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ABSTRACT The development and testing of a discrete model describing the dynamic process of tissue growth in three-
dimensional scaffolds is presented. The model considers populations of cells that execute persistent random walks on the
computational grid, collide, and proliferate until they reach confluence. To isolate the effect of population dynamics on tissue
growth, the model assumes that nutrient and growth factor concentrations remain constant in space and time. Simulations start
either by distributing the seed cells uniformly and randomly throughout the scaffold, or from an initial condition designed to
simulate the migration and cell proliferation phase of wound healing. Simulations with uniform seeding show that cell migration
enhances tissue growth by counterbalancing the adverse effects of contact inhibition. This beneficial effect, however,
diminishes and disappears completely for large migration speeds. By contrast, simulations with the ‘‘wound’’ seeding mode
show a continual enhancement of tissue regeneration rates with increasing cell migration speeds. We conclude that cell
locomotory parameters and the spatial distribution of seed cells can have profound effects on the dynamics of the process and,
consequently, on the pattern and rates of tissue growth. These results can guide the design of experiments for testing the
effectiveness of biomimetic modifications for stimulating tissue growth.

INTRODUCTION

Tissue engineering applies the knowledge gained in biology,

biochemistry, medical sciences, and engineering to develop

bioartificial implants or to induce tissue remodeling to re-

place, repair, or enhance the function of a particular tissue or

organ (1,2). Tissue growth is a complex process whose rate

and pattern are affected by many factors such as the cell

phenotype, the density and spatial distribution of seed cells,

and the culture conditions (3). These factors affect tissue

growth by directly or indirectly modulating basic cell func-

tions including adhesion, migration, proliferation, and differ-

entiation. Recent advances in biomaterials research have

made it possible for us to manipulate cellular functions (like

adhesion and migration) through special fabrication techni-

ques (4) or biomimetic modification of biomaterial scaffolds

(5–9). However, theoretical guidance on how altered cell-

level properties may affect the process of tissue growth is

still lacking. As a result, the development of tissue sub-

stitutes is still in an early stage, based almost exclusively on

empirical approaches that require many expensive and time-

consuming experiments.

The lack of comprehensive models for tissue growth pro-

cesses can be attributed mainly to the complexity of bio-

logical systems consisting of entire cell populations. The

numerous components of a biosystem participate in count-

less and tightly coupled processes occurring at the molecular,

cellular, cell population, and tissue levels. Cell population

heterogeneity plays an important role in determining the

complexity of biological behavior and function (10–12). The

intricate population dynamics resulting from cell-cell and

cell-biomaterial interactions constitute another very impor-

tant (and yet often neglected) factor in determining the

growth rate and structure of developing tissues. The division

of most anchorage-dependent mammalian cells is contact

inhibited, a phenomenon observed both on flat surfaces

(13–17) and in three-dimensional scaffolds (18–21). Contact

inhibition has significant adverse effects on tissue growth.

These effects, however, can be compensated (at least par-

tially) by cell migration. Enhanced cell motility increases the

probability that a cell will move away from its immediate

neighbors and will have room to divide at the end of its cycle.

Several studies found that the enhancement of cell pro-

liferation rates resulting from the addition of growth factors

to the culture media was actually caused by the stimulating

effect of the growth factors on cell migration (22,23). The

migration process, however, can be slowed down by cell-cell

collisions that may cause a pause in cell movement or the

formation of an aggregate. Fibroblasts, for example, will stop

for ;25 min after a collision before breaking away from

each other to resume their migration (24). Similar behavior

has been observed with bovine pulmonary artery endothe-

lium cells (25). Epithelial cells, on the other hand, adhere to

each other irreversibly when they collide. Subsequent colli-

sions lead to the creation of small colonies that grow until a

contiguous sheet of cells is formed. This process is essential

for wound healing (24,26).

To capture the dynamics of tissue growth, one must accu-

rately describe the competing processes of contact inhibition

and cell migration. The first attempts to model cell popu-

lation dynamics considered the limiting cases of nonmotile

cells proliferating on two-dimensional (2D) surfaces (27,28)

or microcarriers (29,30). By neglecting migration, however,

these models could not offset the adverse effects of contact

inhibition on cell proliferation. Frame and Hu (31) used anSubmitted April 4, 2005, and accepted for publication July 8, 2005.
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empirical approach to describe the reduction in growth rates

caused by contact inhibition, whereas Ruann and co-workers

(32) attempted to describe the beneficial effects of cell loco-

motion by assuming that the daughter cells were quickly

separated by a certain distance after every division event. Lee

and co-workers (25) were the first to directly quantify the

competing effects of migration and contact inhibition with-

out simplifying assumptions. Their model considered indi-

vidual cells that executed persistent random walks on a 2D

grid, collided, and proliferated to build a new tissue. Key

parameters of this model could be easily obtained from long-

term tracking and analysis of cell locomotion and division

(33,34). Simulation results agreed well with experimental

data on the expansion of keratinocyte megacolonies (22), the

growth of endothelium (25), and the expansion of marrow

stromal osteoblast megacolonies on biomimetic hydrogels

(35). Cell migration speeds and the spatial distribution of

seed cells were found to be crucial factors in determining

proliferation rates. Because of the significant advantage they

have in describing cell population dynamics, discrete models

were also used in several recent studies to address the two-

dimensional problems involving the aggregation and self-

organization of Dictyostelium discoideum (36–38) and the

interactions between extracellular matrix and fibroblasts (39).

The modeling approaches described in the previous para-

graph, however, have not been extended to three-dimen-

sional (3D) tissue growth processes. Chang and co-workers

(40) developed a 3D discrete model for the growth of

biofilms, but the division of bacterial cells was not contact

inhibited and cell migration was not considered. Kansal and

co-workers developed a 3D model based on cellular autom-

ata (41) to simulate brain tumor growth dynamics. However,

each automaton of this model represented 100–106 real cells.

Although greatly reducing the computational requirements,

this approach did not provide a detailed description of cell

population dynamics.

