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ABSTRACT Microtubules (MTs) are cytoskeletal polymers that exhibit dynamic instability, the random alternation between
growth and shrinkage. MT dynamic instability plays an essential role in cell development, division, and motility. To investigate
dynamic instability, simulation models have been widely used. However, conditions under which the concentration of free tubulin
fluctuates as a result of growing or shrinking MTs have not been studied before. Such conditions can arise, for example, in small
compartments, such as neuronal growth cones. Here we investigate by means of computational modeling how concentration
fluctuations caused by growing and shrinking MTs affect dynamic instability. We show that these fluctuations shorten MT growth
and shrinkage times and change their distributions from exponential to non-exponential, gamma-like. Gamma-like distributions of
MT growth and shrinkage times, which allow optimal stochastic searching by MTs, have been observed in various cell types and
are believed to require structural changes in the MT during growth or shrinkage. Our results, however, show that these
distributions can already arise as a result of fluctuations in the concentration of free tubulin due to growing and shrinkingMTs. Such
fluctuations are possible not only in small compartments but also when tubulin diffusion is slow or whenmanyMTs (de)polymerize
synchronously. Volume and all other factors that influence these fluctuations can affect MT dynamic instability and, consequently,
the processes that depend on it, such as neuronal growth cone behavior and cell motility in general.

INTRODUCTION

Microtubules (MTs) are long, polar polymers of tubulin

dimers that are found in almost all eukaryotic cells. They are

part of the structural scaffold of the cell and serve as tracks

along which organelles, vesicles, and large molecules are

transported (1,2). MTs exhibit dynamic instability, the ran-

dom alternation between phases of MT growth (net poly-

merization of tubulin at the ends of a MT) and shrinkage

(depolymerization) (see Fig. 1) (3).

Dynamic instability of MTs is essential in a number of

fundamental cellular processes, including development, divi-

sion, and motility (1,4). In developing cells, dynamic in-

stability allows MTs to explore the intracellular space for

specific targets or favorable regions of cytoplasm (5). When

the right targets are found, MTs stabilize at them, leading to

a long-term rearrangement of the spatial organization of MTs

and thus to morphological changes of the cell. In motile cells,

dynamic MTs are involved in the regulation of cellular

movements by affecting both the actin cytoskeleton and

myosin, which play a central role in generating the force for

movements (6). Interestingly, growth and shrinkage phases

of MTs have differential effects on cell motility by activating

different Rho GTPases, which each have distinct effects on

the dynamic behavior of the actin cytoskeleton (6–8).

DynamicMTs are also part of the cytoskeleton of the growth

cone, amotile structure at the tip of a growing neurite that senses

the extracellular environment, steers the neurite, and mediates

neurite elongation and branching. Dynamic MTs explore the

peripheral domain of the growth cone (which contains actin)

and often enter into the filopodia (usually one MT per

filopodium), the finger-like protrusions of the growth cone

(8), which constantly extend and retract to sense the envi-

ronment and steer the growth cone (9). If the dynamics of the

MTs within the growth cone is blocked with specific drugs,

neurites lose their ability to turn (10,11) and to branch (12).

In addition to the average times that MTs spend in growth

and shrinkage phases, an important aspect of MT dynamic

instability is the distribution of growth and shrinkage times. In

vitro and in vivo (including neuronal growth cones), growth

and shrinkage times have been found to be non-exponentially,

gamma-like distributed (13–15). Since in contrast to an

exponential distribution, a gamma distribution has relatively

fewer very short and very long growth or shrinkage times, it

allows MTs to optimally search the intracellular space for

targets at a certain distance away, without wasting energy on

very small and very large length excursions (13,16).

Simulation models have been widely used to investigate

MT dynamic instability (e.g., 17,18). Modeling studies have

shown that for a gamma or gamma-like distribution of MT

growth and shrinkage times to arise, the probabilities of

catastrophe (transition from growth to shrinkage) and rescue

(transition from shrinkage to growth) have to increase during

an individual growth or shrinkage phase, respectively (13).

This implies that the value of the catastrophe or rescue

probability of a MT contains information of—and thus can

viewed as a form of memory for—the time that the MT has

been growing or shrinking in that particular growth or

shrinkage phase (13). Several proposals have been put

forward to explain how this MT memory can arise. One
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possibility is that several consecutive transitions at the MT

tip are required for a catastrophe or rescue to occur

(13,16,19). Another possibility is that the catastrophe and

rescue probabilities depend on MT length ((20); thoroughly

discussed in (21))—for example, because of the accumulat-

ing strain in the MT lattice (20)—so that longer MTs have

a higher catastrophe probability and a lower rescue

probability than shorter MTs. Currently, neither of these

possibilities have strong experimental support.

So far, all models that study the properties of dynamic

instability assume a constant concentration of free tubulin in

the medium. However, for small compartments with a rela-

tively small amount of free tubulin, this may not be a valid

assumption. Growth and shrinkage of MTs decreases and in-

creases, respectively, the amount of free tubulin, so that in a

small compartment dynamic MTs can cause fluctuations in

the concentration of free tubulin. The volumes of neuronal

growth cones, for example, are so small (1–200 mm3) (9) that

such fluctuations may indeed occur. Because most properties

of dynamic instability depend on tubulin concentration (22),

these fluctuations in tubulin concentration could greatly af-

fect MT dynamics.

