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ABSTRACT Metal ions play crucial roles in thermal stability and folding kinetics of nucleic acids. For ions (especially multivalent
ions) in the close vicinity of nucleic acid surface, interion correlations and ion-bindingmode fluctuationsmaybe important. Poisson-
Boltzmann theory ignores these effects whereas the recently developed tightly bound ion (TBI) theory explicitly accounts for these
effects. Extensive experimental data demonstrate that the TBI theory gives improved predictions for multivalent ions (e.g., Mg21)
than the Poisson-Boltzmann theory. In this study, we use the TBI theory to investigate how themetal ions affect the folding stability
of B-DNA helices. We quantitatively evaluate the effects of ion concentration, ion size and valence, and helix length on the helix
stability. Moreover, we derive practically useful analytical formulas for the thermodynamic parameters as functions of finite helix
length, ion type, and ion concentration. We find that the helix stability is additive for high ion concentration and long helix and
nonadditive for low ion concentration and short helix. All these results are tested against and supported by extensive experimental
data.

INTRODUCTION

Nucleic acid molecules are highly charged polyanion. In the

folding of nucleic acids, the cations, such as sodium and

magnesium ions, are required to neutralize the negative

charges on the backbones to reduce the repulsive Coulombic

interactions between the phosphates, so that the nucleic acid

molecules can fold into the compact native structures. Ionic

properties, such as ion concentration, charge, and size, play

important roles in determining the stability and folding

kinetics of nucleic acids (1–16).

Helices, which are formed by a train of consecutive

basepairs, constitute the most important components in nucleic

acid structures. Much effort has been devoted to the study of

the helix stability. Most experimental measurements for the

helix thermal stability are for the 1 M Na1 salt condition (16–

23). Our understanding of the helix stability under other ion

conditions, especially in multivalent ion conditions, is quite

limited (24–32). For example, previous studies examined the

Na1 or K1-dependence of the helix melting temperature

(22,33–35), and the folding free energy for DNA helix

formation was extrapolated from the standard 1 M Na1

condition to other Na1 concentration ($0.1 M) (22). These

empirically fitted extrapolations were mainly focused on the

NaCl solution, not for the Mg21 or other multivalent ion

solutions (36–39). On the other hand, extensive experiments

have demonstrated the essential role of Mg21 in nucleic acids

(3–5,10–14). For example, Mg21 ions are found to be much

more effective than Na1 ions in stabilizing the DNA and RNA

helices (36–39). Motivated by the desire to understand

quantitatively the role of Mg21 and other ions in the

stabilization of DNA and RNA helices (40), we investigate

the folding stability of DNA helix of finite length in the Mg21

solution.

There have been two successful polyelectrolyte theories:

the counterion condensation (CC) theory (41–43) and the

Poisson-Boltzmann (PB) theory (44–51). The CC theory

assumes a two-state ion distribution, and assumes a mean

uniform distribution of condensed ions along the polyelec-

trolyte. In addition, the original CC theory is a double-limit

law, i.e., it is for dilute salt solution and for nucleic acids of

infinite length (41,52–54). The PB theory is a mean-field

theory and ignores the interion correlation, which can be

important for multivalent ions (e.g., Mg21). Recently, to

treat the correlations and fluctuations for bound ions, we

developed a tightly bound ion (TBI) model (55). The basic

idea of the model is to separate the tightly bound ions from

the diffusive ions in solution. The model explicitly accounts

for the discrete modes of ion binding and the correlation

between the tightly bound ions, and treat the bulk solvent

ions using the PB. The model has been validated through

extensive comparisons with Monte Carlo simulations. The

TBI model agrees with PB and CC for Na1 ions, of which

the correlational effect is weak, and predicts improved results

for Mg21 (55), which can involve strong correlations.

In this study, the TBI theory is used to compute the helix-

coil transition. The calculated results are validated through

extensive tests against experiments. Based on the TBI model,

we systematically investigate the thermodynamic stability of

oligomeric DNA helices. We examine the dependence on the

helix length and ion concentration for both NaCl and MgCl2
solutions. In addition, we obtain an analytical expression for

the folding stability parameters as a function of the ion con-

centration and the helix length for the NaCl and the MgCl2
solutions.
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THEORY

Thermodynamics

We model the helix as a double-stranded (ds) B-DNA helical structure and

the coil as a single-stranded (ss) helical structure (see the ‘‘Structural models

for dsDNA and ssDNA’’ section in Appendix A). The folding free energy

(helix stability) DGT� for the helix-coil transition is calculated as the

difference between the helix and the coil:

DG�T ¼ G�TðhelixÞ � G�TðcoilÞ: (1)

Here T is the temperature, GT�(helix) and GT�(coil) are the free ener-

gies for the helix and the coil, respectively. DGT� is dependent on the

temperature, the structures of the ds helix and the ss helix, and the solvent

conditions, such as the salt concentration and the cation properties. As an

approximation, we decompose DGT� into two parts: a nonelectrostatic

contribution DGnel
T and an electrostatic contribution DGel

T (32,33,56–60):