This study will present a significant extension of our

earlier 2D work (25) to asynchronous cell populations that

migrate, collide, and proliferate to build a tissue inside

a 3D scaffold. Our objective is to characterize the dynamics

of the tissue growth process and to identify the key system

parameters that affect the structure and growth rate of the

developing tissue. Simulating the growth of 3D tissues

with substantial size requires large grids to handle the loco-

motion and interactions of individual cells, as well as small

time steps to accurately describe the population dynamics.

For this reason, our tissue growth algorithmwas parallelized

for execution on distributed-memory multicomputers.

MODEL DEVELOPMENT

Tissue growth dynamics

The growth of bioartificial tissues is a highly dynamic and complex process.

A small tissue sample is harvested from the patient or donor. Cells from this

tissue are isolated, cultured, and seeded into a 3D scaffold with the proper

structure and surface properties. We will consider here highly porous scaf-

folds that allow cells to migrate freely in all directions. Such scaffolds are

formed, for example, from entangled fibers made of polymers or natural

proteins like collagen. The inoculated scaffold is then immersed into a liquid

tissue culture medium containing the necessary nutrients for cell growth (in

vitro tissue culture). Growth factors, that is soluble proteins serving as inter-

cellular chemical messengers, are also necessary for normal tissue devel-

opment. These proteins bind to specific receptors on the surface of target

cells and modulate key cellular processes (like migration or proliferation) by

inducing or directing the action of specific genes. As nutrients and growth

factors diffuse into the 3D scaffold, the seeded cells migrate in all directions

and proliferate to populate the scaffold and form the new tissue. Migration is

slowed down by cell-cell collisions and proliferation stops when cells are

completely surrounded.

Our model will focus on the key processes of migration, cell-cell colli-

sion, and proliferation. The competing processes of migration and contact

inhibition will be analyzed for homogeneous cell populations and under

a variety of conditions that may appear in tissue engineering applications. To

simplify the analysis, we will not consider at this stage the coupling of cell

population dynamics with the transport of nutrients or other molecules that

modulate cellular functions like migration and proliferation. Instead, we will

assume that the parameters necessary to describe the locomotory and pro-

liferative behavior of the cells are known for the given culture conditions.

This does not necessarily mean that the culture environment has to be uni-

form. In fact, we will see that the discrete model presented here is capable of

describing biased cell movement under conditions that lead to chemotaxis.

We will finally assume that the process of tissue growth takes place over

a relatively short time (few consecutive cell divisions). Thus, cell apoptosis

can be neglected.

Several studies have shown that cells execute persistent random walks

when allowed to migrate in uniform 2D or 3D environments (42–44). This

motion is usually described with two parameters: migration speed S and per-

sistence time tp, the average (or expected) time between significant direc-

tional changes (45–47). Breaks in the migratory patterns of cells are often

observed as they enter stationary phases of variable duration and frequency

(44). When cells collide, they also enter a stationary phase whose duration

depends on the cell type (34,48). Clearly, breaks in the persistent random

walks and cell collisions will slow down the movement of cells. As a result,

the effective speed of migration Se computed from data obtained from a

‘‘dense’’ cell population will be lower than the true migration (or swimming)

speed. Even when the swimming speed S is time invariant, the effective

speed Se will decrease as the density of a cell population increases and cell

collisions are more frequent.

We can now summarize the key steps of the tissue growth process as

follows:

1. Each cell in the population moves in one direction for a certain length of

time (persistence time). At the end of this interval, the cell stops and

turns to continue its migration in another direction. Fig. 1 shows the

simulated trajectory (solid arrows) of a typical cell. If the cell does not
collide with another cell, this persistent random movement will continue

until it is time for the cell to divide. Although all cells move with the

same ‘‘swimming’’ speed, their effective (or observed) speed will be

lower due to breaks in their motion that are either spontaneous or caused

by collisions with other cells.

2. At the end of its cycle, the cell stops to divide. The length of the cell

cycle (or division time) will be considered as a random variable whose

probability density function is characteristic of each cell type and can be

measured experimentally (33,34). When the mitosis phase is over, the

two daughter cells move away from each other and resume their

persistent random movement (dashed and dotted arrows of Fig. 1).
3. When two cells collide, they stop for some time before resuming their

migration. The time interval of adherence will be another parameter of

our model because it varies widely among cell types (33,34,48).

4. This process is repeated until confluence has been reached, that is until

the scaffold is filled and the cells cannot migrate or divide any further.
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The model developed in the following sections will be referred to as the

CPMC/S/A model for cell proliferation, migration, and collision model of

a single, asynchronous population of cells that move with the same speed

and persistence.

Discrete model for tissue growth

To model the previously described dynamics of tissue growth, we will

consider cellular automata (49,50) consisting of 3D grids with

Nx 3Ny 3Nz ¼ Nt cubic computational sites. Each site of our cellular

array is a finite automaton that can exist at one of a finite number of states at

each time interval. That is, a site may be either: 1), empty and available for

a cell to move in; or 2), occupied by a cell that is at some point in its mitotic

cycle and either moves in a certain direction or is stationary. The model

assumes that each site can contain at most one cell.

Every automaton is ‘‘connected’’ to a set of ‘‘neighbors’’ and its state

evolves at discrete time steps Dt through interactions with neighboring

automata. In our algorithm, the neighborhood of every automaton consists of

the six cubic sites that share a face with it and are located to the east, north,

west, south, below and above the considered automaton (von Neumann

neighborhood). Let us assume now that the i-th automaton contains a cell at

time tr. Its state xiðrÞ is specified by a vector of integers with the following

components:

Migration index mi: If mi ¼ 1,2,. . .,6, then the cell is migrating in one of

the six directions (1 ¼ east, 2 ¼ north, 3 ¼ west, 4 ¼ south, 5 ¼
down, 6 ¼ up). If mi ¼ 0 or mi ¼ 7, the cell is in one of two stationary

states that will be defined below.

Division counter kd,i: The time that must elapse before the cell divides is

equal to td;i ¼ kd;i3Dt:This counter is decremented by one at each time

step, and the cell divides when kd;i ¼ 0: The cell division times of the

seed cells are assigned using a probability density function that can be

determined fromexperimental data (11). Thus, the cell populationevolves

in an asynchronous fashion. The same density function is used to assign

division times to the two daughter cells after each mitosis event.