Here we investigate by means of a simulation model how

compartment volume, via its influence on the fluctuations in

the concentration of free tubulin, affects MT dynamics. We

find that compartment volume affects both the lengths and

distributions of MT growth and shrinkage times. Our results

show that fluctuations in the concentration of free tubulin

caused by dynamic MTs in small compartments are already

capable of providing the MT memory that is required for

non-exponential, gamma-like distributions of growth and

shrinkage times to arise. This suggests that the volume of

cells or cellular compartments could be an important factor

in determining the properties of MT dynamic instability and,

consequently, the processes that depend on it, such as cell

motility.

MODEL AND METHODS

We study the influence of compartment volume on MT length changes,

fluctuations in the concentration of free tubulin, and the averages and

distributions of growth and shrinkage times. The variables of our model are

the lengths of the MTs, the states of the MTs (growth or shrinkage), and the

concentration of free tubulin in the compartment. First, we consider the

dynamics of a single MT in compartments ranging from 1 to 100 mm3. Then,

we investigate how changing the number of MTs, to up to 10 MTs in a

compartment, affects MT dynamics.

We model only the dynamics of the plus end of a MT, because in vivo the

minus ends of MTs are often attached to centrosomes or otherwise stabilized

(23–25). Further, we do not distinguish between GTP-tubulin and GDP-

tubulin. In vivo and in vitro, GTP-tubulin associates with the MT in the

growth phase and later hydrolyzes into GDP-tubulin; in the shrinkage phase,

GDP-tubulin dissociates from the MT and then regenerates into GTP-tubulin

(1). In the model, we consider the regeneration of free GTP-tubulin from free

GDP-tubulin to be a fast process on the timescale of MT dynamic instability

(26), so that all free tubulin can be taken to be GTP-tubulin. There is no

influx or efflux of tubulin, so the total amount of tubulin, i.e., free tubulin

plus tubulin bound in MTs, is constant. We take the concentration of free

tubulin to be homogeneous within the compartment; i.e., diffusion of tubulin

is assumed to be fast enough (27,28) that no local concentration differences

can arise (see also Discussion). We use the same initial concentration of free

tubulin in compartments of all volumes; consequently, a smaller compart-

ment contains a smaller amount of free tubulin and is therefore expected

to have larger concentration fluctuations caused by dynamic MTs. Apart

from responding to the same concentration of free tubulin, the MTs do not

otherwise interact with each other.

To model MT dynamics, we use a Monte Carlo event-based approach

(17,18,29,30). In this approach, one event takes place per iteration of the

simulation. An event is, for example, the association of a tubulin dimer to

a particular MT. For an event that should occur with frequency f (s�1), the

waiting time to the next occurrence of the event is sampled from an

exponential distribution with mean 1/f. If more than one event is possible

(e.g., association or dissociation of a tubulin dimer at a particular MT, or

association of a tubulin dimer to either of several MTs), then the waiting

time of each event has to be sampled and the event with the shortest waiting

time be implemented (17,29,30).

The frequencies of tubulin association and dissociation events are derived

from a differential-equation description of the length changes of a MT (22):

Growth phase:
dL

dt
¼ ka½T� � kd; (1)

Shrinkage phase:
dL

dt
¼ �ks; (2)

where L is the length of a MT (in number of dimers), [T] is the concentration

of free tubulin, ka is the association rate constant of tubulin in the growth

phase, kd is the rate of dissociation in the growth phase, and ks is the rate of

dissociation in the shrinkage phase (see Table 1 for parameter values). Eq. 1

shows that the growth phase of a MT consists of two separate processes: the

association of tubulin, which is dependent on the concentration of free

tubulin (represented by ka[T] in Eq. 1), and the dissociation of tubulin, which

is independent of the concentration of free tubulin (kd in Eq. 1), because

dissociation rate is determined only by the structure of the tip of the MT.

Similarly, the dissociation of tubulin in the shrinkage phase is also

independent of the concentration of free tubulin (ks in Eq. 2), but it occurs at

a much faster rate than in the growth phase. So, based on Eqs. 1 and 2, the

frequency of tubulin association to a MT (in number of dimers per second,

s�1) in a Monte Carlo event-based approach is fa ¼ ka[T]; the frequency of

FIGURE 1 A schematic view of the dynamic instability of a MT. The MT

randomly switches between phases of growth and shrinkage. In addition to

growth and shrinkage rates and catastrophe and rescue frequencies, the dis-

tributions of growth and shrinkage times are important characteristics of MT

dynamic instability.
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tubulin dissociation from a MT in the growth phase is fd ¼ kd; and the

frequency of tubulin dissociation from aMT in the shrinkage phase is fs¼ ks.