DG�T ¼ DG
nel

T 1DG
el

T : (2)

DGnel
T ; which can be called the nonelectrostatic or ‘‘chemical’’ part of

folding free energy, comes from the strong Watson-Crick basepairing and

stacking interactions. We assume that DGnel
T is salt-independent (32,33,56–

60) and evaluate DGnel
T using the nearest neighbor model with the measured

thermodynamic parameters for the base stacks (17–23,61). Considering 1 M

NaCl as the standard salt solution for the measurement of the nearest

neighbor interaction parameters, we can calculate DGnel
T by subtracting DGel

T

from the total folding free energy

DG
nel

T ¼ DG�Tð1 M Na
1 Þ � DG

el

Tð1 M Na
1 Þ: (3)

Here the electrostatic free energy DGel
T (1 M Na1) can be calculated from

the polyelectrolyte theory. The total free energy DGT� (1 M Na1) can be

obtained from the nearest neighbor model using the experimentally

measured thermodynamic parameters (17–23,61):

DGT�ð1 M Na
1 Þ ¼ +

basestacks

ðDH� ð1 MNa
1 Þ

� TDS�ð1 M Na1 ÞÞ; (4)

where DH� (1 M Na1) and DS� (1 M Na1) are the enthalpy and entropy

parameters for the base stacks in the helix at 1 M NaCl, respectively. As an

approximation, we neglect DCp, the heat capacity difference between helix

and coil (62–68), so we can treat DH� (1 M Na1) and DS� (1 M Na1) as

temperature-independent constants. Such approximation is valid if the

temperature is not too far away from 37�C (22,64–68).

With DGel
T calculated from the polyelectrolyte theory and DGnel

T

determined from Eq. 3, we can compute the folding free energy for any

given NaCl or MgCl2 concentration and temperature T:

DG�T ¼ DG
nel

T 1DG
el

T ðNa
1 jMg

21 Þ ¼ DG�Tð1 M Na
1 Þ

1 ½DGel

TðNa
1 jMg

21 Þ � DG
el

Tð1 M Na
1 Þ�: (5)

Here Na1jMg21 denotes a pure NaCl or MgCl2 solution.

For a given strand concentration CS, the melting temperature Tm for

helix-coil transition can also be obtained from the folding free energy DGT�
(22,68):

DG�T � RT lnCS ¼ 0 at T ¼ Tm; (6)

where R is the gas constant (¼1.987 cal/K/mol) and CS is replaced by CS/4

for non-self-complementary sequence.

Central to the calculation of the folding stability (free energy) is the

computation of the electrostatic free energy DGel
T : In this study, to account

for the correlation and fluctuation effect for the bound ions, we use the

recently developed TBI theory to compute DGel
T : In the next section, we

briefly summarize the TBI theory. Detailed discussion about the TBI theory

can be found in Tan and Chen (55).

Summary of the tightly bound ion model

In the tightly bound ion (TBI) model, ions around a polyelectrolyte are

classified into two types: the (strongly correlated) tightly bound ions and the

(weakly correlated) diffusively bound ions, and the space around the nucleic

acid can be correspondingly divided into the tightly bound region and the

diffusively bound region, respectively. The rationale to distinguish the two

types of ions (and the two types of spatial regions) is to treat them differently.

For the diffusive ions, we can use PB. But for the tightly bound ions, we need

a separate treatment to account for the correlations.

The strong correlation between the ions are characterized by the

following two conditions:

a), Strong electrostatic correlation is characterized by a large Coulomb

correlation parameter G(r) at position r:

GðrÞ ¼ ðzqÞ2

eawsðrÞkBT
$ Gc; (7)

where G(r) is the local correlation parameter, zq is the charge of the

counterion (z is the valency of counterions and q is the proton charge), e is

the dielectric constant of the solvent, and aws(r) is the Wigner-Seitz radius

given by the cation concentration c(r) in excess of the bulk concentration c0

(69):

4p

3
½awsðrÞ�3½cðrÞ � c

0� ¼ 1: (8)

We choose Gc to be 2.6, the critical value for the gas-liquid transition to

occur in an ionic system. Physically, for G $ Gc, the Coulomb correlation is

so strong that the charged system starts to exhibit liquid-like local order,

whereas for G, Gc, the system is weakly correlated and is gaseous (70–72).

b), Strong excluded volume correlation is characterized by a small

interion distance d

d ¼ 2aws # 2ðrc 1DrÞ; (9)

where rc is the ion radius, Dr is the mean displacement of ions fluctuated

from their equilibrium positions, and 2(aws � Dr) is the closest distance

between two ions before they overlap. According to Lindemann’s melting

theory, we choose Dr=d ’ 0:1 as the melting point for the correlated

structure (73–75).

In the above analysis, we have implicitly assumed two types of dis-

tinguishable correlational effects: the ion-ion correlations that exist in bulk

solvent (without the polyanionic nucleic acid) and the nucleic acid-induced

correlations between the (bound) ions. The TBI model treats the second type

correlational effects. Therefore, in the above equations, we use the excess

ion concentration c(r) � c0 rather than the local concentration c(r) in an

attempt to account for the ‘‘excess’’ correlational effect induced by the

nucleic acid for the bound ions. It is important to note that the use of the

excess ion concentration is a rather crude approximation because, rigorously

speaking, the above two types correlational effects are inseparable.