Persistence counter kp,i: The time that must elapse before the cell

changes its direction of movement is equal to tp ¼ kp;i3Dt: This

counter is decremented by one at each time step, and the cell turns

when kp;i ¼ 0:

The migration speed S of a homogeneous cell population is set when we

specify the iteration interval Dt and assume that the time required for a cell to

move from one site to an adjacent one is ts ¼ n3Dt: Given that the side of

a cubic computational site is fixed and equal to h, the migration speed S

becomes:

S ¼ h

ts
¼ h

n3Dt
: (1)

The following model parameters must also be specified:

Waiting times E(Tj) of migration states: These are the average times that

a cell will: a), keep moving in a specific direction (j ¼ 1, 2,. . ., 6); or
b), stay at the same location after entering the stationary state (j ¼ 0).

These parameters characterize the persistence of cell migration and

can be measured using the procedure established by Noble and

Levine (33,51).

Transition probabilities pðlj jÞ: These are the probabilities with which

cells switch their direction of movement from j (j ¼ 0, 1, 2, . . .,6) to l

(l ¼ 1, 2, . . ., 6 and j 6¼ l). These parameters characterize the cells’

turning behavior and can be experimentally determined (33,51).

Let us assume that a cell i is in state j when its persistence counter kp,i
reaches zero. If there are empty sites in its immediate neighborhood, the cell

will select one of them as its next location using a random algorithm based

on the probabilities pðljjÞ of the possible transitions. If a cell is completely

surrounded when kp,i reaches zero, it cannot move. Instead, it enters the

stationary state j ¼ 0 and we set:

mi ¼ 0 and kp;i ¼
EðT0Þ
Dt

:

Cell divisions are handled in a similar fashion. When the division counter

reaches zero and there is at least one empty neighboring site, the cell will

divide. One daughter cell will stay in the current site while the second one

will be placed in a randomly selected neighboring site. All free neighboring

sites have equal probabilities of being selected. The two daughter cells are

set to migrate in randomly selected directions and are assigned new division

counters that are computed using the experimentally determined probability

density function of cell division times. If a cell finds itself completely

surrounded when its division counter reaches zero, however, it cannot

divide. Instead, it enters the stationary phase.

When cells migrate in a uniform environment, the transition probabilities

pðljjÞ are equal to each other for j, l¼ 1,2,. . .,6 (33). The same is also true for

the waiting times of all the migration states E(Tj), for j ¼ 1,2,. . .,6. Thus, in

the absence of chemotactic gradients or other nonuniformities in the cellular

microenvironment:

EðTjÞ ¼ tp for j ¼ 1; 2; . . . ; 6 (2)

pðlj jÞ ¼ pu for j; l ¼ 1; 2; . . . ; 6: (3)

However, factors such as substrate surface patterns or the presence of

chemoattractants can induce biased cell movement, significantly altering the

values of transition probabilities (or waiting times) in one or more directional

states.

Cell-cell collisions

To account for the ‘‘slowdown’’ caused by cell-cell collisions, our model

has a second stationary state j ¼ 7. Cells enter this state after a collision and

will stay in the same location for a period of time equal to E(T7) before

resuming their migration. The magnitude of E(T7) is a measure of the

‘‘stickiness’’ of cells, that is their tendency to form multicellular aggregates.

FIGURE 1 Schematic showing the persistent random walk (solid arrows)

of a cell during its division cycle. The two daughter cells move away from

each other and resume their persistent randommovement (dotted and dashed
arrows). Cells may also collide.
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When two cells collide, their migration indices are changed to 7 and their

persistence counters are reset to EðT7Þ=Dt: If one of the colliding cells is

already in state 7, its persistence counter is reset to EðT7Þ=Dt: When the

waiting time E(T7) has expired, the two cells move away from each other in

directions that are randomly selected using equal transition probabilities:

pðlj7Þ ¼ 1

6
l ¼ 1; 2; . . . ; 6: (4)

Our model also assumes that the division clock continues to run while the

cells are in this stationary state.

Initial conditions (seeding modes)

Two initial conditions or seeding modes will be considered in this study to

demonstrate the significant effect of the initial spatial distribution of cells on

tissue growth rates. The first mode distributes N0 seed cells randomly and

uniformly throughout the computational grid. This ‘‘uniform’’ seeding

mode is shown in Fig. 2 A, where the sites occupied by the seed cells are

depicted as small white cubes. To facilitate the visualization of this seeding

mode, the empty cells of the grid of Fig. 2 A are transparent. The uniform

mode is the most common seeding employed for in vitro culture of

bioartificial tissues. Vunjak-Novakovic and co-workers (52) used dynamic

methods to seed bovine articular chondrocytes into polyglycolic acid

scaffolds. Using data from this study, we estimated that the seeding density

(or cell volume fraction) was in the range of 0.367–1.33%. Similar seeding

densities have been reported for various combinations of cell type and

scaffold material (53–60).

As we will see later, however, the uniform seeding mode may not be the

most appropriate initial condition for studying the effect of surface

modification on tissue growth rates. This is particularly true for scaffolds

that are developed to promote wound healing to repair damaged bone or

guide nerve regeneration. To demonstrate the importance on initial

conditions and, at the same time, show how our model can be used to

optimize wound healing therapies, we will consider a second seeding mode.

In this mode, the seed cells occupy every site surrounding a cylindrical

‘‘wound’’ located in the center of the computational grid (see Fig. 8 A). We

will assume that this wound is filled again with a highly porous scaffold that

allows cells to migrate freely in all directions. When the simulation starts,

cells detach from the confluent tissue around the wound, migrate into the

scaffold, and proliferate to fill (or ‘‘heal’’) the cylindrical wound. We must

emphasize here that our model does not attempt to describe all the steps of

the complicated wound healing process (61). The model is only appropriate

for the phases characterized by migration of fixed cells into the natural or

artificial scaffold that fills a wound (2). These phases follow the initial

hemostasis, inflammation, and scab formation steps that characterize the

typical wound healing processes (61).

