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Keeping Their Options Open: Acute versus Persistent Infections
S. Furukawa,1,2 S. L. Kuchma,1 and G. A. O’Toole1*

Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire,1

and Department of Food Science and Technology, Nihon University, Fujisawa-Shi, Japan2

Among the reasons for the growing interest in studying bio-
film formation is the role of these microbial communities in
chronic infections (24, 38). Such biofilm-like chronic infections
include the respiratory infections caused by Pseudomonas
aeruginosa in the cystic fibrosis (CF) lung (7), relapsing otitis
media primarily caused by Haemophilus influenzae (41), and
staphylococcal lesions in endocarditis (17). It is also important
to note, however, that all of these microbes can also contribute
to acute infections in human patients and, in fact, are among
the most feared nosocomial pathogens (48). So, how do these
organisms cause acute infections in some settings and chronic
infections in others? A series of recent papers suggests that
bacteria can choose which strategy they employ, either causing
an acute infection, growing and spreading rapidly in the host,
or, alternatively, adopting a chronic, biofilm infection strategy.
While replication in the context of the chronic infection is
likely less rapid, bacteria involved in these long-term infections
can persist for extended periods of time and continue to shed
planktonic (e.g., free-swimming) bacteria, as well as biologi-
cally active molecules, into the host during the course of the
persistent infection (69).

Establishing that acute and chronic infections are distinct
processes requires we demonstrate that these are really two
different strategies employed by microbes when interacting
with a host. That is, do organisms differ in the molecular
mechanisms utilized to cause acute versus chronic infections?
Furthermore, a single microbe must presumably have the ca-
pability to cause both acute and persistent infections.

Take P. aeruginosa as an example. In some cases, P. aerugi-
nosa is capable of causing pneumonia, breaking down lung
defenses and disseminating in the bloodstream, leading to
death of a patient within hours or days. This organism has a
type III secretion system (TTSS) and produces a variety of
extracellular toxins that are thought to play a role in acute
infections such as pneumonia (4, 22, 35). For example, the
TTSS of P. aeruginosa has been shown recently to play a role in
survival of P. aeruginosa in the blood and in systemic dissem-
ination (57). Similarly, an exsA mutant of P. aeruginosa, which
is defective for expression of the TTSS, and a strain lacking the
TTSS effectors ExoT and ExoU were defective in causing acute
corneal disease (32). The TTSS has also been characterized by
its role in rapidly killing cultured cells in vitro (4). In addition

to its TTSS, P. aeruginosa produces a variety of other virulence
factors required for pathogenesis, as shown in acute models of
burn and corneal infections in mice, in the invertebrate Cae-
norhabditis elegans, and in the plant model Arabidopsis thali-
ana, including quorum-sensing molecules (52, 53, 70), elastase
(21, 35), hydrogen cyanide (20, 43, 44), type IV pili (TFP) (71),
and lipopolysaccharide (42, 67). Historically, studies of patho-
genesis have focused on virulence factors required for acute-
infection pathways.

Again using P. aeruginosa as an example, this same organism
capable of causing the acute infections described above also
participates in a chronic infection of the lungs of CF patients.
This chronic infection can last for decades, but P. aeruginosa
rarely if ever reaches the bloodstream, indicating that the acute
versus chronic infections caused by this microbe may be quite
distinct. In contrast to acute infections, chronic infections have
received less attention, likely due to more-complex animal
models and difficulty in modeling these infections in vitro.