Ions that satisfy either of the above two correlation criteria (Eqs. 7 and 9)

are classified as the tightly bound ions. The key to determine the tightly

bound region is to obtain the ion concentration c(r). As a crude approxi-

mation, we calculate c(r) through the nonlinear PB equation

= � e0e=c ¼ �4p rf 1 +
a

zaqcaðrÞ
� �

; (10)

caðrÞ ¼ c0

a
e�zaqcðrÞ=kBT

: (11)

Here, a denotes the ion species, zaq is the charge of the ion, ca
0 is the

bulk ion concentration. rf is the charge density of the fixed charges, e0 is the

permittivity of free space, and c(r) is the electrostatic potential at r. We have

developed a three-dimensional finite-difference algorithm to numerically

solve nonlinear PB for c(r) and c(r) (55). From c(r), the tightly bound

region is quantitatively and unambiguously defined. In Fig. 1, we show
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examples of the tightly bound regions around a ssDNA and a dsDNA helix

in a Mg21 solution.

For a N-bp double-stranded nucleic acid molecule, there are 2N

phosphates. We divide the whole tightly bound region into 2N cells, each

around a phosphate. In a cell, say, the i-th cell, there can exist mi ¼ 0, 1, 2. . .
tightly bound ions. Each possible set of the 2N numbers {m1, m2, . . . , m2N}

defines a binding mode. There exist a large number of such binding modes.

For example, if we allow at most two ions in each cell, there would be 32N

modes for the tightly bound ions. The total partition function Z is given by

the sum over all the possible binding modes M:

Z ¼ +
M

ZM; (12)

where ZM is the partition function for a given binding mode M.

How to compute ZM for a given binding mode M? For a mode of Nb

tightly bound ions and Nd diffusively bound ions, we use Ri (i ¼ 1, 2, . . . ,

Nb) and rj(j¼ 1, 2, . . . , Nd) to denote the coordinates of the i-th tightly bound

ion and the j-th diffusive ion. The total interaction energy U(R, r) of the

system for a given ion configuration ðR; rÞ ¼ ðR1;R2; . . . ;RNb
; r1; r2; . . . ;

rNd
Þ can be decomposed as three parts:

UðR; rÞ ¼ UbðRÞ1UintðR; rÞ1UsðR; rÞ;
UbðRÞ ¼ the interaction between the charges

inside the tightly bound region ðthe tightly

bound ions and the phosphate chargesÞ;
UsðR; rÞ ¼ the interaction between the diffusive ions;

UintðR; rÞ ¼ the interaction between the diffusive ions and

the charges inside the tightly bound region:

Then, ZM can be given by the following configurational integral (55)

ZM ¼ 1

ðN1 � NbÞ!
1

N�!

Z
VR

YNb

i¼1

dRi

Z
Vr

YNd

j¼1

drje
�UðR;rÞ=kBT

;

(13)

where N1 and N� are the total numbers of the cations and of the anions,

respectively. In the above integral, for a given mode, Ri can distribute within

the volume of the respective tightly bound cell whereas rj can distribute in

the volume of the bulk solution. VR denotes the tightly bound region.

The integration for Ri of the i-th tightly bound ion is over the respective

tightly bound cell. Vr denotes the region for the diffusive ions. The

integration for rj of the j-th diffusive ion is over the entire volume of the bulk

solvent. Averaging over the possible ion distributions gives the free energies

DGb and DGd for the tightly bound and for the diffusive ions, respectively

(55):

e
�DGb=kBT ¼ Æe�Ub=kBTæ ¼

R QNb

i¼1

dRie
�Ub=kBT

R QNb

i¼1

dRi

; (14)

e
�DGd=kBT ¼ Æe�ðUint 1UsÞ=kBTæ ¼

Z YNd

j¼1

drj

V
e
�ðUint 1UsÞ=kBT

: (15)

Strictly speaking, for a given mode M, the free energy DGd of diffusive

ions is dependent on the spatial distribution R of the tightly bound ions in the

tightly bound cells. However, assuming the dependence of DGd on the

tightly bound ions is mainly through the net tightly bound charge, which is

fixed for a given mode, we can ignore the R-dependence of DGd. In practice,

we approximate DGd by DGdðRÞ, where R is the mean value of R.

The decoupling of R and DGd causes the separation of the R and the r
variables in the configurational integral for ZM, resulting in the following

expression for ZM (55):

ZM ¼ Z
ðidÞ N1

V

� �Nb
Z YNb

i¼1

dRi

 !
e
�DGb=kBT

e
�DGd=kBT

: (16)

Here, Z(id) is the partition function for the uniform solution without inserting

the polyelectrolyte. The volume integral
R QNb

i¼1 dRi provides a measure for

the free accessible space for the Nb tightly bound ions. To obtain ZM from

Eq. 16, we need to calculate the free energies DGb and DGd.