Cell population dynamics

For every automaton i (1# i#Nt), the application of the rules described in

the previous subsections define a local transition function that specifies the

state xiðr11Þ of the automaton at tr11 ¼ tr1Dt as a function of the state xiðrÞ
at tr and the states of its six neighbors. The simultaneous application of the

local transition functions to all the automata defines a global transition

function F that transforms a configuration XðrÞ ¼ ½x1ðrÞ; x2ðrÞ; . . . ; xNt
ðrÞ�

of the cellular automaton to the next one:

Xðr1 1Þ ¼ F½XðrÞ� where r ¼ 0; 1; 2; . . . (5)

Starting with the initial configuration Xð0Þ; the global transition function
F transforms the cellular array to simulate the dynamic process of tissue

growth. At some time t after the start of the simulation, NCðtÞ sites of the
cellular automaton are occupied by cells and the cell volume fraction kðtÞ for
runs starting with uniform seeding is defined as:

kðtÞ ¼ NCðtÞ
Nt

: (6)

For wound healing runs, we are interested in determining how fast the

sites belonging to the cylindrical wound (equal to Nt � N0) are filled with

cells. For these runs, the cell volume fraction kwðtÞ is defined by a slightly

different formula:

kwðtÞ ¼
NCðtÞ � N0

Nt � N0

: (7)

The simulation continues until all sites are occupied by cells, that is until

kðtÞ or kwðtÞ equals one. As previously mentioned, breaks in the persistent

random walks and cell collisions will slow down the movement of cells.

Thus, only a fraction of the cells NCðtÞ will move in the time interval

½t; t1Dt� and the effective speed of migration Se can be calculated as:

SeðtÞ ¼
NMðtÞ
NCðtÞ

3 S; (8)

where NMðtÞ refers to the number of cells that were moving in the time

interval ½t; t1Dt� and S is the cell ‘‘swimming’’ speed. For wound healing

runs, we first count the total number of cells NC;wðtÞ and the number of

migrating cells NM;wðtÞ located inside the cylindrical wound. The effective

speed of migration Se;w is then calculated as:

Se;wðtÞ ¼
NM;wðtÞ
NC;wðtÞ

3 S ¼ NM;wðtÞ
NCðtÞ � N0

3 S: (9)

In both cases, the effective speed of a migration is a population-average

quantity and is affected by: a), the frequency and duration E(T0) of random
breaks in cell movement, b), the frequency fcðtÞ of cell-cell collisions and the
magnitude of E(T7), and c), the fraction uðtÞ of cells that are completely

surrounded and, therefore, cannot move or divide. The frequency and

duration of migration breaks depend on the cell phenotype and the presence

of soluble growth factors or ligands that modulate cell behavior. The

frequency of collisions and the fraction of surrounded cells, however,

depend primarily on the dynamics of the cell population. If we let NsðtÞ
denote the number of completely surrounded cells in the time interval

½t; t1Dt�; these two quantities can be computed as follows:

fcðtÞ ¼
Number of collisions in interval ½t; t1Dt�

NCðtÞ3Dt
(10)

uðtÞ ¼ NSðtÞ
NCðtÞ

: (11)

For wound healing runs again, the frequency of collisions and the fraction

of completely surrounded cells are found by considering only the ‘‘wound’’

sites for counting cell-cell collisions and completely surrounded cells.

Computer implementation

Simulating the growth of tissues with substantial size is a computationally

challenging problem requiring large grids to handle the populations of

discrete cells and small time steps to accurately describe the cell population

dynamics. For this reason, our tissue growth algorithm was parallelized

using the MPI standard for interprocessor communication. Simulations were

carried out on a Beowulf cluster (Evolocity, Linux Networx, Sandy, UT)

with 41 computational nodes. Each node had two 1.7-GHz Pentium 4 Xeon

processors (Myricom, Arcadia, CA) and 2 GB of DDR memory. The nodes

were connected with a switched 1.2 GB/s Myrinet (Arcadia, CA) network.

Several model parameters affect the CPU time required to run a simulation.

In addition to the size of the grid, these parameters include the initial seeding

density, cell division time, migration speed, and persistence time. A typical
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simulation on a 120 3 120 3 120 grid takes 722 s to run on a single node

and 201 s on 10 nodes. This grid represents a cubical section of tissue whose

side is only equal to 2.4 mm. For the same model parameters and a 300 3

300 3 300 grid, we need 13,112 s to run a simulation on a single node and

2,153 s to run it on 10 nodes.

RESULTS AND DISCUSSION

Uniform seeding mode

Fig. 2 shows the temporal evolution of a cellular array that

simulates the growth of a homogeneous cell population. This

simulation starts by randomly placing cells in 0.1% of the

sites of the 100 3 100 3 100 cellular array. The occupied

sites are shown as small white cubes in Fig. 2 A. The cells are
then allowed to migrate, interact, and proliferate. After 388,

719, and 949 iterations, the cell population occupies 1, 10, and

50% of the computational sites, respectively (Fig. 2, B–D).
A systematic parametric study was carried out to inves-

tigate how key model parameters affect the rates of tissue

growth. First, we looked at the effect of speed and per-

sistence of cell locomotion. The magnitude of swimming

speed S and persistence time tp depends on both cell type and
extracellular environment. Reported values from 2D migra-

tion studies range from S ¼ 30 mm/h and tp ¼ 4–5 h for hu-

man microvessel endothelial cells and smooth muscle cells

(62,63) to S ¼ 600 mm/h and tp ¼ 4 min for rabbit neutro-

phils (64). Recent 3D studies report speeds of 8–15 mm/h for

adenocarcinoma and prostate cancer cell lines in collagen

(44) and speeds of 20–40 mm/h for melanoma cells migrat-

ing in collagen matrices modified with RGD peptides (42).

Fig. 3 presents the simulation results for a population of

cells with swimming speed equal to 10 mm/h and persistence

equal to 0.4 h, values that are within the range reported in the

previously mentioned studies. This run started with uniform

seeding and 0.001 initial cell volume fraction. Cells had to re-

main stationary for 1 h after a collision and had a distribution

FIGURE 3 Temporal evolution of cell volume fraction kðtÞ and its

relation to the other variables that quantify the dynamics of cell population:

effective speed of migration (A), tissue growth rate (B), average frequency of
cell-cell collisions (C), and fraction of surrounded cells (C). Panels A and B

present predictions from three models: the continuous model of Eq. 14, the

discrete NCI model that ignores contact inhibition, and the comprehensive

CPMC/S/A model described in ‘‘Model development’’. Panel C presents

predictions from the CPMC/S/A model. Run parameters are: uniform

seeding mode; cell migration speed ¼ 10 mm/h; persistence time ¼ 0.4 h.

