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ABSTRACT We present a computational particle method for the simulation of isotropic and anisotropic diffusion on curved
biological surfaces that have been reconstructed from image data. The method is capable of handling surfaces of high curvature
and complex shape, which are often encountered in biology. The method is validated on simple benchmark problems and is
shown to be second-order accurate in space and time and of high parallel efficiency. It is applied to simulations of diffusion on
the membrane of endoplasmic reticula (ER) in live cells. Diffusion simulations are conducted on geometries reconstructed from
real ER samples and are compared to fluorescence recovery after photobleaching experiments in the same ER samples using
the transmembrane protein tsO45-VSV-G, C-terminally tagged with green fluorescent protein. Such comparisons allow
derivation of geometry-corrected molecular diffusion constants for membrane components from fluorescence recovery after
photobleaching data. The results of the simulations indicate that the diffusion behavior of molecules in the ER membrane differs
significantly from the volumetric diffusion of soluble molecules in the lumen of the same ER. The apparent speed of recovery
differs by a factor of;4, even when the molecular diffusion constants of the two molecules are identical. In addition, the specific
shape of the membrane affects the recovery half-time, which is found to vary by a factor of ;2 in different ER samples.

INTRODUCTION

The lateral mobility of components of biological membranes

is vital for numerous cellular processes. These include exo-

and endocytosis, signal transduction, cell motility, and growth.

The technique of fluorescence recovery after photobleaching

(FRAP) (1,2) is frequently used to study lateral diffusion of

membrane components.

In the past, FRAP on biological surfaces has mostly used

planar diffusion models. For FRAP and the related contin-

uous fluorescence microphotolysis, calculations exist for

planar membranes (3), for spherical membranes (4), and singly-

connected periodically curved membranes (cosine surfaces)

(5). Several real biological membranes are, however, much

more complex. They can contain tubular networks, holes,

and large curvature variations, and are usually not singly-

connected. Moreover, diffusion in biological membranes can

appear anisotropic even though it is molecularly isotropic in

all observed instances (6). The apparent anisotropy in FRAP

experiments is due to different membrane curvatures is dif-

ferent spatial directions (7). Taking the exact surface geometry

into account is thus mandatory for isotropic FRAP models.

Numerical simulations of diffusion on realistic membrane

surfaces are needed, both to investigate the influences of ge-

ometry and to derive corrected molecular diffusion constants.

In computational science, a number of techniques have

been proposed to solve the diffusion equation on surfaces,

requiring rectangular grids (8) or surface triangulations (9).

These explicit techniques allow a piecewise linear represen-

tation of the surface and encounter severe difficulties in

tracking large surface deformations. Monte Carlo techniques

(11) for the simulation of diffusion processes suffer from

slow convergence rates and they are not competitive with

their deterministic counterparts for simulations of diffusion

in realistic geometries (12,13).

The simulation of diffusion on surfaces has received con-

siderable attention in the area of computer graphics. We take

advantage of recent advances developed for image and video

imprinting (14) by representing biological surfaces recon-

structed from image data as implicit surfaces using particle

level set techniques (15). The key concept amounts to con-

sidering the biological surface as a level set of a higher-

dimensional function. The resulting governing equations are

solved in a Cartesian coordinate system spanning a region

consisting of all points close to the surface. We note here that

this technique has been recently employed for the simulation of

isotropic diffusion on the plasma membrane of hl-60 cells (10).

In the present work, simulations on complex curved sur-

faces are enabled by the use of particle methods developed

for simulations of diffusion in complex geometries (13). This

method relies on a particle representation of the implicit sur-

faces, is second-order accurate in space and time, and is shown

to be an efficiently parallelizable method for simulating (an)

isotropic diffusion process on realistic biological surfaces as

they are reconstructed from micrographs.

The simulations are applied to determine geometry-

corrected molecular diffusion constants from FRAP data in

the probably most complex biological surface, the membrane

of the endoplasmic reticulum (ER). Although this particular

application requires only the simulation of isotropic diffu-

sion on the membrane, we present the method in its general

form, which also allows for anisotropic and inhomogeneous

diffusion. The results of the simulations indicate that the dif-

fusion behavior of molecules in the ER membrane differs sig-

nificantly from the volumetric diffusion of soluble molecules in
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the lumen of the same ER. The apparent speed of recovery

differs by a factor of ;4, even if the molecular diffusion con-

stants of the two molecules are identical. In addition, the spe-

cific shape of the membrane affects the recovery half-times to

vary by a factor of ;2 for different ER samples.