Random switches of MTs from growth to shrinkage phase (catastrophes)

and from shrinkage to growth phase (rescues) are characterized by

catastrophe and rescue frequencies (1). The catastrophe frequency fc (the

average number of catastrophes per unit of time of MT growth, or the

reciprocal of the average growth time) and rescue frequency fr (the average

number of rescues per unit of time of MT shrinkage, or the reciprocal of the

average shrinkage time) depend on the concentration of free tubulin (22):

fc ¼ ac½T�1 bc; (3)

fr ¼ ar½T�1 br; (4)

where ac, bc, ar, and br are constants (with ac , 0 and ar . 0; see Table 1 for

parameter values). Thus, the catastrophe frequency decreases with increas-

ing concentration of free tubulin, whereas the rescue frequency increases

with increasing concentration of free tubulin. Equations 3 and 4 were

determined empirically (22), but the biophysical mechanisms underlying

these relationships are not fully known. However, such relationships can in

part be expected from what we know about the mechanisms of MT dynamic

instability. A dynamic MT is mostly composed of GDP tubulin and is

capped at its tip by GTP tubulin, which associates to the MT in the growth

phase. It is believed that when this cap is lost due to hydrolysis of GTP

tubulin, a catastrophe occurs, whereas regaining the cap due to association of

GTP tubulin at the MT tip results in a rescue (1). We can therefore expect

that a higher concentration of GTP-tubulin, and consequently a faster

association of GTP tubulin to the MT tip (Eq. 1), would make the loss of the

GTP cap less likely and thus the catastrophe frequency lower (Eq. 3).

Likewise, a higher concentration of GTP tubulin, and consequently a higher

likelihood that GTP tubulin will associate to the MT tip, would make the

restart of MT growth more likely and thus the rescue probability higher

(Eq. 4).

At the start of a simulation, the MTs are set in the growth phase. The

length of a MT is expressed relative to its initial length, which is arbitrarily

set to zero. The steady-state concentration of free tubulin—i.e., the concen-

tration at which MT growth in the growth phase is on average balanced by

MT shrinkage in the shrinkage phase, so that on average there is no net

length change of the MT—is used as the initial concentration for all com-

partment volumes. The steady-state concentration [T]ss can be determined as

follows. At steady state, there is on average no length change of a MT per

oscillation cycle, so (22)

vgtg 1 vsts
tg 1 ts

¼ 0; (5)

where vg¼ ka[T]ss� kd is the growth rate at the steady-state concentration of

free tubulin (Eq. 1), vs ¼ �ks is the shrinkage rate (Eq. 2), tg ¼ (ac[T]ss 1

bc)
�1 is the growth time (the reciprocal of fc; see Eq. 3), and ts ¼ (ar[T]ss 1

br)
�1 is the shrinkage time (the reciprocal of fr; see Eq. 4). Solving this

equation yields an expression for [T]ss. Using the parameter values from

Table 1, we obtain [T]ss ¼ 11.76 mM.

Each iteration of the simulation procedure then consists of the following

steps:

1. Making a list of all possible events. For a system of two MTs (MT1 and

MT2), for example, where MT1 is in the growth phase and MT2 is in

the shrinkage phase, the list of all possible events is: (i) association of

a tubulin dimer to MT1, and consequently an increase in MT1 length by

one tubulin dimer and a decrease in the concentration of free tubulin in

the compartment; (ii) dissociation of a tubulin dimer from MT1, and

consequently a decrease in MT1 length and an increase in the con-

centration of free tubulin; (iii) catastrophe of MT1, i.e., a change in the

state of MT1 to the shrinkage phase; (iv) dissociation of a tubulin dimer

from MT2, and consequently a decrease in MT2 length and an increase

in the concentration of free tubulin; and (v) rescue of MT2, i.e., a change

in the state of MT2 to the growth phase.

2. Calculating the frequency f (s�1) of each event.

3. Sampling the waiting time for each event from an exponential dis-

tribution with a mean m ¼ 1/f. The probability density function of

an exponential distribution of waiting times t with mean m is p(t) ¼
m�1 exp(�m�1t). The mean waiting time m for a catastrophe event,

for example, is 1/fc.
4. Implementing the event with the smallest waiting time. For the example

given under step 1 with two MTs in the compartment, only one of the

five possible events is implemented per iteration.

A simulation ends after 108 events have been implemented.

The distributions of MT growth and shrinkage times as observed in

the model or in neuronal growth cones were compared to an exponential

distribution using the x2 test (e.g., (31)), whereby the mean of an observed

distribution was used as the mean of the fitted exponential distribution. To

compare the shapes of the distributions of MT growth times in our model

with those in neural growth cones, a x2 two-sample test was used (32).

To quantify the extent of concentration fluctuations in free tubulin, the

weighted standard deviation of the tubulin concentration, S, was calculated

using

S ¼ +
i

ð½T�i �MÞ2di

D

� �� �1
2

; M ¼ +
i

½T�i
di

D
; (6)

whereM is the weighted mean of the concentration of free tubulin, [T]i is the

concentration of free tubulin at iteration i, di is the duration (in seconds) of

the iteration, and D is the duration of the whole simulation. Note that further

on in the text, the phrases ‘‘concentration of free tubulin’’ and ‘‘concen-

tration of tubulin’’ are used interchangeably.

The following procedure was used to fit analytical functions to the

observed dependencies of average MT growth time, average MT shrinkage

time, and tubulin concentration fluctuations on compartment volume and

number of MTs in the compartment (Fig. 6). As an example, we explain how

we fitted an exponential function to the average MT growth times in Fig. 6.