The other parameters are the same as in Fig. 2.

FIGURE 2 Initial configuration (A) and temporal evolution of a 100 3

100 3 100 cellular array simulating the growth of a homogeneous tissue in

a 3D scaffold. The initial cell volume fraction for this run is 0.001 (A). Panels

B–D correspond to 0.01, 0.1, and 0.5 cell volume fraction, respectively.

Other run parameters are: cell migration speed ¼ 60 mm/h; persistence time

¼ 2 h; aggregation time ¼ 1 h; uniform transition probabilities; average

division time ¼ 20 h. The horizontal arrows in panels A and C identify the

vertical scale corresponding to each curve. (A) Iteration ¼ 0, t ¼ 0.0 days,

k(t)¼ 0.001. (B) Iteration¼ 388, t ¼ 3.23 days, k(t) ¼ 0.01. (C) Iteration¼
719, t¼ 5.99 days, k(t)¼ 0.1. (D) Iteration¼ 949, t¼ 7.90 days, k(t)¼ 0.5.
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of division times with average equal to 20 h. The simulation

results show that the tissue grows in a uniform spatial pattern

(see Fig. 2, B and C). After an initial lag phase, the tissue

enters a stage of rapid growth reaching confluence after;10

days (Fig. 3 A). Fig. 3 A also shows that the effective speed

of migration Se decreases with increasing cell density. The

rate at which Se falls becomes more pronounced as the cell

volume fraction goes above the 0.1 level. This is primarily

due to the increasing frequency of cell-cell collisions (Fig. 3

C), events that force the colliding cells to enter a stationary

state. The collision frequency reaches a peak at ;8 days

when kðtÞ � 0:45: As the cell density increases beyond this

level, we see a rapid increase in the fraction of completely

surrounded cells that leads to a sharp drop in the frequency of

actual cell-cell collisions (Fig. 3 C).
It is important to note here that the tissue growth rate

dk=dt continues to increase even when the effective migra-

tion speed of the cell population falls to one-quarter of its

maximum value (Fig. 3 B). Only when the fraction of sur-

rounded cells becomes significant (uðtÞ. 0:20), we see a

decrease in the tissue growth rate. This is a strong indication

that even low migration speeds may be enough to overcome

the adverse effects of contact inhibition on tissue growth.

Fig. 4 shows the temporal evolution of cell volume fractions

obtained with nonmotile and motile cells with a wide range

of migration speeds. All the simulations shown in Fig. 4

started with uniform seeding of cells in the scaffold. In the

case of nonmotile cells, 3D clumps of cells formed after a few

divisions. Because of contact inhibition, only the cells located

on the outside of these clumps could divide and the tissue

grew very slowly reaching confluence only after 20 days.

Even very low migration speeds, however, are enough to over-

come the contact inhibition effects. The tissue grows much

faster for cell migration speeds equal to 1, 2, and 5 mm/h, and

confluence is reached after;14, 11, and 10 days, respectively.

However, the beneficial effect of increasing cell migration

speeds diminishes rapidly for speeds.5 mm/h. As shown in

Fig. 4 A, the predicted growth patterns for S ¼ 60 mm/h is

virtually indistinguishable from that obtained for S¼ 5 mm/h.

When cells are uniformly dispersed in a 3D scaffold, high

migration speeds offer no advantage in overcoming contact

inhibition. The separation distance between neighboring cells

is the same everywhere and decreases as the cell density in-

creases. To overcome contact inhibition, cells only need to

move far enough from each other so that they can divide

again at the end of their cycle. Because the size of the cells and

the computational sites considered here are of the order of

10mm, speeds of the order of 1–2mm/h are enough to maintain

near-maximal growth rates for division times around 15–20 h.

Higher migration speeds would be required to overcome

contact inhibition if the cell division times were shorter.

The ability of motile cells to overcome contact inhibition

raises an interesting question: How accurately can a simpler

continuous model predict the growth rate of tissues when we

start with uniform cell seeding? For cell suspension cultures,

the following exponential model is often used to describe the

dynamics of population growth:

dNcðtÞ
dt

¼ m3NcðtÞ: (12)

Here, Nc is the numbers of cells present in the reactor at

time t and m is a constant given by:

m ¼ lnð2Þ
td

; (13)

where td is the average division time of the cultured cells. If

we normalize the number of cells Nc by the total number of

cells at confluence Nt, Eq. 12 becomes:

dkðtÞ
dt

¼ m3 kðtÞ: (14)

The simple continuous model of Eq. 14 assumes an

‘‘average’’ division time for all cells and predicts that cells

will start proliferating as soon as they are dispersed in the

scaffold. Experimental studies have shown, however, that a

significant time interval passes by before cells seeded on

surfaces or in scaffolds will start proliferating (11,28). To

account for this initial delay, we have also developed a simple

stochastic model that allows a population of cells to pro-

liferate with the same distribution of division times used in

our comprehensive CPMC/S/A model. The simple stochastic

FIGURE 4 Effect of cell migration speed S on the temporal evolution of

cell volume fraction (A) and the value of critical cell volume fraction (B).

The other parameters are the same as in Fig. 2.
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model does not account for migration or cell-cell collisions,

and assumes that all cells can divide freely up to the point

where the population reaches confluence. Clearly, this model

ignores contact inhibition effects and we will refer to it as the

no-contact-inhibition (NCI) model.