THEORY

Governing equation for diffusion on
curved surfaces

We consider diffusion of a scalar quantity u on a surface

M � R3 in three dimensions as governed by the equation

@uðj; tÞ
@t

¼ LDuðj; tÞ j 2 M; ð1Þ

where the intrinsic diffusion operator on M is defined as

LD ¼ =M � ðDðjÞ=Mð�ÞÞ; ð2Þ

where =M is the intrinsic gradient operator on the surface M,

and D(j) is the anisotropic diffusion tensor (in the case of

isotropic diffusion D ¼ DI). The surface is closed and finite,
such that no boundary conditions are required. As shown by

Bertalmio et al. (14), the diffusion equation (Eq. 1, above) on

the surface M can be transformed into a partial differential

equation for generalized anisotropic diffusion in the

surrounding R3. This is achieved by embedding the surface

in a small annular domain (i.e., the band), consisting of all

points close to the original surface. By virtue of this embed-

ding, the differential operators in Eq. 1 are transformed into

equivalent operators in R3, which are in turn discretized in

the complex domains using particle methods (12,15).

The surface is represented as the zero level of a function

c : R3/R, thus M ¼ fx:c(x) ¼ 0g. The fluxes are con-

strained in the tangential direction using the projection map

D̃ ¼ I � =c5=c

j=cj2
� �

j=cj; ð3Þ

where = is the gradient operator in space. The initial con-

dition u(j, t ¼ 0) is only known on M. It is extended to

the band around M by solving to steady-state the partial

differential equation

@u

@t
1 signðcÞð=u � =cÞ ¼ 0 inR3

: ð4Þ

This enforces that the direction of the diffusive flux =u is

orthogonal to the normal on M, =c, and the extension is

neutral with respect to above mapping operator. The em-

bedded governing equation for anisotropic diffusion on the

surface thus becomes

@u

@t
¼ 1

j=cj= � ðD̃T=uÞ inR3
; ð5Þ

where = is the regular Nabla operator in R3 and the tensor

T(x) is obtained from the diffusion tensorD(j) on the surface

by extending it with an arbitrary radial component (invariant

under the projection map).

Formulation of the numerical scheme

We implement particle methods for the discretization of the

governing equations and for the representation of the sur-

faces as they are reconstructed from image data. Particle meth-

ods replace implicit functions and differential operators by

equivalent integral representations that are in turn discretized

using particle locations as quadrature points. These particle-

quadrature points do not require a regular grid and thus avoid

the difficulties associated with grid-based techniques in the

presence of complex boundaries. In this particle framework,

we discretize both the solution u and the level function c

onto the same set of N computational particles. Each particle

pi, i ¼ 1, . . ., N supports a property vector qi ¼ (ui, ci) at

position xi, such that

qðxÞ ¼ +
N

i¼1

Qi zeðx� xiÞ; ð6Þ

where Qi is the local volume integral of the quantities being

discretized, ze is a mollification kernel whose properties

determine the accuracy of the representation (12), and e is the

size of the discretizing particles.

Discretization of the embedded Eq. 5 is done for an ar-

bitrary, space-dependent tensor L ¼ D̃T by using Lagrange

interpolation polynomials for both u and L (element-wise).

These continuous functions are then used to analytically com-

pute the right-hand side of Eq. 5. Evaluating the resulting

expression at particle locations xi yields the final discretized
form of the operator. We are using a second-order polyno-

mial basis, leading to a second-order-accurate discretization

of the embedded diffusion operator. The discretized operator

has a compact support consisting of 27 particles, corre-

sponding to an interaction radius of s ¼ 1h, where h is the

interparticle distance.