To calculate DGb, we note that the electrostatic interaction potential

energy inside the tightly bound region Ub can be written as the sum of all the

possible charge-charge interactions:

Ub ¼ +
i

uiiðRiÞ1 +
i

+
j

uijðRi;RjÞ:

Here uii is the Coulomb interactions between the charges in cell i and uij

is the Coulomb interactions between the charges in cell i and in cell j.

We compute the potential of mean force F1(i) for uii and F2(i, j) for uij:

F1ðiÞ ¼ �kBT lnÆe�uiiðRiÞ=kBTæ;

F2ði; jÞ ¼ �kBT lnÆe�uijðRi ;RjÞ=kBTæ: (17)

Here, the averaging is over the possible positions (Ri, Rj) of the tightly

bound ion(s) in the respective tightly bound cell(s). From F1(i) and F2(i, j),
we have

DGb ’ +
i

F1ðiÞ1 +
ij

F2ði; jÞ; (18)

For DGd, from the mean-field theory for the diffusive ions (76,77), we

have (55):

FIGURE 1 The tightly bound regions around (a) a 13-bp dsDNA and (b) a

13-nt ssDNA in Mg21 solutions at bulk concentration [MgCl2] ¼ 0.1 M. The

red spheres represent the phosphate groups and the green dots represent the

points on the boundaries of the tightly bound regions. The dsDNA and

ssDNA are produced from the grooved primitive model (see Appendix A)

(55,95).
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DGd ¼
1

2

Z
+
a

caðrÞzae½cðrÞ1c9ðrÞ�d3r

1 kBT

Z
+
a

caðrÞln
caðrÞ
c

0

a

� caðrÞ1 c
0

a

� �
d

3r; (19)

where the two integrals correspond to the enthalpic and entropic parts of the

free energy, respectively. c9(r) is the electrostatic potential for the system

without the diffusive salt ions. c9(r) is introduced because c(r) � c9(r) gives

the contribution of the diffusive ions. c(r) and c9(r) are obtained from the

nonlinear PB (Eq. 10) and the Poisson equation (without ions), respectively.

From the above equations, the electrostatic free energy can be computed as

G
el

T ¼ �kBT lnðZ=ZðidÞÞ ¼ �kBT ln+
M

ðZM=Z
ðidÞÞ: (20)

From Eq. 3 for the nonelectrostatic part (DGnel
T ) and Eq. 20 for the

electrostatic part (DGel
T ), we can compute the free energy of a nucleic acid in

the ds helix and the ss helix (coil) state, respectively. The free energy

difference gives the stability of the ds helix structure, or, the folding free

energy for the helix-coil transition.

In summary, the computation of the helix stability with the TBI theory

involves the following steps (55):

First, for a polyanion molecule in salt solution, we solve the nonlinear PB

(NLPB) to obtain the ion distribution c(r) around the molecule, from which

we determine the tightly bound region from Eqs. 7–9. In the nonlinear PB,

we use dielectric constants e ¼ 2 and 78 for the regions inside and out-

side the helix. We assign Debye-Huckel parameter kD ¼ 0 for the ion-

inaccessible region for the ions (helix plus a charge-free layer with the

thickness equal to the cation radius) and a nonzero kD determined by the ion

concentration for the ion-accessible region (55).

Second, using Eq. 17, we compute the pairwise potential of mean force

F1(i) and F2(i, j) for different cells (i and j’s). F1 and F2 are calculated by

averaging over all the possible positions of the tightly bound ions inside the

respective tightly bound cells. The excluded volume effect is accounted for

in the averaging (integration) process.

Third, we enumerate the possible binding modes. For each binding mode

M: a), we solve the NLPB to obtain the distribution of the diffusive ions; b),

from Eq. 19, we calculate the free energy for the diffusive ions and the

interaction between the diffusive ions and the tightly bound ions DGd; c),

with the precalculated F1 and F2, we calculate the free energy of the tightly

bound ions from Eq. 18; d), from Eq. 16, we compute the partition function

ZM for the mode.

Summing over the different binding modes gives the total partition

function Z, from which we can calculate the free energy of the structure (ds

or ss helix).

RESULTS

We investigate the ion-dependence of the folding thermo-

dynamics for the helix-coil transition for a series of oligomeric

DNAs of different lengths and sequences. In Table 1, we list

the sequences, the thermodynamic parameters (DH�, DS�,
DG�) in 1 M NaCl calculated from the nearest neighbor

model, and the nonelectric part of the folding free energy

DGnel
T at T ¼ 37�C. To calculate DGnel

T ; we calculate DGel
T

using the PB theory and the TBI model, respectively. From

DGel
T ; we obtain DGnel

T from Eq. 3. In the following section,

we will discuss the ion-dependence of the thermal stability of

oligomeric DNA helices. Throughout the discussion, we focus

on the comparisons with the available experimental data as

well as with the results from the PB theory.