The concept that bacterial biofilm growth may be responsi-
ble for some chronic in vivo infections has gained recent sup-
port (13, 15, 19). What evidence supports the idea that biofilms
are analogous to chronic infections? At this stage, the data are
intriguing but in most cases not definitive. For example, there
are few well-defined markers of in vitro biofilm growth that can
be correlated with putative in vivo biofilm-like infections.
Chronic infection of the CF lung by P. aeruginosa has been
postulated to be a biofilm-type infection. Singh and colleagues
(51) reported synthesis profiles of quorum-sensing signals in
CF sputum samples that were consistent with in vitro profiles
of these molecules observed for biofilm rather than planktonic
bacteria. Furthermore, images of polysaccharide-encased bac-
terial clusters in CF sputum are also consistent with the idea
that P. aeruginosa exists in a biofilm or biofilm-like state in the
CF lung (51). Another key trait associated with biofilms is their
resistance to antibiotics (34). This resistance phenotype is
shared by P. aeruginosa in the CF lung; this microbe is noto-
rious for the fact that it cannot be eliminated from the CF lung
by use of current antibiotic therapies (10).

Studies of H. influenzae with otitis media model systems also
support a role for a biofilm existence for these microbes, in-
cluding direct microscopic visualization of bacterial communi-
ties in the middle ear and recalcitrance to antibiotic treatment
(40, 41). Similarly, staphylococcal endocarditis is associated
with compact bacterial cell masses surrounded by a matrix and
the ability to withstand extended antibiotic treatment (38).

Biofilms have been conclusively demonstrated to form on a
variety of medical and surgical implants; like other biofilm
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infections, these implant-associated microbes are resistant to
treatment by standard antibiotic therapy (18). While additional
studies will be needed to further build the case for biofilm-
based chronic infections, a picture is emerging where, for at
least a subset of persistent infectious diseases, bacteria display
phenotypes typically associated with biofilm communities.

MAKING A CHOICE

How does a microbe like P. aeruginosa make a decision
regarding causing acute versus chronic disease? Several recent
studies provide some clues as to how P. aeruginosa makes this
complex choice (Fig. 1).

The model outlined in Fig. 1 is quite simplistic, which is due
in part to the fact that we understand very little about the
processes that may allow an organism to express factors re-
quired for acute versus chronic infections. In the following
sections, our discussion largely uses P. aeruginosa as a para-
digm of an organism capable of causing both acute and chronic
infections.

What might influence expression of factors required for an
acute- versus a chronic-infection pathway? For example, the
route of entry for the infection may impact whether an acute or
chronic infection might be initiated. It is possible that the
initiation of an implant-based infection (versus an acute infec-
tion) could be the consequence of the response of a microbe to
particular signals upon gaining entry to the patient via the
catheter insertion site. Similarly, as mentioned above, P.
aeruginosa appears to be in a biofilm-like mode of growth when
growing in the CF lung. This growth strategy could be a result
of the particular environmental signals and/or host factors en-
countered in the lungs of patients afflicted with this disease.
Other factors, such as immune status of the host, tissue integ-
rity, or patient nutrition, might also impact whether microbes
initiate an acute versus a chronic infection.

EVIDENCE FOR REGULATING THE CHOICE

Several recent papers report the identification of regulators
in P. aeruginosa that may impact whether an organism engages
in the acute- versus chronic-disease process. We discuss as-
pects of these reports below in the context of how they might
contribute to the modulation of disease by P. aeruginosa.

Goodman and colleagues identified RetS (PA4856) based
on the observation that strains lacking the retS gene made
enhanced biofilms compared to the wild-type parent (23). RetS
has an unusual structure in that it is predicted to be a protein
with seven transmembrane domains at its amino terminus,
followed by a sensor kinase-like histidine kinase and ATPase
domains in its C terminus, as well as two predicted response
regulator (RR)-like receiver domains. Goodman et al. showed
that inactivation of retS resulted in the increased ability to form
biofilms on both an abiotic surface (glass) and a biotic surface
(cultured hamster cells). Interestingly, despite the ability of the
retS mutant to adhere to this biotic surface, the mutant P.
aeruginosa was less able to damage the hamster cells to which
it adhered. Furthermore, the retS mutant strain was also de-
fective for virulence in a mouse model of acute pneumonia
(23).