First, the exponential function G(V) ¼ a 1 becV (where G is average MT

growth time, V is volume, and a, b, and c are coefficients) was applied to fit the

dependence of average growth time on compartment volume for each number

of MTs separately (1, 2, 5, or 10 MTs; see Fig. 6), using an optimization

procedure based on the Levenberg-Marquardt algorithm (32). This produced

four sets of coefficients: one set for a compartment with 1 MT (a1, b1, c1), one

for a compartment with 2 MTs (a2, b2, c2), one for a compartment with 5 MTs

(a3, b3, c3), and one for a compartment with 10 MTs (a4, b4, c4). Second, for

each coefficient (e.g., a), the four values (a1, a2, a3, a4) were fitted with a linear

function to obtain a relationship between each coefficient and MT number

(i.e., a(N) ¼ e 1 fN, where N is number of MTs and e and f are coefficients).
Finally, a relationship between average growth time and both compartment

volume and number of MTs was obtained by inserting these linear functions

(e.g., a(N)) into function G(V). Using the same procedure, we also fitted

TABLE 1 Parameter values as used in the

simulations (see Eqs. 1–4)

Constant

Aspect of MT dynamic

instability Value

ka Association of tubulin in the

growth phase

8.9 mM�1 s�1

kd Dissociation of tubulin in the

growth phase

44 s�1

ks Dissociation of tubulin in the

shrinkage phase

733 s�1

ac Catastrophe �0.00058 mM�1 s�1

bc Catastrophe 0.0092 s�1

ar Rescue 0.005 mM�1 s�1

br Rescue �0.03 s�1

All the values of the constants were taken from (22) (ac, bc, ar, br were

measured from that article’s Figs. 7 and 8).
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a power function (i.e., G(V) ¼ a 1 b(V – c)d) to the data on average growth

time, and exponential and power functions to the data on average shrinkage

time and tubulin concentration fluctuations.

RESULTS

We find that MT dynamics in small compartments is mark-

edly different from MT dynamics in large compartments,

with respect to MT length changes and the averages and dis-

tributions of growth and shrinkage times.

Dynamics of MT length and concentration
of free tubulin

Fig. 2 shows the dynamics of MT length and concentration

of free tubulin for a single MT in compartments of different

volumes. We observe that decreasing the volume of the

compartment from 100 mm3 to 1 mm3 increases the fluc-

tuations in tubulin concentration in the compartment, makes

the growth of the MT more nonlinear, and decreases the

length excursions and the average growth and shrinkage

times of the MT (see also Fig. 6).

In the compartment of 100 mm3, the concentration of free

tubulin over time is almost constant (Fig. 2, 100 mm3). This

is a consequence of the fact that the amount of free tubulin is

large in a large compartment, so that a growing and shrinking

MT can hardly change the concentration of tubulin. For the

compartment of 100 mm3, we also observe a nearly constant

growth rate of the MT over time (Fig. 2, 100 mm3). This is

simply explained by the growth rate of a MT being depen-

dent only on the concentration of free tubulin (Eq. 1), which

is nearly constant.

As the volume of the compartment gets smaller, the fluc-

tuations in the concentration of free tubulin increase (Fig. 2:

10 mm3, 5 mm3, and 1 mm3; see also Fig. 6). Because the

initial concentration of free tubulin is the same for all com-

partment volumes (see Model and Methods), as the com-

partment gets smaller, the amount of free tubulin in the

compartment decreases, and assembly and disassembly of

tubulin during MT growth and shrinkage have a bigger effect

on the concentration of free tubulin. Furthermore, in small

compartments, the growth rate of the MT decreases over time

in a single growth excursion, i.e., MT growth is nonlinear

(Fig. 2: 10 mm3, 5 mm3, and 1 mm3). The decrease of the

growth rate is caused by the decrease in the concentration of

free tubulin during MT growth (Eq. 1). The shrinkage rate,

however, is constant over time for all compartment volumes

(i.e., MT shrinkage is linear), because it does not depend on

the concentration of free tubulin (Eq. 2).

As the volume of the compartment gets smaller, the average

growth and shrinkage times and the length excursions of the

MT decrease (Fig. 2; see also Fig. 6). In addition, in a small

compartment,MT length oscillates around its initial value with

relatively small deviations (Fig. 2, 1 mm3). The changing

concentration of free tubulin duringMT growth and shrinkage

is again responsible for these effects. As the MT grows and

takes away free tubulin, the catastrophe probability rises (Eq.

3). Thus the longer theMTbecomes relative to its initial length,

the more likely it is that a catastrophe occurs and the MT starts

shrinking. This decreases the average growth time and the

length excursion of the MT. As the MT shrinks, the increasing

rescue probability, as a result of the increasing concentration of

tubulin (see Eq. 4), in a similar fashion decreases the average

shrinkage times and the length excursions due to shrinkage.

Thus, a small compartment stabilizes a MT against large

deviations from its initial length.