Orthogonal extension of the solution

When the discrete operator is evaluated at locations closer than

s to the boundary of the band, the solution will be inaccurate,

since particles outside the band are absent, resulting in an

inaccurate representation of the corresponding integral oper-

ators (12). Discretization errors at the boundary would

eventually propagate into the band and destroy the whole

solution. To remedy this situation, the solutionu is reinitialized
after each time step, enforcing =u � =c ¼ 0 inside the band.

Since the band is finite, this procedure requires an extrapo-

lating method such as the fast-marching method (FMM) (16).

The original FMM is, however, only first-order accurate,

and requires the particles to be sorted according to their

distance to the surface. The latter property prohibits a parallel

implementation on distributed computer systems and renders
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the method inherently sequential. We are using the second-

order-accurate interface-locating algorithm of Chopp (17)

using tri-cubic interpolation near the interface. Sorting in the

marching method is avoided by using the marching Eikonal

solver of Kim (18), called the group-marching method

(GMM). It advances several particles per iteration and can

therefore be employed on parallel computers. Avoiding the

global sorting also reduces the computational cost of the

method from OðN log NÞ to OðNÞ, where N is the total

number of particles. To avoid the intrinsic instabilities of the

GMM for higher-order upwind differences, the backward

computation (18) is done r times with r being the order of the
upwind differences. Moreover, centered differences are used

to compute =c, since c is known in the whole band. The

combination of centered differences for c and upwind differ-

ences for u leads to smoother errors. This second-order exten-

sion scheme is used both to construct the initial condition in

the band and to reinitialize the solution in a s-neighborhood of

the band boundary at each time step.

METHODS

Cell line, DNA construct, and expression
of VSVG-GFP

Vero cells were maintained in MEM (plus Earle’s plus GlutaMAXI;

Gibco BRL, San Diego) supplemented with 10% fetal calf serum and non-

essential amino acids (Gibco BRL) at 37�C/5% CO2. The cDNA plasmid

VSVG3-SP-GFP (19) encoding GFP-tagged temperature sensitive vesicular

stomatitis virus glycoprotein (tsO45-VSV-G) was kindly provided by Dr. Kai

Simons. Cells on 18-mm glass coverslips at 80–90% confluence were

transfected with 0.5 mg plasmid DNA per coverslip using FuGENE 6

Transfection Reagent (Roche Diagnostics, Indianapolis, IN) and incubated

for 12–14 h at the nonpermissive temperature (40�C), at which VSVG-GFP

is incompletely folded and retained in the ER (20).

Live cell microscopy and FRAP analyses

For live cell microscopy, transfected cells on 18-mm glass coverslips were

transferred to a custom-built metal microscope coverslip chamber in CO2-

independent medium, supplemented with 10% FCS (Gibco BRL). FRAP

analyses were performed at 40�C on an inverted Zeiss LSM510 confo-

cal microscope (Oberköchen, Germany) equipped with a temperature-

controlled stage and a 1003 1.4 NA objective. A defined region of interest

(ROI, 43 4mm)was bleached using the 488-nm line of a 30-mWArgon laser

at high laser intensity (100% power, 100% transmission) and fluorescence

recovery was recorded by scanning at low laser intensity (100% power, 10%

transmission). Images were acquired as 12-bit LSMfiles at 5123 512 pixels/

frame and 0.09-mm/pixel lateral resolution. Image series with little or no

apparent motion of ER structures within the ROIs were selected and imported

into ImageJ 1.34 (http://rsb.info.nih.gov/ij/) for processing. The average

fluorescence intensity of the ROI was determined after background sub-

traction and normalization according to Phair and Misteli (21).

Z-sectioning and three-dimensional
reconstruction of ER surfaces

ER geometries were imaged and reconstructed as described (13).

Immediately before FRAP analysis, 0.1-mm optical z-sections of the cell

to be bleached were collected with a lateral resolution of 0.09-mm/pixel.

Imaging noise was removed in Imaris 4.1.1 (BitPlane, Zürich, Switzerland)

using a Gaussian filter of half-width 200 nm. Reconstruction was done in

Imaris 4.1.1 (BitPlane) using the same number of voxels as pixels, a voxel

size of 0.09 mm, and the optimal threshold settings as described (13). The

resulting triangulated surfaces were checked to be closed, connected, and

orientable—and, on average, consisted of 500,000 triangles. Note that the

triangulation of the surface is not an inherent feature of this method and it

represents only the format available from the image reconstruction software.