Goodman et al. investigated the genes in P. aeruginosa that
are regulated by RetS by using DNA microarrays (23). They
found that, in the RetS-deficient strain, the expression of genes
required to produce the TTSS (necessary for acute infection)
was reduced by as much as 25-fold. The expression levels of
other genes associated with acute infections were also reduced,
including genes required to produce type IV pili and those that
encode toxins such as LipA and ToxA. In contrast, P. aerugi-
nosa genes involved in the formation of the sugar-rich matrix
of a biofilm, psl and pel genes (19a, 19b, 28a, 34a), were mark-
edly up-regulated in the retS mutant bacteria. These data sug-
gest that RetS usually represses the genes needed to make a
biofilm but is required for inducing the expression of the fac-
tors necessary for an acute infection.

Finally, Goodman et al. used transposon mutagenesis in a
suppressor screen and identified GacS, its cognate response
regulator GacA, and the GacA-dependent small, untranslated
RNA rsmZ as additional components of the RetS signaling
network. GacA has been shown to play a role in acute infection
with several model systems (11, 43–45). The small RNA rsmZ
modulates RsmA levels by posttranscriptional regulation,
which in turn regulates a variety of virulence factors (9, 25, 39).
Phenotypes of a retS mutant were suppressed by second site
mutations that increase the supply of free RsmA (23). Based
on their findings, the authors proposed the model wherein
during acute infection RetS represses the GacA pathway and
thus down-regulates biofilm formation and up-regulates fac-
tors, such as TTSS, etc., required for acute infections. During
a persistent infection, the GacAS pathway is induced, leading
to increased biofilm formation and lower levels of expression
of acute-infection-related functions. Consistent with their hy-
pothesis, a mutation in gacA is defective for biofilm formation
(37).

Concurrently with the report of Goodman et al., Laskowski
et al. also described the effects of PA4856 on the regulation of
the TTSS and virulence of P. aeruginosa (31). Working with
strain PA103, these investigators showed that deletion of the

FIG. 1. Acute versus persistent infections. In response to unchar-
acterized signals, bacteria either initiate an acute infection utilizing
factors like TTSS and various toxins or establish a chronic, biofilm-like
infection, wherein bacterial cells (green) are surrounded by a matrix
(gray), displaying properties, like antibiotic resistance, typically asso-
ciated with biofilms.
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gene they called rtsM results in loss of expression of the TTSS
effectors exoU and exoT. Furthermore, loss of RtsM/RetS
(PA4856) function in strain PA103 resulted in an �50 to 75%
decrease in cytotoxicity in vitro when tested against epithelial
cells and decreased virulence in an acute-infection model. This
virulence phenotype was also observed by Goodman et al. (23)
for strain PAK, lacking PA4856 function, thereby showing in-
dependently the role of this sensor kinase response regulator
in the control of virulence gene expression. Interestingly, over-
expression of the regulators ExsA and Vfr rescued the TTSS
defect of rtsM in regards to effector production, suggesting that
RtsM works upstream of these known regulators of TTSS gene
expression.

The biofilm formation phenotype of the PA103 rtsM mutant
was not assessed on an abiotic surface; however, Laskowski et
al. observed no difference between the wild type and the rtsM
mutant in regards to colonizing epithelial cells. This finding is
in contrast to the observation of Goodman et al. that loss of
rtsM or retS in the PAK strain resulted in an �3-fold increase
in colonization of epithelial cells in vitro. Perhaps this discrep-
ancy is due to differences in the strains or the epithelial cells
used in their respective assays.

As described above, a mutation in rtsM or retS results in a
hyper-biofilm formation phenotype (at least in the PAK strain)
and decreased expression of genes of the TTSS. Given the
observation that expression of the global regulator Vfr can
bypass the expression defect of the TTSS genes in an rtsM or a
retS mutant background, we would predict that overexpression
of Vfr in an rtsM or a retS mutant might also lead to decreased
biofilm formation, thereby further confirming the reciprocal
regulation of TTSS gene expression and biofilm formation.