Non-exponential distributions of growth and
shrinkage times

Fig. 3 shows the distributions of growth and shrinkage times

for a single MT in compartments of different volumes. For

the compartment of 100 mm3 (and larger, results not shown),

the distributions are exponential. As the volume of the com-

partment decreases, the distributions of growth and shrinkage

FIGURE 2 For compartments of different volumes, the dynamics of MT

length and concentration of free tubulin in the model with a single MT. To

express the length of a MT in micrometers, we assume that there are 1625

tubulin dimers per 1 mm of a MT.
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times become non-exponential and gradually change into

a gamma-like distribution (Fig. 3: 10 mm3, 5 mm3, and

1 mm3). In contrast to an exponential distribution, a gamma

distribution has relatively fewer very short and very long

growth and shrinkage times.

Why are the distributions in small compartments different

from those in large compartments? As explained earlier, in a

large compartment the concentration of free tubulin is nearly

constant (Fig. 2, 100 mm3), which means that the proba-

bilities of catastrophe and rescue are constant over time as

well (Eqs. 3 and 4; Fig. 4, 100 mm3). Constant probabilities

of catastrophe and rescue can be regarded as describing

stationary Poisson processes, which yield an exponential

distribution of growth and shrinkage times (33).

In a small compartment, the tubulin concentration changes

as the MT grows and shrinks, which implies that the prob-

abilities of catastrophe and rescue also change. To un-

derstand what this means for growth and shrinkage times, let

us consider a single growth phase. Because the growth of the

MT usually starts at a length smaller than the initial length

(see Fig. 2, 1 mm3), the tubulin concentration at the initial

FIGURE 3 For compartments of different volumes, the distributions of

growth and shrinkage times in the model with a single MT. P-values show

the goodness of fit between the observed distributions and an exponential

distribution (see Model and Methods). For large volumes (100 mm3) the

exponential distribution fits well, but for small volumes the hypothesis that

the growth and shrinkage times are exponentially distributed is rejected

(P � 0.001).

FIGURE 4 The dynamics of catastrophe frequency (left) and rescue

frequency (right) in the average growth and the average shrinkage phase,

respectively, of a single MT in compartments of different volumes. The

dynamics of the catastrophe frequency was determined by calculating at

each time point the average concentration of tubulin over all different growth

phases in the simulation (aligned at time zero), and inserting this con-

centration in Eq. 3 to obtain the catastrophe frequency. The dynamics of the

shrinkage frequency was calculated similarly, by considering all shrinkage

phases and inserting the average tubulin concentrations into Eq. 4 to obtain

the rescue frequencies. In small compartments (1 mm3, 5 mm3, and 10 mm3),

the catastrophe and rescue frequencies at the initial stages of the average

growth or shrinkage phase are low; they then increase and become larger

than the respective frequencies of catastrophe and rescue at the initial,

steady-state concentration of tubulin (dashed line). In a large compartment

(100 mm3), the frequencies hardly deviate from the frequencies at the initial,

steady-state concentration of tubulin. For 1 mm3, the catastrophe frequency

is initially zero because, according to Eq. 3, for high tubulin concentration

the catastrophe frequency becomes negative and is therefore set to zero.

(Note that the time axes are different for different compartment volumes

because the average growth and shrinkage times are different.)
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stage of MT growth is relatively high, so that the catastrophe

probability is low (Eq. 3; Fig. 4, 1 mm3, 5 mm3, and 10 mm3).

A low probability of catastrophe at the beginning of MT

growth means that the growth phase has little chance of

becoming very short. As the MT grows, the tubulin con-

centration decreases and the probability of catastrophe

becomes high. As a result, the growth phase has little chance

of becoming very long, because a catastrophe will very likely

have occurred at some earlier point in time. So, compared to

a MT in a large compartment, both very short and very long

growth times are less likely to occur. Similarly, the modu-

lation of the rescue probability by the changing concentra-

tion of tubulin results in a low number of very short and

very long shrinkage times (Eq. 4; Fig. 4, 1 mm3, 5 mm3, and

10 mm3).

Thus, in small compartments, the modulation of the

catastrophe and rescue probabilities by the changing concen-

tration of free tubulin results in a distribution that has

relatively fewer very short and very long growth and shrink-

age times, i.e., a gamma-like distribution. Interestingly, at the

level of individual growth and shrinkage phases, the system

can be regarded as having a form of memory of the time that

the MT has been growing or shrinking, because this time is

reflected in the catastrophe and rescue probabilities of a MT

(see Eqs. 3 and 4). Note that this memory occurs within an

individual growth or shrinkage phase and does not extend

over multiple growth or shrinkage phases.

Increasing the number of MTs in a compartment

Fig. 5 shows how the distribution of growth times gradually

changes from non-exponential to exponential as the number

of MTs increases in a compartment of 1 mm3. The distribu-

tion of shrinkage times, however, remains non-exponential

even for 10 MTs in the compartment. In addition, the average

growth and shrinkage times increase with the number of

MTs in the compartment. Thus, increasing the number of

MTs has similar effects on the distributions and lengths ofMT

growth and shrinkage times as increasing the volume of the

compartment.

Like increasing the volume of the compartment, increasing

the number of MTs in the compartment reduces the fluctu-

ations in the concentration of free tubulin (Fig. 6). In both

cases, the ability of a single dynamic MT to change the

concentration of free tubulin is reduced. In the first case, the

concentration fluctuations become smaller because the total

amount of tubulin in the compartment is increased. In the

second case, with more MTs in the compartment, the fluc-

tuations become smaller because the decrease of tubulin due

to growing MTs can be compensated for by the increase of

tubulin due to shrinking MTs (and vice versa), so that the net

changes in the concentration of free tubulin are smaller and

not well correlated with the dynamics of any single MT.