The surfaces do not remain piecewise linear in our simulations, as smooth

particles are used to represent the surfaces implicitly (see Theory, above).

Simulation of FRAP experiments

The in silico FRAP experiments were performed using the above-described

algorithm, implemented in Fortran 90 and parallelized using the PPM library

(I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis,

and P. Koumoutsakos. PPM–A highly efficient parallel particle-mesh library

for the simulation of continuum systems. J. Comput. Phys., accepted). The

triangulated surfaces from the three-dimensional reconstruction were

converted to level sets using the second-order GMM reinitialization scheme

as described above. All simulations used a computational diffusion constant

of Dsim ¼ 1.0 mm2/s, a band half-width of k ¼ 3h (h between 0.042 and

0.047 mm), and employed between 800,000 and 2,000,000 particles

concentrated in a 14 3 14 mm neighborhood around the ROI. Time inte-

gration was done using a nine-step STS scheme (22) with an elementary

Euler time step of 1 3 10�4 s. The concentration was initially set to 1

everywhere outside the bleached ROI, where it was set to 0. The total mass

of fluorescent molecules in the ROI was determined at each simulation time

step by linearly interpolating the strengths of adjacent particles along

interparticle lines that cross the membrane. Before analysis, all FRAP curves

were normalized by their steady-state value to make them comparable (13).

Fitting of simulated FRAP curves to experimental
data and derivation of molecular
diffusion constants

The FRAP curves obtained from simulations were fitted to experimental

datapoints using MATLAB 7.0.4 (The MathWorks, Natick, MA) and a

Nelder-Mead simplex scheme to minimize the L2 error of the fit. Fitting was

only done in time and the FRAP values were left unchanged (13). All L2

residuals were ,1%. The effective molecular diffusion constant Deff was

then computed from the computational diffusion constant Dsim, the time-

stretching factor ts determined in the fit, and the ratio j¼ (voxel size)/(lateral

resolution ½mm/pixel�) as

Deff ¼
Dsim

j
2
ts
: ð7Þ

RESULTS

Accuracy and convergence of the
numerical method

As a test case with known analytic solution, we consider

isotropic diffusion on the surface of the sphere S2(R) with
center (0, 0, 0) and radius R ¼ 1,

@u

@t
¼ D=

2

Mu on S2ðRÞ: ð8Þ

The analytic solution in spherical coordinates (defined

according to Bronstein et al. (23)) is obtained by expansion

to spherical harmonics Ym
‘ as
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uðt;q;uÞ ¼ +
N

‘¼0

+
‘

m¼�‘

c‘mð0ÞYm

‘ ðq;uÞe
� D

R
2‘ð‘11Þt

; ð9Þ

with

c‘mð0Þ ¼
Z
S
2
ð�1ÞmY

�m

‘ ðq;uÞuð0;q;uÞ dS: ð10Þ

To study convergence without the effects of series trunca-

tion, we use the special initial condition

uð0;q;uÞ ¼ Y
0

1ðq;uÞ ¼
ffiffiffiffiffiffi
3

4p

r
cosq: ð11Þ

For this initial condition, the analytic solution simplifies,

due to the orthogonality of the spherical harmonics, to

uðt;q;uÞ ¼ Y
0

1ðq;uÞe
�2 D

R
2t: ð12Þ

Embedding is done using as level-function c the signed

distance to the surface, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2 1 z2

p
� R. Particles

are only present in a band of half-width k around the

interface, thus jcj , k. In this band, =c is computed using

representations equivalent to second-order upwind differ-

ences, thus avoiding boundary errors, and the tensors D̃T at

all particle locations are determined according to Eq. 3. The

right-hand side of Eq. 8 is computed in an inner band of half-

width jcj , k , k. The region between k and k serves as

a ghost-layer and is reinitialized after each time step using

the orthogonal extension GMM (see Theory) to enforce

=c 3 =u ¼ 0 (no radial flux).

To assess the accuracy of the interface-locating inter-

polation, we use it for all particles in the inner band to deter-

mine the approximate distance c̃ to the surface of the sphere.