Fig. 3, A and B, compare the cell fractions and growth

rates predicted by the comprehensive model to those pre-

dicted by the continuous model of Eq. 14 and the NCI

discrete model. Contact inhibition effects appear very early

and become pronounced when the cell fraction rises above

0.2. Although both the continuous and discrete NCI model

predict continuously increasing growth rates until the

population reaches confluence, the comprehensive CPMC/

S/A model reveals that contact inhibition effects force

ðdk=dtÞ to pass through a maximum. To quantify the onset of

significant contact inhibition effects, we will introduce the

critical cell fraction k� as the cell fraction above which the

predictions of the CPMC/S/A and NCI models differ by

.5%. Specifically, if ks and ke are the cell fractions

predicted by the CPMC/S/A and NCI models, respectively,

the critical cell fraction is defined by the following condition:

ln½keðtÞ�� ln½ksðtÞ�$0:05ln½ksðtÞ� when ksðtÞ$k
�
: (15)

Fig. 4 B shows how the critical cell fraction is affected by

the cell migration speed. For an initial cell fraction of 0.001,

nonmotile cells reach the critical threshold at kðtÞ � 0:05:At
this point, cell ‘‘clumps’’ appear leading to a rapid decrease

of the fraction of proliferating cells. Even low migration

speeds are enough to overcome the contact inhibition effects

in this case, however, and the critical cell fraction rises

rapidly with increasing migration speeds. However, the ben-

eficial effects of cell migration diminish as S increases be-

yond 5 mm/h, and the critical cell fraction reaches a plateau

at levels higher than 0.8.

As mentioned earlier, the CPMC/S/A model described

here assigns to each cell a division time that is randomly

selected from a normal distribution with mean td and

variance s2: Fig. 5 presents on a semilog plot of the temporal

evolution of cell fractions for several runs where the mean

division time td ranged from 8 to 24 h with s2 fixed at 2 h.

For all these runs, a large cell migration speed (S¼ 60 mm/h)

was used to minimize the effect of contact inhibition. Fig. 5

shows that the average cell division time is a key factor in

determining tissue growth rates. The time required to reach

confluence increased from 3.5 days for td ¼ 8 h to 11 days for

td ¼ 24 h. Higher values of td prolong the initial delay in the

growth curves (see Fig. 5) because they shift the entire

distribution of cell division times to the right. Changes in the

variance s2 of the distribution of division time did not sig-

nificantly affect the predicted results as long as the mean

division time of the population was kept constant.

For the simulation runs discussed until now, we assumed

that pðlj jÞ ¼ pu for j; l ¼ 1; 2; . . . ; 6: However, the transition
probabilities can be unequal to simulate the biased cell move-

ment observed under conditions that lead to chemotaxis

(65–68). Such a biased cell movement dramatically changes

not only the tissue growth rates, but also the pattern of tissue

growth. Fig. 6 shows the anisotropic growth of the tissue

when cells move with a higher probability toward the top

surface of the scaffold (migration state j ¼ 6) due to the

presence, for example, of a chemotactic gradient. For this run

pðlj jÞ ¼ p�u for l ¼ 1; 2; . . . ; 5; j ¼ 1; 2; . . . ; 6; and j 6¼ l;
while pð6j jÞ.p�u for j ¼ 0; 1; 2; . . . ; 5: A dense layer of cells

forms quickly in the upper part of the scaffold, leading to

FIGURE 5 Effect of average cell division time on tissue growth. Cell

division times were normally distributed with mean td (shown in inset) and
variance s2 ¼ 2 h. The other parameters are the same as in Fig. 2. Cell

volume fractions are shown using a semilog scale.

FIGURE 6 Anisotropic patterns of tissue growth are observed when cells

move preferentially toward the upper boundary of the computational

domain. This run began with the same initial condition (uniform seeding) as

the one used for the run of Fig. 2. Here, however, the ratio of transition

probabilities ðl6 ¼ pð6j jÞ=p�uÞ is equal to 5. All other parameters are the

same as in Fig. 2. (A) l6 ¼ 5: t¼ 0.0 days, k(t)¼ 0.001. (B) l6 ¼ 5: t¼ 3.25

days, k(t) ¼ 0.01. (C) l6 ¼ 5: t ¼ 6.57 days, k(t) ¼ 0.1. (D) l6 ¼ 5:

t ¼ 16.41 days, k(t) ¼ 0.5.

Population Dynamics and Tissue Growth 719

Biophysical Journal 90(3) 713–724



severe contact inhibition effects. Tissue growth is now

limited to the cells that form the ‘‘diffuse front’’ in the bottom

part of the developing tissue shown in Fig. 6, C and D. The
dramatic effects of contact inhibition are quantified in Fig. 7,

A and B. Fig. 7 A shows increasing and significant slow-

downs of tissue growth with increasing magnitude of the

cell movement bias that can be expressed as the ratio

l6 ¼ ðpð6j jÞ=p�u: Deviations from the case of uniform tran-

sition probabilities appear at cell fractions that may be lower

than 0.05 (see Fig. 7 A). Fig. 7 B quantifies the changes in the

growth pattern by showing the evolution of the fraction uðtÞ
of completely surrounded cells versus the cell fraction kðtÞ:
We see here a qualitative shift from the convex uðtÞ curve
observed for uniform transition probabilities to a concave

curve for large values of pð6jjÞ: In the latter case, the sharp

increase of fðtÞ observed in the early stages of tissue growth
signifies the formation of the dense cell layer formed at the

top part of the scaffold and shown in Fig. 6, B and C.

Wound seeding mode

Fig. 8 shows the tissue growth pattern for two runs that

started with the ‘‘wound’’ seeding mode, but had widely

different cell migration speeds (1 and 60 mm/h, respectively).

As soon as the simulation starts, cells begin to infiltrate the

cylindrical wound area that has been filled with the scaffold

(Fig. 8 A). When the migration speed is low (S ¼ 1 mm/h),

cells infiltrate the wound as a front that has a thin rim of

proliferating cells in front of it (Fig. 8, B and C). This front
moves slowly toward the center to ‘‘heal’’ the wound.

Clearly, only the cells located in a shallow proliferating rim

will divide in this case. When the migration speed is raised

to 60 mm/h, however, we do not observe the formation of a

front. Instead, the wound is infiltrated by cells that are rap-

idly scattered throughout the domain (see Fig. 8, D and E).
This migration-driven dispersion delays the onset of contact

inhibition effects until the cell density reaches high levels.