However, even for 10 MTs in a compartment as large as

10 mm3 (see Figs. 6 and 8), the growth and shrinkage times

of the MTs are still, respectively, 6% and 11% shorter than

in a compartment of 100 mm3.

To find general expressions for the observed dependencies

of average MT growth time, average MT shrinkage time, and

tubulin concentration fluctuations on compartment volume and

number ofMT, we fitted several analytical functions to the data

of Fig. 6. We find that the dependence of tubulin concentration

fluctuations on compartment volume can best be described by

a power function (Fig. 7). A power function for concentration

fluctuations is to be expected, since concentration by definition

is inversely proportional to volume. The dependence of aver-

age MT growth time on compartment volume, and the de-

pendence of average shrinkage time on compartment volume,

can best be described by exponential functions.

Fig. 8 shows the distributions of growth and shrinkage

times for 10 MTs in compartments of different volumes. As

the volume of the compartment decreases, the distribution of

FIGURE 5 For different number of MTs in the compartment, the dis-

tributions of MT growth and shrinkage times in the compartment of 1 mm3.

For the models with more than one MT, the growth and shrinkage times of

all MTs are pooled. P-values show the goodness of fit between the observed

distributions and an exponential distribution. For the growth times in the

models with 5 and 10 MTs the exponential distribution fits well, but for all

other cases the hypothesis that the growth and shrinkage times are exponentially

distributed is rejected (P � 0.001).
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growth times changes little and remains exponential. The

distribution of shrinkage times, however, gradually changes

from exponential to gamma-like. Both Figs. 5 and 8 show

that, if there is more than one MT in the compartment, the

distribution of shrinkage times is more gamma-like than

the distribution of growth times. This can be explained by the

fact that, at the steady-state concentration of free tubulin, the

growth rate is;12 times smaller than the shrinkage rate (see

Eqs. 1 and 2 and Table 1), so that the ratio of growing to

shrinking MTs is 12:1. Because more MTs are available to

switch from growth to shrinkage than vice versa, the ability

to compensate for a decrease in tubulin concentration (as a

result of MT growth) by switching to shrinkage is better than

the ability to compensate for an increase in tubulin con-

centration (as a result of MT shrinkage).

DISCUSSION

By means of computational modeling, we have shown that

the volume of the compartment in which dynamic MTs are

located and the number of MTs in the compartment can

affect both the lengths and distributions of MT growth and

shrinkage times. Smaller compartments, and compartments

with fewer MTs, have larger concentration fluctuations in

tubulin and, as a result, have shorter growth and shrinkage

times that are non-exponentially distributed. We have shown

that MT dynamics in compartments smaller than 100 mm3

markedly differ from MT dynamics in a large compartment

with a nearly constant concentration of free tubulin. Al-

though the difference is largest with a single MT in the com-

partment, even for 10 MTs in a compartment as large as

10 mm3 (see Fig. 8) the growth and shrinkage times of the

MTs are still markedly shorter, while the distribution of

shrinkage times is non-exponential.

Non-exponential, gamma-like distributions of MT growth

and shrinkage times that we find in our model have also been

observed in vivo (14,15). Theoretical analysis shows that for

non-exponential, gamma-like distributions to arise, the prob-

abilities of catastrophe and rescue of a MT have to increase

during an individual growth and shrinkage phase, respectively

(13). In other words, a MT needs to have some sort of memory

of the time that it has been growing or shrinking in a particular

growth or shrinkage phase (see Introduction). Several, though

not experimentally tested, proposals have been put forward to

explain the origin of MT memory, such as the existence of

several transitional states at the MT tip (13,16) or the

dependence of catastrophe and rescue probabilities on MT

length (20,21). Our results show that non-exponential

distributions of growth and shrinkage times can already arise

as a result of fluctuations in the concentration of free tubulin

caused by dynamic MTs in a small compartment. In our

system, the required MT memory arises because catastrophe

and rescue probabilities of a MT depend on the concentration

of free tubulin, which is decreasing or increasing as the MT

grows or shrinks, respectively. Therefore, within an in-

dividual growth or shrinkage phase, the concentration of free

tubulin reflects the time that the MT has been growing or

shrinking in that particular phase.