Salt concentration-dependence of the helix
stability at 37�C

Electrostatic free energies G37
el and DG37

el

The electrostatic contribution to helix stability is quantified

by the electrostatic folding free energy

DG
el

37 ¼ G
el

37ðhelixÞ � G
el

37ðcoilÞ: (21)

First, we calculate the electrostatic part of free energy Gel
37

for the helix (dsDNA) and for the coil (ssDNA), respectively,

as a function of the NaCl or MgCl2 concentration. We show

the results in Fig. 2, a and b, from which we make the fol-

lowing observations.

Higher ion concentration leads to lower electrostatic free

energy Gel
37: This is because higher concentration corre-

sponds to less entropy loss upon binding of the ion and thus

enhances ion-binding. Moreover, the stabilization by higher

ion concentration is more pronounced for ds helix than for ss

helix (coil). As shown in Fig. 2, a and b, Gel
37ðhelixÞ of dsDNA

decreases more rapidly than Gel
37ðcoilÞ of ssDNA (the curves

of black lines are steeper than the ones of gray lines in the

TABLE 1 The DNA sequences used in the calculations

Sequence N (bp)

Experiment

reference

�DH�
(kcal/mol)*

�DS�
(cal/mol.K)*

�DG�37

(kcal/mol)*

�DGnel
37 ðPBÞ

ðkcal=molÞy
�DGnel

37 ðTBIÞ
ðkcal=molÞz

GCAGC 5 – 35.7 98.1 5.3 3.9 4.0

GCATGC 6 (36) 43.6 121.6 5.9 4.3 4.5

CCAAACA 7 (78) 46.8 130.8 6.2 4.2 4.5

GGAATTCC 8 (79–81) 55.2 156.0 6.8 4.5 4.8

GCCAGTTAA 9 (37) 63.1 174.8 8.9 6.3 6.7

ATCGTCTGGA 10 (35,82) 70.5 192.0 11.0 8.0 8.5

CCATTGCTACC 11 (35) 81.1 222.5 12.1 8.8 9.4

CAAAGATTCCTC 12 (83) 87.4 243.8 11.8 8.2 9.0

AGAAAGAGAAGA 12 (84,85) 83.1 231.2 11.4 7.8 8.6

CCAAAGATTCCTC 13 – 95.4 263.7 13.6 9.6 10.4

*The thermodynamic data are calculated at standard state (1 M NaCl) through the nearest-neighbor model with the thermodynamic parameters of SantaLucia (22).
yDGnel

37 ðPBÞ is computed from Eq. 3 with DGel
37 calculated from the Poisson-Boltzmann theory.

zDGnel
37 ðTBIÞ is calculated from Eq. 3 with DGel

37 calculated through the tightly bound ion model. For each of the listed sequences, we have performed the

thermodynamic calculations for both the NaCl and the MgCl2 solutions of different ion concentrations.
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figure). This is because dsDNA is more negatively charged

than ssDNA (see Appendix A for the structures of the dsDNA

and the ssDNA) and the stronger electrostatic effect leads to

more pronounced increase of bound ions for higher salt

concentration. As a result, higher salt concentration leads to a

lower DGel
37 ¼ Gel

37ðhelixÞ � Gel
37ðcoilÞ (see Eq. 1), i.e., higher

salt concentration tends to stabilize the helix.

From Fig. 2 a, we find that PB and TBI give nearly the

same results for the NaCl solution. This is because the

interion correlations are negligible for the NaCl solution

considered here (55). However, for MgCl2 solution, as shown

in Fig. 2 b, we find that the TBI model gives lower free energy

than the PB. This is because the low-energy correlated states

of the bound Mg21 ions, which are explicitly considered in

TBI, are neglected in the PB. The average mean-field states

considered in PB have higher energies than the low-energy

correlated states, causing the PB to underestimate the helix

stability in the MgCl2 solution.

Folding free energy DG37�

Combining the electrostatic free energy Gel
37 and the chemical

free energy Gnel
37 ; we obtain the total free energy DG37� (¼ the

ds helix stability). We investigate the dependence of the

helix stability as a function of the NaCl and the MgCl2 con-

centrations for different DNA sequences and different helix

lengths. Fig. 2, c and d, show our computed results as well as

the experimental results.

As we expected, both Fig. 2, c and d, show that higher ion

concentration supports higher helix stability (lower DG37� ).

FIGURE 2 (a,b) The electrostatic free energy Gel
37 for dsDNA (black lines) and the respective ssDNA (gray lines) as functions of (a) NaCl and (b) MgCl2

concentrations. (Dotted lines) Poisson-Boltzmann theory; (solid lines) the TBI theory. (a) DNA length N are 10, 9, 8, and 6 bp (from the top to bottom),

respectively; (b) DNA length N are 12, 9, and 6 bp (from the top to bottom), respectively. (c,d) The folding free energies DG�37 due to dsDNA helix formation

for different sequences of various lengths in (c) NaCl and (d) MgCl2 solutions. (Dotted lines) Poisson-Boltzmann theory; (solid lines) the TBI theory; (dashed

lines) SantaLucia’s salt extrapolation formula for NaCl (22,40). (c) The sequences used for NaCl solution are: GCATGC, GGAATTCC, GCCAGTTAA, and