From the pointwise errors e ¼ c� c̃, the following error

norms are computed for different interparticle spacings h:

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
+
N

i¼1

e
2

i

s
; ð13Þ

LN ¼ maxjeij: ð14Þ

For relative errors, they are normalized with 1=maxjc̃j. Fig. 1 a
shows the result for the tri-cubic procedure of Chopp (17).

To test the orthogonal extension with the parallel GMM

method (see Theory), the initial condition given in Eq. 11 is

extrapolated from an inner band of half-width 3h to a band of

half-width 9h. The error is computed for 3h , jcj, 9h using

the exact signed distance function and a fourth-order ap-

proximation to =u. Fig. 1 b shows the resulting convergence

curve of second-order accuracy.

The accuracy of the discretization of the anisotropic

diffusion operator is assessed by comparing the right-hand

side of Eq. 8 to the one computed analytically (Fig. 2 a). The
compact discrete operator is evaluated in an inner band of

half-width k¼ 1h with a ghost layer of 1h, thus only a k ¼ 2h
neighborhood around the surface is populated with particles.

Compactness of the operator is an important aspect of this

method as it allows us to resolve thin surface protrusions.

Fig. 2 b shows the overall convergence of the complete

simulation algorithm after 10 time steps. The solid line in-

dicates convergence of order 2. To reconstruct the solution

on the interface, we use linear interpolation along all inter-

particle lines that cross the interface. It can be seen that the

method is second-order accurate for all particle spacings

tested. The single-processor and the parallel version of the

code yield exactly the same results.

Conservation of mass

If no transport to/from the membrane occurs, the total mass

of the surfactant, integrated over the implicit surface, should

FIGURE 1 Convergence of the level set algorithms. (a) Convergence of

the second-order interface locating algorithm by Chopp (17). A signed

distance function, defined in a band of half-width 3h around a sphere, is

reinitialized. The relative L2 (squares) and LN (circles) errors of the present
implementation (solid symbols) are compared to the numbers published by

Chopp (17) (open symbols) and the theoretical second-order scaling (solid

line). The errors are computed from all points immediately adjacent to the

interface. (b) Convergence of the second-order orthogonal extension. The

spherical harmonic u ¼ Y0
1 (Eq. 11) is initialized in a band of half-width 3h

and orthogonally extended outwards to a 9h band. This is done over the

exact signed distance function c, initialized in a 12h band (centered

differences are used for =c in the extension). To compute the error, =u is

computed using fourth-order centered differences in the band 3h , jcj, 6h,

and =c is known analytically. The error =u � =c̃ is computed and the

absolute L2 (squares) and LN (circles) norms are reported.

FIGURE 2 Convergence of the discretization and the overall method. (a)

Convergence of the discretization of the anisotropic diffusion operator. The

approximate operator is evaluated on the initial condition and compared to

the exact (analytic) right-hand side in a band of half-width 1h. The operator

is evaluated in a narrow band of half-width k ¼ 1h with an additional ghost

layer of 1 grid point, thus k ¼ 2h. (b) Convergence for diffusion on a sphere
of radius 1 and intrinsic diffusion constant D ¼ 1. The diffusion operator is

evaluated on a support of 33 33 3 particles in a narrow-band of half-width

k ¼ 3h and extended to a larger band of k ¼ 4.5h after each time step, using

the second-order GMM extension method. A second-order TVD Runge-

Kutta scheme is used with a time step of dt ¼ 10�5 until final time 10�4. The

straight line indicates convergence order 2.
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remain constant. Spurious radial fluxes of the discretized

diffusion operator as well as errors in the GMM extension of

the solution, however, lead to mass drift. Using a global

rescaling method (24), conservation of mass is enforced. The

surface integrals are evaluated using linear interpolation along

interparticle lines across the interface and the rectangular

quadrature rule. Fig. 3 a shows the evolution of the total mass

over time for the sphere test case with initial condition

uð0;q;uÞ ¼ 11 Y
0

1ðq;uÞ; ð15Þ

since the rescaling method is only applicable for non-

negative concentration fields. If no orthogonal extension is

applied between time steps, the mass grows linearly. Even

after the solution has reached its steady state and gradients

are no longer present, the mass continues to grow, which

eventually leads to instabilities. Using extension, but no rescal-

ing, the mass approaches an asymptotic level as the solution

reaches its steady state. Using both extension and rescaling, the

mass remains constant to machine precision for all times.