Fig. 9 A quantifies the effect of cell migration speed on

tissue growth. Although nonmotile cells need almost 42 days

to ‘‘heal’’ a wound of this size, cells moving at the relatively

FIGURE 7 Biased cell migration affects both the rate (A) and the pattern

of tissue growth (B). These simulation runs started with uniform cell seeding

and had the indicated values of the ratio of transition probabilities

ðl6 ¼ pð6j jÞ=p�uÞ: All other parameters were the same as in Fig. 2. Cell

volume fractions are shown in panel A using a semilog scale.

FIGURE 8 Images showing the tissue growth patterns for two runs that

started with the same wound seeding mode but widely different cell

migration speeds: S ¼ 1 mm/h (A–C) and S ¼ 60 mm/h (A, D, and E). The

black line indicates the initial boundary of the wound. Run parameters are:

size of the cellular array ¼ 200 3 200 3 200; diameter of cylindrical

‘‘wound’’ ¼ 100 pixels. All other parameters are the same as in Fig. 2. (A)
Iteration ¼ 0, t ¼ 0.0 days, kw(t) ¼ 0.0. (B) S ¼ 1 mm/h; t ¼ 2.32 days;

kw(t) ¼ 0.1. (C) S ¼ 1 mm/h; t ¼ 10.19 days; kw(t) ¼ 0.5. (D) S ¼ 60 mm/h;

t ¼ 0.58 days, kw(t) ¼ 0.1. (E) S ¼ 60 mm/h; t ¼ 1.83 days; kw(t) ¼ 0.5.
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slow speeds of 1 and 2 mm/h heal the wound in only 29 and

19 days, respectively. In contrast to what was observed with

the uniform seeding mode, however, the beneficial effect of

cell migration does not disappear at higher speeds. Cells

migrating at 20, 30, and 60 mm/h need only 6.5, 5.6, and 4.4

days, respectively, to completely fill the cylindrical wound

with new tissue. Contact inhibition effects again provide the

explanation for the observed behavior. Nonmotile or slow-

moving cells (S¼ 1–2 mm/h) infiltrate the wound in the form

of a sharp front. After only a short period of time, the

majority of cells located in the wound will be completely

surrounded and unable to divide. This is clearly shown by

the concave uwðtÞ vs. kwðtÞ curves of Fig. 9 B for nonmotile

and slow-moving cells. The fraction uwðtÞ of surrounded

cells in the wound is 0.65 for nonmotile cells and 0.50 when

S ¼ 1 mm/h, even at the low cell fraction value of kwðtÞ ¼
0.1. The onset of contact inhibition effects is delayed as

S increases. Speeds.10 mm/h, however, lead to a very good

dispersion of the migrating cells into the wound, minimizing

the contact inhibition effects and changing the uwðtÞ vs.

kwðtÞ curves from concave to convex (Fig. 9 B). The fast and
almost uniform dispersion of cells observed for high cell

speeds is consistent with the persistent random walk model

(46,47). According to this model, the diffusion coefficient

(or random motility coefficient) of cells moving into an open

space is proportional to the square of the migration speed S.
The curve for S ¼ 60 mm/h on Fig. 9 B shows the three

distinct phases of the tissue growth process. The fraction

uwðtÞ stays at virtually zero until the fast-moving cells reach

the center of the wound and then grows slowly as cell density

increases throughout the wound. The final phase is char-

acterized by an accelerating growth of uwðtÞ as cell density
increases beyond a critical threshold.

These results indicate that we can always accelerate the

process of tissue growth if we increase the cell migration

speed on materials used to fill the wound. This is consistent

with experimental studies on natural wound healing that have

revealed dramatic enhancements of the migration speed of

cells surrounding the wound. Using time-lapse video mi-

croscopy, Chan and co-workers (69) monitored the migration

and proliferation of rabbit corneal epithelial cells during in

vitro wound healing. The average migration speed of cells at

wound edge was 104 mm/h, significantly higher than its nor-

mal value of 30–40 mm/h (70). A similar phenomenon has

been observed by Zahm and co-workers (71) on the healing

process of a wound created in a collagen I matrix cultured with

human respiratory epithelial cells. The simulations also pro-

vide us with invaluable guidance for the design of experiments

(72) that can test the efficacy of surface modifications de-

signed to enhance cell migration speeds.

The persistence of cell movement plays an important role

on tissue regeneration for wound healing. This is in contrast

to what we observed with simulations that started with

a uniform dispersion of cells in the scaffold (uniform seeding

mode). Fig. 10 shows the temporal evolution of cell fraction

kwðtÞ for cells migrating with S ¼ 60 mm/h and persistence

times tp ranging from 0.2 to 20 h. The simulation results

indicate that there is an optimal value of tp at which the tissue
regeneration is fastest. For the runs of Fig. 10, the time

required to fill the wound (or ‘‘healing time’’) decreases

from;6.5 days for tp ¼ 0.2 h to 4.1 days when tp ¼ 8 h, and

then increases again slowly to 4.5 days when tp reaches 20 h.
A careful analysis of tissue growth patterns provided an ex-

planation for these results. Short persistence time forces the

FIGURE 9 Effect of cell migration speed S (shown in inset) on (A) the

temporal evolution of cell volume fraction and (B) the uwðtÞ vs. kwðtÞ tissue
growth pattern. These runs started with the wound mode of cell seeding, and

all other run parameters are the same as in Fig. 8.

FIGURE 10 Effect of persistence time (shown in text) on the temporal

evolution of cell volume fraction. These runs started with the wound mode

of cell seeding, and all other run parameters are the same as in Fig. 8.
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cells to turn frequently, offsetting the beneficial effects of

high migration speeds and reducing the ability of the cells to

disperse in the wound. Even when they move with swim-

ming speeds as high as 60 mm/h, cells cannot move far away

from their neighbors and form a front with a proliferating rim

that advances toward the center of the wound. The growth

pattern looks similar to that shown on Fig. 8, B and C. When

the persistence time increases, the cells can penetrate deeper

into the wound before they have to turn. This leads to fewer

collisions, better cell dispersion into the wound, and faster

tissue regeneration rates. The tissue growth patterns ob-

served in such cases are very similar to that shown in Fig. 8,

D and E. However, when the persistence time is very long

and the distance S3tp is comparable to the size of the wound,

cells may immediately start to collide with cells moving from

the opposite direction. This will enhance the adverse effects

of contact inhibition and will slow down the rate of tissue

growth.