Further building the case for bacteria choosing between
acute and chronic infection, Kuchma and colleagues reported
that the SadARS three-component system of P. aeruginosa
participates in both the maturation of a biofilm and controlling
expression of TTSS genes (29). The organization of the
sadARS locus is reminiscent of the bvg locus of Bordetella
pertussis (2, 3), and the respective genes in these loci share 25
to 57% amino acid sequence identity. These investigators
found that nonpolar mutations in any of the sadARS genes
resulted in a mature biofilm with an altered mature structure
but that these mutations did not confer defects in early biofilm
formation, growth, swimming, or twitching motility. The sadARS
locus is comprised of genes coding for a putative sensor histi-
dine kinase (SadS, PA3946) and two RRs (SadA and SadR).
The RR protein SadR (PA3947) has a predicted CheY-like
phospho-receiver domain as well as an EAL domain, which is
associated with a cyclic diguanylate phosphodiesterase activity
(55). The second RR protein, SadA (PA3948), is predicted to
have a CheY-like phospho-receiver domain and helix-turn-
helix DNA-binding domain and therefore appears to have
properties more like those of classical RR proteins.

Kuchma et al. used a DNA microarray approach to identify
downstream targets of the SadARS system, and they discov-
ered that expression of the TTSS is negatively regulated by
SadARS and that this negative regulation is observed only with
biofilm-grown bacteria. Furthermore, mutations in TTSS reg-
ulatory proteins, effectors, or structural components of the
secretion system all enhanced biofilm formation (29). These
data strongly suggest that repression of the TTSS genes by

SadARS under biofilm-forming conditions helps facilitate for-
mation of these surface-attached communities and that, more-
over, expression of the TTSS may actually be detrimental to
biofilm formation. Finally, recall that any mutation in the sa-
dARS system alters formation of the mature biofilm but that
early biofilm development, including formation of microcolo-
nies, is unaffected in these mutants (29). Taken together, these
data suggest that any commitment to an acute versus persis-
tence pathway may occur downstream of the formation of
microcolonies.

Concurrent with the study of Kuchma et al., Kulasekara and
colleagues identified a signal transduction system that regu-
lates expression of the cupB and cupC loci in P. aeruginosa
PAK (30). This signal transduction system is comprised of
proteins designated RocS1, RocR, and RocA1. Genes coding
for the Roc system and the SadARS system are at the same
genetic loci (PA3946 to PA3948). The rocS1 (sadS, PA3946)
gene codes for a sensor histidine kinase, and the rocA1 (sadA,
PA3948) and rocR (sadR, PA3947) genes code for RRs. The
rocARS genes were identified because some mutations in this
locus resulted in up-regulation of cupB-lacZ and cupC-lacZ
transcriptional fusions (30). Further studies confirmed that the
RocARS (SadARS) system regulates the expression of the cup
loci: RocA1 and RocS1 appear to activate cup gene expression
and RocR1 to repress expression of the cup loci. Genetic
studies indicated that cupA, cupB, and cupC all contribute to
pellicle formation at an air-liquid interface (30), and the cupA
locus has been shown to play a role in biofilm formation on
abiotic surfaces (56). Taken together with the work of Kuchma
and colleagues (29), these data suggest that the RocARS
(SadARS) system controls the expression of several factors
that positively and negatively contribute to biofilm formation
and to acute infection. The complex nature of this unusual
three-component system may allow the cells to modulate the
choice between an acute- and a persistent-infection pathway by
integrating a variety of environmental inputs.