Simulation of diffusion of membrane proteins in
the endoplasmic reticulum

The simulation method presented so far is used to simulate

diffusion in the complex-shaped membrane of the ER cor-

responding to experiments described in Methods. The initial

condition consists of a uniform concentration on the ER mem-

brane with the exception of the bleached region, where the

concentration is set to zero. More accurate initial conditions

(25,26) can easily be used if they are experimentally

available. The obtained simulated fluorescence recovery

curve is then used to determine geometry-corrected molec-

ular diffusion constants of membranemolecules (seeMethods,

this article, and (13)). Fig. 3 b shows the simulated FRAP

curves in the lumen and on the membrane of the same ER

sample for the same computational diffusion constant. The

recovery half-times are 111 for the luminal protein and 485

for the membrane-bound protein.

The narrow-band level set method imposes a scale

constraint on the geometry that can be resolved: The bands

from two opposite sides of the surface must never overlap,

i.e., the smallest feature of the surface must be at least

2k in diameter. In the present simulations, this amounts to

2k ¼ 6h ¼ 300 nm, which is more than 10 times larger than

the curvature radius limit for biological membranes. To

avoid underresolved regions, the level function c is thus

low-pass filtered before the simulations. This makes sense as

the wavelength of the light used to record the geometry is

larger (488 nm; see Methods).

Since only the geometry in the vicinity of the bleached

ROI influences the fluorescence recovery, an ER cut-out

around the bleached region is considered in the simulations.

The finite reservoir of the rest of the ER is modeled using

Dirichlet boundary conditions. Fig. 4 shows the visualized

concentration field from a sample simulation at different

times after bleaching.

The influence of membrane geometry on
FRAP experiments

The simulations are validated by comparing them to FRAP

experiments in the same ER shapes. The molecular diffusion

constant of GFP-labeled tsO45-VSV-G is determined in

Vero cells as outlined in Methods. From four samples we

find Deff ¼ 0.166 0.07 mm2/s at 40�C. This is a factor of 2.7
lower than the previously published value of 0.45 6 0.03

mm2/s (27), which was obtained in COS-7 cells without

shape correction. Fig. 5 a shows three fits of simulated FRAP

curves to experimental data. Clearly, the simulation fails to

explain the data in one of the cases. Looking at the mem-

brane geometry of this sample reveals an overhanging mem-

brane section (Fig. 6). At early times, lateral recovery could

thus be occluded in the experiment, whereas the simulation

always integrates the concentration over the whole mem-

brane surface. In addition, the biochemistry could be dif-

ferent in this more lamellar part of the ER membrane.

FIGURE 3 (a) Conservation of mass. Evolution of

the total surfactant mass on a sphere of radius 1 and

intrinsic diffusion constant D ¼ 1. The diffusion

operator is evaluated on a support of 3 3 3 3 3

particles in a narrow band of half-width k¼ 3h. For the

cases marked by circles, the solution is extended to

a larger band of k¼ 4.5h after each time step, using the

second-order GMM extension method. No extension

was applied to the squares case. A Euler scheme is used

with a time step of dt ¼ 10�4 until final time 0.3. The

open symbols mark the cases of no rescaling, and the

solid symbols indicate the rescaled solution at each

time step (see main text). (b) Comparison of FRAP in

the ER lumen and on the membrane. Comparison of

FRAP curves in the lumen (dashed) and on the membrane (solid) of the same ER sample (compare to Fig. 4). Both curves correspond to the same diffusion

constantDsim¼ 1.0 and are normalized by their prebleach value. The recovery half-time (in simulation time units) is 111 for the luminal protein and 485 for the

membrane protein, indicating that recovery in the lumen is significantly faster than recovery on the membrane. All curves are normalized by their asymptotic

value to allow comparison.
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To estimate the geometry-induced uncertainty in FRAP

experiments, we perform simulations in the membrane of ER

samples reconstructed from different cells. The same com-

putational diffusion constant of Dsim ¼ 1.0 is used in all

instances, and all simulation parameters are kept constant.