Our results show that the volume of cells or cellular

compartments, and the number ofMTs they contain, could be

an important factor in determining the properties of MT

dynamic instability. One such compartment where MT dy-

namics is expected to be influenced by compartment volume

is the neuronal growth cone. From data in Tanaka and Sabry

(9), we estimate that the volumes of neuronal growth cones are

in the range of 1–200 mm3. Further, we estimate that the

number of dynamicMTs in the growth cone, i.e., the ones that

could contribute to changes in the concentration of free

tubulin, is,10. This estimate is based on the observation that

the total number of MTs in a growth cone is;10–40 (9) and

that MTs in the central domain of the growth cone are non-

dynamic and onlyMTs in the peripheral domain of the growth

cone showmarked growth or shrinkage (34). Furthermore, the

diffusion rate of tubulin in cytoplasm and the diameter of an

axon are such that, on the timescale of MT dynamic insta-

bility, the exchange of tubulin between the growth cone and

the rest of the cell is limited. Several diffusion constants (D) of
tubulin in cytoplasm have been reported: 1.3–1.6 mm2/s (35),

FIGURE 6 For compartments of different volumes and for different numbers of MTs, the fluctuations in the concentration of free tubulin (weighted standard

deviation S; see Model andMethods) and the average growth and shrinking times of theMTs. For the models with more than oneMT, the growth and shrinkage

times of all MTs are pooled. As the compartment volume gets smaller or the number of MTs in it decreases, the fluctuations in the concentration of free tubulin

increase and the average growth and shrinkage times become shorter.
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5.9mm2/s (27), and 8.591mm2/s (36). Using an average value

ofD¼ 5.3mm2/s, a terminal axon diameter of 0.5mm(37) and

Fick’s law, we estimate that the amount of tubulin that is taken

up by aMT during an average growth phase in a compartment

of 100 mm3 is at least 15 times bigger than the amount of

tubulin that during the same period can diffuse from the axon

into the growth cone. In addition, the timescale of tubulin

diffusion inside the cell can be estimated by the Einstein-

Smoluchowski relation, Æd2æ¼ 2nDt, where Æd2æ is the mean-

square displacement of a tubulin dimer, t is time, and n is the
spatial dimension of the system. Using this relation with

n¼ 1, we find that the time needed for a tubulin dimer to cover

the length of an axon (millimeters to centimeters) by diffusion

is on the order of days to months (see also (38)). In contrast,

the time needed for a tubulin dimer to move a distance of 10

mm, i.e., the diameter of a large neural growth cone, is on the

order of 3 s (obtained using n¼ 3). Thus, on the timescale of

MT dynamic instability (minutes), the diffusion of tubulin is

fast enough to equilibrate the concentration of tubulin within

the growth cone, but too slow for a significant exchange of

tubulin with the rest of the cell. Taken together, the volume of

the growth cone, the number of dynamic MTs it contains and

the diffusion of tubulin are such that growing and shrinking

MTs can cause fluctuations in tubulin concentration that will

result in non-exponentially distributed growth and shrinkage

times. We analyzed MT growth times observed in neuronal

growth cones (15) and found that they are indeed not

exponentially distributed (x2 test,P¼ 0.0025).Moreover, the

shape of the distribution of MT growth times in neuronal

growth cones does not differ from the shapes of the non-

exponential distributions that we observe in our model (x2

two-sample test, P-values range from 0.08 to 0.63).

The filopodia of a growth cone are much smaller (0.1–4

mm3) (9) than the growth cone itself and are usually invaded

by a single dynamic MT (8,9). The shape of a filopodium is

such that the exchange of tubulin with the rest of the growth

cone may be limited, so a filopodium may be viewed as a

small compartment with a single MT. Interestingly, the times

FIGURE 7 For different number of MTs, the function fits for the dependencies of average MT growth time, average MT shrinkage time, and tubulin

concentration fluctuations on compartment volume and number of MTs. The data points (squares) are the outcomes of the model simulations, and the

continuous curves are the functions that best fitted these points (for the procedure we used, see Model and Methods). For the tubulin concentration fluctuations,

a power function best describes the data, whereas for the growth and shrinkage times, exponential functions fit best. The relationship between the tubulin

concentration fluctuations, S (see Model and Methods), and compartment volume V is S(V) ¼ a 1 b(V – c)d, where a, b, c, and d are coefficients that depend

linearly on microtubule number N: a(N)¼ 0.204 – 0.0547N, b(N)¼ 9.77 – 0.272N, c(N)¼�0.476 – 0.136N, and d(N)¼�0.5751 0.0184N. For the average

growth time G, the relationship is G(V) ¼ a 1 becV, where a(N) ¼ 411 – 0.0816N, b(N) ¼ �205 1 11.2N, and c(N) ¼ �0.233 1 0.0052N. For the average

shrinkage time H, the relationship is H(V) ¼ a 1 becV, where a(N) ¼ 33.5 1 0.0194N, b(N) ¼ �22.7 1 1.25N, and c(N) ¼ �0.237 1 0.00608N.
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of extension of filopodia show a gamma-like distribution too

(39), just like MT growth and shrinkage times, raising the

possibility that this distribution may be a direct result of MT

dynamic instability with fluctuating concentrations of free

tubulin. Our model also predicts that when a MT from the

central domain of a growth cone enters the much smaller

volume of a filopodium, a change in MT dynamics will occur.

In motile cells, MT growth promotes local activity of

Rho GTPase Rac1, which drives actin polymerization and

lamellipodial protrusion and is thought to mediate growth

cone attraction (4,7,40,41). MT shrinkage activates Rho

GTPase RhoA, which drives the formation of contractile

actomyosin bundles and is thought to mediate growth cone

repulsion (6,42). In studies on fibroblasts, it has also been

found that the time spent by MTs in the growth phase is

positively correlated with the rate of cell movement and the

area of lamellipodia (43). Because our model predicts that

the volume of neuronal growth cones influences MT growth

and shrinkage times, we also expect, on the basis of the

above, that growth cone volume could affect lamellipodial

protrusions, contractility of actin, and the rate of growth cone

movements.

