treated P700-FX core as previously suggested (2).
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