Additional evidence for differential expression of factors
required for acute versus persistent infection comes from
Bleves and colleagues (6), who reported that a quorum-sensing
system of P. aeruginosa negatively regulates the TTSS. In par-
ticular, a mutation in the rhlI gene results in early expression of
the TTSS and, furthermore, RhlR plus C4-homoserine lactone
(C4HSL) is required to repress TTSS gene expression. Inter-
estingly, Singh and colleagues showed that for in vitro-grown
biofilms and CF sputum samples, the ratio of the synthesis of
C4HSL to C12HSL increases relative to the ratio of these
molecules in planktonic cultures (51). Therefore, growth in a
persistent biofilm would presumably lead to down-regulation
of TTSS genes. This phenomenon has been observed for some
P. aeruginosa strains isolated from chronically infected CF pa-
tients (49). Roy-Burman and colleagues also showed that ex-
pression of the TTSS increased the severity of acute disease
and that, furthermore, strains of P. aeruginosa from chronic
infections were less likely to express TTSS genes (47).

Another recent study also links TTSS and multicellular be-
havior but in a very different fashion. Yap and colleagues
reported that the TTSS of the plant pathogen Erwinia chrysan-
themi is required for the formation of pellicles (66). They
postulate that the needle-like structure of the TTSS could act
as a structural component of the matrix, stabilizing these mul-
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ticellular aggregates (66). In contrast to the role of this secre-
tion system on pellicle formation, mutations in the TTSS had
no apparent effect on the formation of biofilms on an abiotic
surface. While the mechanism by which E. chrysanthemi uti-
lizes its TTSS to form a pellicle must still be resolved, another
example linking TTSS to the multicellular behavior of bacteria
is intriguing and further emphasizes the need for bacterial cells
to coordinately regulate their myriad surface factors.

WHAT MOLECULAR MECHANISMS INTEGRATE
EXPRESSION OF GENES REQUIRED FOR ACUTE

VERSUS PERSISTENT INFECTIONS?

A number of regulatory genes have been implicated in con-
trolling expression of TTSS and biofilm formation. How might
these regulatory pathways intersect in P. aeruginosa? One po-
tential model for the coordinate regulation of virulence gene
expression and biofilm formation is proposed in Fig. 2.

Laskowski et al. showed that the TTSS-mediated virulence
defects of the rtsM or retS mutant could be bypassed by ex-
pressing ExsA and Vfr (31), and it had been shown previously
that ExsA could bypass the expression defect observed for the
TTSS genes in a vfr mutant (64). Taken together, these genetic
data suggest that ExsA functions downstream of RtsM/RetS

and Vfr. Vfr has been shown to regulate exotoxin A and pro-
tease production (61), up-regulation of lasR expression (1),
repression of the flagellar regulator fleQ (16), TFP biogenesis
(5), and the expression of genes required for the TTSS (64).
Expression of the TTSS genes also requires the adenylate
cyclase CyaB (54), which is likely involved in production of the
cyclic AMP cofactor of Vfr. These data suggest that Vfr may
help coordinate the expression of genes required for biofilm
formation (TFP, flagellar motility) and virulence (exotoxin A,
protease, TTSS). Given that Vfr appears to be upstream of
ExsA in terms of a regulatory cascade and that ExsA has not
been shown to regulate any genes required for biofilm forma-
tion, it is possible that Vfr is one point wherein the acute-
infection versus chronic-persistence pathways diverge.

Recently, Whitchurch and colleagues (62) reported the
identification of FimL (PA1822), a protein required for TFP
production and TTSS gene expression. The decrease in expres-
sion of TFP and TTSS genes in strains lacking a functional
FimL is likely indirect and due to the decreased expression of
vfr in a fimL mutant (62). FimL has sequence similarity to
ChpA, a protein in P. aeruginosa identified as important for
twitching motility (63). The N terminus of ChpA contains
putative histidine phosphotransfer (Hpt) and threonine phos-
photransfer (Tpt) domains (63). Interestingly, the key residues