This analysis shows that the effect of persistence time on

tissue regeneration rates is not as pronounced as that of

migration speeds. Nevertheless, this effect is significant and

a direct consequence of the initial condition or seeding mode.

In addition, the trends revealed by the simulations are con-

sistent with experimental data. Lepekhin and co-workers (73)

found that the different rates and patterns of wound healing

in two-dimensional cultures of buccal, periodontal, and skin

fibroblasts were due to variations of migration speed and

persistence time among the different types of cells. Weimann

and co-workers (74) studied the effect of Ca D-pantothenate

on the healing of wounds created in cultures of human der-

mal fibroblasts and reported that Ca D-pantothenate accel-

erated the healing process by 1.2 ; 1.6-fold by increasing

cell migration speed and persistence time. We should note,

however, that most experimental studies use assays that do

not allow us to clearly distinguish between the effects of per-

sistence and speed of cell movement.

Finally, we carried out several simulations to determine

how tissue regeneration rates are affected by the tendency of

cells to form aggregates when they collide. The key param-

eter here is the waiting time E(T7) that provides a measure of

tendency of cells to form multicellular aggregates when they

collide. Our simulations showed that long waiting times E(T7)
can significantly slow down tissue regeneration rates for runs

that started with a wound seeding mode. For runs with a cell

migration speed of 60 mm/h, the healing times increased

from 4.5 days for E(T7) ¼ 1 h to 6.8 days for E(T7) ¼ 10 h,

but appeared to reach a plateau for waiting times longer that

60 h. Simulations with uniform seeding mode revealed a sim-

ilar effect of E(T7) on tissue growth rates. These results are

not presented in any of the figures.

CONCLUSIONS

To demonstrate the potential of computational models for

tissue engineering, we have developed a discrete model that

describes the dynamic process of tissue growth in 3D scaf-

folds. The model considers a population of cells that execute

persistent random walks on the computational grid, collide

with each other, and proliferate until they reach confluence.

A major advantage of our discrete modeling approach is its

ability to describe the competing processes of contact inhi-

bition and migration without resorting to empirical assump-

tions like earlier models. In addition, all the key system

parameters can be easily adjusted to reflect the influence of

external stimuli.

For uniform cell seeding, our simulations showed that

increasing migration speeds initially enhanced tissue growth

rates. As cell speeds increased.5 mm/h, however, this bene-

ficial effect diminished and disappeared completely for large

migration speeds. Simulations with the ‘‘wound’’ seedingmode,

however, predicted that we could always accelerate the pro-

cess of tissue regeneration if we increased the cell migration

speed on the biomaterial used to fill the wound. These results

point out that the locomotory parameters of a cell population

and the initial condition can have profound effects on the

dynamics of the process and, consequently, on the pattern

and rates of tissue growth. The speed and persistence of cell

locomotion modulate the rates of tissue regeneration by

controlling the effects of contact inhibition. However, the

magnitude of this modulation strongly depends on the spatial

distribution of seed cells. This conclusion has significant

implications for the design of experiments that can test the

efficacy of surface modifications designed to enhance cell

migration speeds. To study how surface modifications and

the resulting changes of migration speeds affect tissue growth

rates, assays based on the ‘‘wound’’ seeding mode (72) must

be adopted. Experiments that begin by uniformly distributing

seed cells in modified scaffolds may not be sensitive enough

to elucidate these effects.
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R. Schmelzeisen. 2002. How to optimize seeding and culturing of hu-

man osteoblast-like cells on various biomaterials. Biomaterials. 23:
3319–3328.

58. Holy, C. E., M. S. Shoichet, and J. E. Davies. 2000. Engineering three-

dimensional bone tissue in vitro using biodegradable scaffolds:

investigating initial cell-seeding density and culture period. J. Biomed.
Mater. Res. 51:376–382.

59. Carrier, R. L., M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R.

Langer, L. E. Freed, and G. Vunjak-Novakovic. 1999. Cardiac tissue

engineering: cell seeding, cultivation parameters, and tissue construct

characterization. Biotechnol. Bioeng. 64:580–589.

60. Kim, B. S., A. J. Putnam, T. J. Kulik, and D. J. Mooney. 1998. Opti-

mizing seeding and culture methods to engineer smooth muscle tissue

on biodegradable polymer matrices. Biotechnol. Bioeng. 57:46–54.

61. Majno, G., and I. Joris. 2004. Cells, tissues, and disease: principles of

general pathology. Oxford University Press, New York, NY.

62. Stokes, C. L., D. A. Lauffenburger, and S. K. William. 1991. Migration

of individual microvessel endothelial cells: stochastic model and

parameter measurement. J. Cell Sci. 99:419–430.

63. DiMilla, P., J. Stone, J. Quinn, S. Albelda, and D. A. Lauffenburger.
1993. Maximal migration of smooth muscle cells on fibronectin and
collagen-IV occurs at an intermediate attachment strength. J. Cell Biol.
122:729–737.

64. Zigmond, S. H., R. Klausner, R. T. Tranquillo, and D. A. Lauffen-
burger. 1985. Analysis of the requirements for time-averaging of
receptor occupancy for gradient detection by polymorphonuclear
leukocytes. In Membrane Receptors and Cellular Regulation.
M. Czech and C. R. Kahn, editors. Alan R. Liss, New York, NY.
347–356.

65. Bowersox, J. C., and N. Sorgente. 1982. Chemotaxis of aortic
endothelial cells in response to fibronectin. Cancer Res. 42:2547–
2551.

66. Adelmann-Grill, B. C., F. Wach, Z. Cully, R. Hein, and T. Krieg.
1990. Chemotactic migration of normal dermal fibroblasts towards
epidermal growth factor and its modulation by platelet-derived growth
factor and transforming growth factor-beta. Eur. J. Cell Biol. 51:322–
326.

67. Devreotes, P. N., and S. H. Zigmond. 1988. Chemotaxis in eukaryotic
cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol.
4:649–686.
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