It should be stressed that even small changes in MT

dynamics may be relevant for cell motility. MTs not only

regulate the activity of Rho GTPases, but they can also be

regulated themselves by Rho GTPases (reviewed in (6)). For

example, MT growth activates Rho GTPase Rac1, which in

turn not only drives actin polymerization and lamellipodial

protrusion, but also stimulates MT growth by inactivating the

MT catastrophe-promoting protein Op18/stathmin (44,45).

Similarly, RhoA activity induced by MT shrinkage contrib-

utes to MT destabilization via phosphorylation of the MT-

associated protein tau (46). These positive feedback loops

could amplify small changes in MT growth or shrinkage (as

we predict would occur as a result of changes in volume) so

that they become big enough to influence cell motility and

growth cone behavior.

To assess the contribution of small volume on MT

dynamic instability experimentally, one has to monitor, over

time, the dynamics of MTs and the concentration of free

tubulin (e.g., using fluorescent proteins as markers for

tubulin) (47) in filopodia, growth cones, or small cells or

cellular compartments, and to determine whether the ob-

served fluctuations in tubulin concentration relate to changes

in the amount of MT polymer. Also artificial membrane com-

partments with dynamic MTs inside (48,49) can be used to

investigate whether compartment volume affects the lengths

and distributions of MT growth and shrinkage times as pre-

dicted by our model.

In our model, dynamic MTs cause concentration fluctu-

ations because the volume of the compartment is small.

Marked fluctuations in the concentration of free tubulin as

a result of dynamic MTs are also possible in several other

situations. One such situation would be if the diffusion of

tubulin is so slow that a growing or shrinking MT creates

a gradient of free tubulin near its tip. These local fluctuations

in the concentration of free tubulin around the tip of a MT

would be similar to those caused by a single MT in a small

compartment, with similar effects on MT growth and shrink-

age times. Since the diffusion coefficient of the same protein

in different cell types can vary greatly (up to 90-fold) (27),

the possibility of slow diffusion of tubulin and tubulin

gradients around MT tips should be explored experimentally.

Another situation where dynamic MTs could cause

fluctuations in the concentration of free tubulin, even in

compartments much larger than 100 mm3, is when many

MTs would (de)polymerize in concert. In our model, MTs

appear to behave independently of each other. Thus, increas-

ing the number of MTs in the compartment reduces the

fluctuations in the concentration of tubulin (and consequently

reduces the effects of compartment volume on MT dynamics)

because a decrease in free tubulin due to growing MTs is

compensated for by an increase in free tubulin due to

shrinking MTs. If the MTs were not independent of each

FIGURE 8 For compartments of different volumes, the distributions of

growth and shrinkage times in the model with 10 MTs (the growth and

shrinkage times of all MTs are pooled). P-values show the goodness of fit

between the observed distributions and an exponential distribution. The

hypothesis that the observed distribution is an exponential distribution is

rejected only for MT shrinkage times in small volumes (P � 0.001).
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other and polymerized or depolymerized synchronously, the

whole population of MTs could be viewed as a single MT

that takes up or releases a large amount of tubulin. Such

concerted MT (de)polymerization would cause marked fluc-

tuations in tubulin concentration even in relatively large

volumes (larger than 100 mm3), and this would then result in

the change in MT dynamics that is observed in our model.

Interestingly, under certain conditions in vitro, MTs can

show synchronized polymerization and depolymerization

(50–54), which is associated with marked fluctuations in

GTP-tubulin concentration. Unfortunately, the distributions

of MT growth and shrinkage times were not measured in

these studies. Conversely, non-exponential, gamma-like dis-

tributions of MT growth and shrinkage times have been

observed in one in vitro study (13), but it was not reported

whether or not the MTs (de)polymerized synchronously.

Whether concerted oscillations in MT growth and shrinkage

can also occur in vivo, is an open question. However, during

the anaphase of a dividing cell, kinetochore MTs (i.e., the

MTs that are attached to chromosomes) depolymerize in

concert to separate the chromosomes (55). Since there can be

several hundreds of synchronously depolymerizing kineto-

chore MTs (56), the influence of compartment volume on

MT dynamics could, in principle, take place in volumes up to

several hundreds of times larger than 100 mm3. Many

eukaryotic cells have volumes smaller than that, which means

that during anaphase, the influence of compartment volume

on MT dynamics could be considerable in those cells.

In conclusion, although we do not rule out that structural

changes in the MT during growth or shrinkage can contrib-

ute to the generation of non-exponential distributions of MT

growth and shrinkage times, our study suggests that when the

volumes of cells or cellular compartments are small, when

diffusion of tubulin is slow, or when many MTs (de)poly-

merize in concert, the growing and shrinking MTs cause

fluctuations in the (local) concentration of free tubulin that

are already enough for non-exponential distributions of MT

growth and shrinkage times to arise. These fluctuations, and

the factors that influence them (e.g., volume), are expected to

affect all the processes that depend on MT dynamic insta-

bility, such as neuronal growth cone behavior and cell mo-

tility in general.
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