ATCGTCTGGA (from the top to bottom). The symbols are the experimental data. 1 GCATGC (36); h GGAATTCC (79); 3 GGAATTCC (80);

n GCCAGTTAA (37); ) ATCGTCTGGA (82); ¤ are calculated from the nearest neighbor model with the thermodynamic parameters of SantaLucia at 1 M

NaCl (22). (d) The sequences used for MgCl2 are: GCATGC, GCCAGTTAA, and AGAAAGAGAAGA (from the top to bottom). The symbols are the

experimental data: n GCCAGTTAA in MgCl2 (37); h AGAAAGAGAAGA in MgCl2 (84); : AGAAAGAGAAGA in MgCl2 (85); ¤ GCATGC in NaCl/

MgCl2 mixed solution with 0.012 M NaCl (36). The experimental data in NaCl/MgCl2 mixed solutions for GCATGC are used for semiquantitative comparison

because NaCl is at very low concentration (36). For the MgCl2 solutions, the values of DGnel
37 ðTBIÞ from the TBI theory are used in the calculations of DG37� .
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This is because, as we discussed above, higher ion concen-

tration gives lower electrostatic folding free energy DGel
37:

In both the NaCl (Fig. 2 c) and the MgCl2 (Fig. 2 d)

solutions, longer helices have lower DGel
37 and thus are more

stable than shorter ones. This is because longer helix means

stronger attractive electric field for bound ions, and this

effect is stronger for ds helix, which is more negatively

charged, than for coil.

Besides the PB and TBI computational results, also

plotted in Fig. 2 c for the NaCl solution are the experimental

data and the results from SantaLucia’s empirical extrapolated

[Na1]-dependence of DG37� (22,40). As we discussed above,

PB and TBI give the same results for NaCl solution. From

Fig. 2 c, we find that, as tested against experiments, both

theories give good results. Moreover, we find that SantaLu-

cia’s salt-dependence gives good results for [Na1] between

0.1 and 1 M NaCl, and overestimates the helix stability for

[Na1] , 0.1 M.

Shown in Fig. 2 d is the MgCl2 concentration-dependence

of the electrostatic free energy DG37�. We find that both PB

and TBI predict the same qualitative dependence of DG37� in

MgCl2 concentration. However, compared with the exper-

imental data for the three tested sequences GCATGC (36),

GCCAGTTAA (37), and AGAAAGAGAAGA (84,85), TBI

gives improved predictions than PB. As we discussed above,

PB underestimates the helix stability owing to the neglected

correlations between the bound Mg21 ions. Fig. 2 d shows

that the helix stability saturates at high MgCl2 concentration

(.0.03 M).

Temperature-dependence of helix stability

Temperature-dependence of the total stability DGT�

We calculate the folding free energy DGT� from Eq. 5 for

NaCl and MgCl2 solutions for different temperatures. We

use the temperature-dependent dielectric constant of water

in Eq. 33 (86). For both the Na1 and Mg21 salt solutions, as

shown in Fig. 3, a and b, helix is more stable (i.e., is more

negative DGT� ¼ DH� � TDS�) for lower temperatures.

Also, we find that for all the tested sequences and ion

concentrations, the TBI theory gives good predictions for the

helix stability as tested against experiments. To understand

the electrostatic contribution to the helix stability, we further

investigate the temperature-dependence of the electrostatic

part of the folding free energy DGel
T (see Eq. 21).

Temperature-dependence of the electrostatic folding free
energy DGT

el

As shown in Fig. 4, in both the NaCl and the MgCl2
solutions, the temperature-dependence of the electrostatic

folding free energy DGel
T is much weaker than that of the total

free energy (net stability) DGT�. So the strong temperature-

dependence of helix stability predominantly comes from the

temperature-dependence of the nonelectrostatic part DGnel
T :

In the Na1 salt solution. Plotted in Fig. 4 c is the

temperature-dependence of DGel
T for different NaCl concen-

trations for a 10-bp dsDNA. We find that DGel
T is weakly

dependent on temperature. As temperature is increased, DGel
T

decreases at high NaCl concentration and increases at low

NaCl concentration. Such temperature-dependence is pre-

dicted by both PB and TBI. The temperature-dependence

of electrostatic free energy can be understood from the

temperature-dependence of the dielectric constant e of the

solvent (see Eq. 33): At higher temperature, e is smaller,

resulting in stronger Coulomb interactions. As explained

below, the Coulomb interactions can be strengthened dif-

ferently in dsDNA and ssDNA, resulting in the temperature-

dependence of DGel
T ¼ DGel

T ðdsÞ � DGel
T ðssÞ:

For low [Na1], ion binding is accompanied by a large

entropic decrease and thus there are only few bound ions and

FIGURE 3 The temperature-dependence of the folding free energy DG�T
for (a) NaCl and (b) MgCl2 solutions. (Solid lines) The TBI theory; (dotted

lines) experimental data with the use of the equation DGT� ¼ DH� � TDS�,
where DH� and DS� are taken from experiments. (a) The upper three lines

are for sequence GGAATTCC at 0.046, 0.1, and 0.267 M NaCl (from the

top to bottom) (79,80), and the bottom three lines are for sequence

ATCGTCTGGA at 0.069, 0.22, and 0.62 M NaCl (from the top to bottom)

(82). (b) The three lines are for sequence GCCAGTTAA at 1, 10, and

100 mM MgCl2 (from the top to bottom) (37).
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weak charge neutralization. In such a case, the repulsive

interactions between the phosphates dominate. dsDNA has

higher phosphate charge density and thus the increase of the

repulsive Coulomb interactions (due to the smaller e at

higher temperature) is stronger than ssDNA, causing an

increase of DGel
T as the temperature is increased.