FIG. 2. A model for the coordinate regulation of factors required for acute infection and chronic persistence. The model shown here is based
largely on genetic and in vivo regulatory studies performed with P. aeruginosa strains PA14, PAO1, PAK, and PA103. The functions boxed in green
are involved primarily in biofilm formation and/or chronic persistence. The factors in the red boxes play a role in acute infection. Arrows indicate
experimentally demonstrated genetic interactions. Abbreviations: EPS, exopolysaccharide; Cup, cupB and cupC genes; ToxA, endotoxin A; QS,
quorum-sensing systems.
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of these domains are replaced with glutamine residues in
FimL; Whitchurch et al. proposed that FimL acts as a com-
petitive inhibitor of ChpA. Therefore, ChpA and FimL may act
at the same step in this pathway. Given that FimL can regulate
Vfr, we placed FimL (and ChpA) downstream of the RetS/
RtsM system but upstream of Vfr.

Suppressor analysis studies by Goodman et al. strongly sug-
gest that the GacA/GacS-RsmZ/RsmA system works down-
stream of RetS/RtsM in reciprocally regulating exopolysaccha-
ride production and expression of virulence factors, including
TTSS and exotoxin A (23). Their data also indicate that the
positive effects of RetS/RtsM are mediated through GacAS via
Vfr; however, repression of exopolysaccharide production is
likely Vfr independent (23). The model in Fig. 2 shows GacAS
and FimL/ChpA as part of parallel pathways. It is possible that
GacAS and FimL/ChpA are in the same pathway, but there are
currently no data to differentiate between these two possibili-
ties.

How the SadARS/RocARS systems fit into the overall reg-
ulatory cascade shown in Fig. 2 is unclear. Kulasekara et al.
demonstrated that this regulatory system controls the expres-
sion of the cupB and cupC loci (30); however, it is not clear
whether this regulation is via GacAS, FimL/ChpA, or Vfr. In P.
aeruginosa strain PA14, mutations in the sadARS loci lead to
altered expression of the TTSS genes. Array studies using
sadARS mutants indicate that SadARS contributes to the tran-
scriptional regulation of ExsA but has no apparent role in the
modulation of GacAS, Vfr, or the other regulators shown in
Fig. 2 (29).

HOW DO BACTERIA CHOOSE?

In deciding between acute and persistent infections, what
environmental cues do bacteria evaluate? It is clear that this is
the next key question in understanding this aspect of bacterial
pathogenesis. It is likely that multiple signals are involved in
this decision-making process and that they are related to the
metabolism of the organism, for example, the availability of
iron and other nutrients or aerobic versus anaerobic conditions
(50, 65). The nature and identity of such signals are still a
wide-open question.

One must also consider the possibility that cells may be
“primed” for a certain route of infection. For example, if
planktonically derived P. aeruginosa initiates an infection, is it
more likely to cause an acute infection? Conversely, is biofilm-
grown P. aeruginosa more likely to initiate chronic infections?
The physiological state of the infecting organisms may contrib-
ute to their infectious fate in vivo, as has been argued for Vibrio
cholerae. The fact that this organism can form biofilms on
plankton is thought to contribute to disease, based on the
increased population of microbes on these small animals and
the biofilm-associated protection of these microbes from a
variety of environmental stresses, including low pH (12, 26,
27). However, it is also important to consider that the infecting
organisms will rapidly adapt their physiology to the environ-
ment that they encounter in the host, independent of their
environmental reservoir.