The only source of variation are the geometrical differences

in the membranes. As shown in Fig. 5 b, the recovery half-

times vary by a factor of 1.8, which can be explained by

membrane curvature effects (5).

DISCUSSION

We have presented a deterministic particle method to

simulate anisotropic, inhomogeneous diffusion on complex

surfaces. We have demonstrated the method to be second-

order accurate in space and time, and have successfully

applied it to simulations of diffusion of an integral membrane

protein in the ER membrane of live cells after confocal

microscopy and three-dimensional reconstruction (13). The

method is efficiently parallelized with linear computational

cost and is well-suited for biological applications such as the

analysis of FRAP data.

The present implicit formulation of the complex ER mem-

brane surface as a level set, and its discretization using par-

ticles, hasmany advantages over traditional grid-basedmethods.

It can handle surfaces of arbitrary complexity at constant

computational cost. Furthermore, it allows us to use the em-

bedding approach (14) with the usual discretization schemes

and particle interaction algorithms, because the metric of the

surface is completely contained in the mapped operator.

Our approach is limited by the resolution of light

microscopy and the computational resolution limit imposed

by the banded level set formulation. The latter limitation can

be addressed using multiresolution particle methods de-

veloped for convection-diffusion equations (28). Future work

involves extensions of these methods to surfaces of complex

shape. The microscopy resolution limit implies that suf-

ficiently detailed ER geometries can only be obtained in

peripheral regions of the cell, where the ER is relatively

sparse. The bleached ROI of any FRAP experiment to be

evaluated must be located in well-resolved areas of the

organelle. A further limitation of the method is that it cannot

be applied if the organelle moves or deforms inside the ROI

during the time of a FRAP experiment or between recording

FIGURE 4 Simulation of diffusion in the ER membrane. Solution on the membrane of an in vivo ER geometry at times t ¼ 0 (a), t ¼ 36 (b), t ¼ 216 (c), and

t ¼ 441 (d ). The computational diffusion constant is Dsim ¼ 1.0 and the diffusion operator is supported on 33 33 3 particles in a narrow band of half-width k

¼ 2h and extended to a larger band of k ¼ 3h every time step, using the second-order GMM extension method. An Euler scheme with a time step of 0.025 is

used for the first 20 time steps, then a nine-step STS with a time step of 0.45 is used until the final time 600.0 (simulation time units). The membrane and the

concentration field are discretized using 1.7 million particles. The concentration on the membrane is recovered from the adjacent particles using linear

interpolation along interparticle lines and visualized as a green surface color density. The three lines indicate the 25%, 50%, and 75% recovery iso-lines.
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the z-stack and performing the FRAP experiment. Ongoing

work is concerned with extending the simulation method to

cases of moving surfaces.

The presented simulations of FRAP in different ER

membranes have shown that diffusion of membrane

molecules is significantly different from diffusion of soluble

components in the ER lumen. We find that the recovery half-

times differ by a factor of ;4, if the same ER shape and the

same molecular diffusion constant are used for both cases.

Moreover, the geometry-induced variation in recovery half-

times is a factor of 1.8. As expected, this is less than the

factor of 2.5 found for soluble molecules in the ER lumen

(13). Using the present method, a geometry-corrected

molecular diffusion constant of 0.16 6 0.07 mm2/s is found
for tsO45-VSV-G at the nonpermissive temperature of 40�C.
What do these findings mean? First, we demonstrated that

FRAP models derived for planar membranes will yield

incorrect molecular diffusion constants if applied to curved

membranes. The factor of ;2 can be explained by purely

geometric effects. Moreover, diffusion will appear aniso-

tropic if the membrane has different curvatures in different

directions (7). Isotropic models are thus only valid when one

takes the real membrane geometry in the ROI into account.

Membrane FRAP models should not be applied to luminal

proteins and vice versa, as the apparent diffusion constants

differ by a factor of ;4.

We envision that the present computational technique will

find applicability in several other areas of cell biology for

studies of diffusion on curved surfaces. In this context, the

software developed in this work is freely available from the

authors.

The authors gratefully acknowledge many enlightening discussions with

Michael Bergdorf, Institute of Computational Science, ETH Zürich.
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