For high NaCl concentration, more ions are bound,

causing strong charge neutralization. Because the ds helix

has much greater charge neutralization than ss helix (coil), as

temperature is increased, the increase in the electrostatic

interaction in ssDNA is more significant than in dsDNA (see

Fig. 4 a), causing a decrease in DGel
T :

In the Mg21 salt solution. As shown in Fig. 4 d for a

9-bp dsDNA immersed in a MgCl2 solution, DGel
T decreases

slightly with increasing temperature over a wide range of

MgCl2 concentration ( *0.1 mM MgCl2). dsDNA has more

bound ions and stronger charge neutralization than ssDNA,

e.g., for 0.1 mM [MgCl2], our TBI theory predicts that at

37�C, the tightly bound Mg21 ions can neutralize 35% of the

phosphate charge for a 9-bp dsDNA as compared to only 5%

for the corresponding 9-nt ssDNA. So the Coulomb interac-

tion in ssDNA is strengthened more significantly with the

increase of temperature than that in dsDNA, resulting in a

decrease in DGel
T ¼ Gel

T ðdsÞ � Gel
T ðssÞ with the increase of

temperature. The PB theory can predict the same trend but as

we discussed above, PB underestimates the stability of ions

because of the neglected correlation and fluctuation effects for

the Mg21 ions.

Salt-dependence of the melting temperature Tm

In the above section, we found that the predicted temperature-

dependence of DGT� from TBI agrees with the experiments

for both the NaCl and the MgCl2 solutions. Here, we calculate

the melting temperature Tm (through Eq. 6) and compare the

calculated results with the experimental data.

FIGURE 4 The temperature-dependence of the electrostatic part of the free energy. (a,b) The electrostatic free energy Gel
37 of dsDNA (solid lines) and ssDNA

(dashed lines) as functions of temperature: (a) for a 10-bp dsDNA and the respective ssDNA at 3 mM, 10 mM, 30 mM, 69 mM, 220 mM, and 1 M NaCl (from

the top to bottom); (b) for a 9-bp dsDNA and the respective ssDNA at 0.1, 0.3, 1, 10, and 100 mM MgCl2 (from the top to bottom). (c,d) The temperature-

dependence of electrostatic contribution DGel
37 to folding free energy for dsDNA helix formation in (c) NaCl and (d) MgCl2 solutions. (Dotted lines) Poisson-

Boltzmann theory; (solid lines) the TBI theory. (c) Sequence ATCGTCTGGA at 3 mM, 10 mM, 30 mM, 69 mM, 220 mM, and 1 M NaCl (from the top to

bottom); (d) sequence GCCAGTTAA at 0.1, 0.3, 1, 10, and 100 mM MgCl2 (from the top to bottom).
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In the NaCl solution

Shown in Fig. 5 a is the calculated melting temperatures

Tm of dsDNA as functions of the NaCl concentration for

different sequences and lengths. Also shown in the figure is

the experimental data for the sequences GGAATTCC (79,80),

GCCAGTTAA (37), ATCGTCTGGA (35), and CCATTGC-

TACC (35). From the figure we find that the predicted Tm’s

are in agreement with the experimental results. The increase of

the NaCl concentration leads to a higher Tm (higher stability of

dsDNA helix). As a comparison, we also show SantaLucia’s

empirical salt extension (fitted from experimental data) for the

NaCl solution (22,40):

1=Tm ¼ 1=Tm�1 0:000368 3 ðN � 1Þln½Na
1 �=DH�; (22)

where T�m and DH� are the melting temperature and the

enthalpy change in 1 M NaCl solution. The above SantaLucia’s

empirical extension provides a good approximation for NaCl

concentration between 0.1 and 1 M (22,40). We also calculate

the Tm’s for the experimental sequences GCATGC (36),

CCAAACA (78), CAAAGATTCCTC (83). Again our cal-

culated results agree with the experimental data.

In the MgCl2 solution

Fig. 5 b shows the melting temperatures Tm of dsDNA helix

in the MgCl2 solution as a function of the ion concentration

for two sequences. In contrast to the folding free energy

DG37� in Fig. 2 d, which has very limited experimental data,

more experimental data for Tm in pure MgCl2 solutions are

available. We find that the Tm’s predicted from the TBI

model agree with the available experimental data over a wide

MgCl2 concentration range from 0.3 mM to 0.3 M. Again we

find that PB theory can predict the trend in the [Mg21]-

dependence of Tm but it underestimates the helix stability

and the Tm due to the neglected correlation and fluctuation

effects, as discussed in the previous sections.