ACUTE VERSUS PERSISTENT INFECTIONS

These recent studies suggest that P. aeruginosa has regula-
tory systems for controlling the choice between an acute infec-
tion and persistence (6, 23, 29, 30, 31) and that, furthermore,
expression of functions required for acute infection, such as
the TTSS or toxins, may be incompatible with efficient surface
attachment (28, 29). This concept was first elucidated in studies
by Irie and colleagues (28), who investigated the relationship
between virulence and biofilm formation in the bacterium Bor-
detella bronchiseptica, a microbe that is related to the organism
which causes whooping cough. The BvgAS (Bordetella viru-
lence gene) two-component signal transduction system regu-
lates gene expression among at least three phases of B. bron-
chiseptica growth: a virulent (Bvg�) phase, a nonvirulent
(Bvg�) phase, and an intermediate (Bvgi) phase (33, 36). In
the Bvg� phase, the virulence factors filamentous hemaggluti-
nin (FHA), fimbriae, and the bifunctional adenylate cyclase/
hemolysin (ACY) genes are expressed. In the Bvgi phase, FHA
and fimbriae are expressed, but ACY is not significantly ex-
pressed under these conditions (14). Irie et al. found that B.
bronchiseptica formed biofilms maximally in the Bvgi phase
(28). They further showed that FHA is required for maximal
biofilm formation and ACY inhibits biofilm formation, pre-
sumably via interactions with FHA (68). These data strongly
suggest that not only are functions required for acute infection
and persistence expressed differentially but, furthermore, the
expression of a toxin required for acute infection is actually
incompatible with biofilm formation. As mentioned above, a
similar phenomenon was observed with P. aeruginosa, wherein
mutation of the TTSS, which is required for acute infection,
resulted in increased biofilm formation (29).

A GENERAL PHENOMENON?

Do only gram-negative organisms employ this acute versus
persistence strategy? A recent microarray study by Resch and
colleagues (46) indicates that Staphylococcus aureus may reg-
ulate its acute versus persistent virulence functions in a manner
analogous to P. aeruginosa and B. bronchiseptica. These inves-
tigators noticed that genes coding for toxins, proteases, and
other virulence factors were much more highly expressed in
planktonic cells than in biofilm cells and that no toxins were
expressed at higher levels in biofilm cells than in their plank-
tonic counterparts. These same investigators went on to sug-
gest that nonbiofilm cells (e.g., planktonic cells) would be
much more likely to participate in acute infections (46). While
functional studies are needed to determine if planktonically
expressed virulence factors interfere with biofilm formation by
S. aureus, as is the case for B. bronchiseptica (28) and P. aerugi-
nosa (29), these findings are very suggestive and warrant fur-
ther study. This array study supported an observation made
several years ago that a mutation in agr, a global regulator of
virulence gene expression required for pathogenesis of S. au-
reus (8), results in a strain that displays increased biofilm for-
mation (60). A similar increase in biofilm formation was ob-
served for an agr mutant of Staphylococcus epidermidis both in
vitro and in vivo (58, 59). These data suggest that Agr may
participate in the reciprocal regulation of virulence and biofilm
formation in this important group of gram-positive pathogens.
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CONCLUSIONS AND FUTURE STUDIES

As is often the case, one motivation for writing this minire-
view is to stimulate some thought and discussion on a topic we
find intriguing and exciting. A key take-home message we hope
to convey in this review is the hypothesis that chronic infections
more closely resemble a biofilm growth mode, while acute
infections may more closely resemble planktonic growth. The
studies published to date supporting this hypothesis also allow
us to formulate some testable hypotheses for future work. (i)
Can we identify mutants that are defective for only acute or for
only persistent infections? That is, are these infection pathways
genetically distinct? (ii) Is there incompatibility between fac-
tors required for acute and persistent infections; for example,
does production of the TTSS or certain toxins somehow phys-
ically preclude the cell from efficient biofilm formation, or is
interference at the level of regulation? (iii) Can in vitro biofilm
models serve as surrogates for in vivo chronic infections to help
us better understand mechanisms regulating this potential
acute versus persistent choice? (iv) Can we identify markers to
distinguish between acute and chronic infections in vivo?

At the very least, considering the possibility of distinct path-
ways for acute versus chronic infections may serve as an ex-
perimental framework for designing future studies. In addi-
tion, of course, considering the concept of distinct acute-
versus persistent-infection pathways has obvious clinical impli-
cations. Are different treatment strategies required for these
two infections, or should different antibiotics be used? To
approach these questions and address the possibility of a bio-
film-like persistent state in chronic infections, it is likely that
new models of persistent infections will need to be developed.
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