Helix length-dependence of the electrostatic
folding free energy DG37

el

In this section, we investigate the dependence of DGel
37; the

electrostatic component of the helix stability, on the helix

length. We use the number of basepairs N to define the helix

length. We will also examine how the electrostatics affects

the validity of the additive nearest neighbor model for the

nucleic acid helix stability (17–23). To focus on the length-

dependence and the additivity effect, we study the electro-

static free energy ‘‘per base stack’’ gel
37 ¼ Gel

37=ðN � 1Þ and

Dgel
37 ¼ DGel

37=ðN � 1Þ:
Fig. 6, a and b, show the length-dependence of gel

37 for the

dsDNA and the ssDNA. We find that for both ssDNA and

dsDNA, gel
37 increases rapidly with N at low salt (NaCl or

MgCl2) concentrations and is only weakly dependent on

N at high salt concentrations. The change in the length-

dependence with the salt concentrations comes from the

ion concentration-dependence of the charge neutralization

(screening) effect. At low salt concentration, the neutraliza-

tion is weak (the amount of bound ions is small), and the

increase of helix length enhances the repulsive interactions

between the charges (phosphate plus bound ion) in the

backbone, causing an increased gel
37 with increased helix

length (for both the ds- and the ss-helices). For high salt

concentration, charge neutralization and ionic screening

are strong (Debye length is short), so the increase in gel
37 is

FIGURE 5 The melting temperature Tm for dsDNA of different sequences

in (a) NaCl and (b) MgCl2 solutions. (Solid lines) The TBI theory; (dotted

lines) Poisson-Boltzmann theory; (dashed lines) SantaLucia’s salt extension

for NaCl (22,40); (symbols) the experimental data. (a) The sequences and

total strand concentrations CS are (from the top to bottom): 1 GGAATTCC

at CS ¼ 3 mM (79); n CCATTGCTACC at CS ¼ 2 mM (35);

n ATCGTCTGGA at CS ¼ 2 mM (35); 3 GCCAGTTAA at CS ¼ 8 mM

(37); and h GGAATTCC at CS ¼ 18.8 mM (81). (b) The sequences and CS

are (from the top to bottom): h AGAAAGAGAAGA at CS ¼ 6 mM (84);

and n GCCAGTTAA at CS ¼ 8 mM (37). Here, the data for AGAAA-

GAGAAGA are taken from the duplex melting in the study of the triplex

melting in MgCl2 and CS ¼ 6 mM is the total strand concentration for triplex

formation. Tm is calculated from DG�T � RTlnCS/6 ¼ 0 (84).
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retarded. As explained in the following, the difference between

gel
37 of ssDNA and that of dsDNA determines electrostatic

contribution to the helix stability per base stack Dgel
37 ¼

gel
37ðdsÞ � gel

37ðssÞ:

In the NaCl solution

Shown in Fig. 6 c is the Dgel
37 calculated from both the PB

theory and the TBI theory for different helix length N (-bp).

As expected from the behavior of gel
37 in Fig. 6 a, Dgel

37

is weakly dependent on N for high NaCl concentration

(.0.1 M).

For low NaCl concentration, the relationship between

Dgel
37 and N becomes more complex: Dgel

37 increases with N
when N is small, and decreases when N is large. Such

nonmonotonic behavior can be explained as follows. At low

NaCl concentration and for short DNA (small N), Na1 ion

binding is weak and the repulsive phosphate-phosphate

repulsion dominates Gel
37: Due to the long-range nature of the

repulsive Coulomb interactions, Gel
37 would increase non-

linearly with length N. Furthermore, such destabilizing effect

is stronger for ds helix than for ss helix (coil). As a result, the

ds helix is less stable than the ss helix. With the increase of

N, the ds helix becomes increasingly less stable (i.e., an

increasing Dgel
37); see Fig. 6, a and c. If N continues to

increase, the electric field near the negatively charged DNA

surface will become stronger and will attract more bound

Na1 ions to neutralize the phosphate charges. This would

retard the increase of the electrostatic free energy Gel
37;

especially for the ds helix, which involves stronger electro-

static interactions. As a result, Dgel
37 decreases.

For high [NaCl], as shown in Fig. 6 c, Dgel
37 is approx-

imately independent of N. So DGel
37 is additive for high

NaCl concentrations (17–23). But for low NaCl, Dgel
37 is

N-dependent. As a result, the additivity may fail.

Also shown in the figure is that PB and the TBI theory

give nearly identical results for short DNA at low NaCl

concentration. With the increase of DNA length and increase

FIGURE 6 The length-dependence of the electrostatic part of the free energy. gel
37 ¼ Gel

37=ðN � 1Þ and Dgel
37 ¼ DGel

37=ðN � 1Þ are the electrostatic free

energies per base stack. N� 1 is the number of base stacks for a N-bp helix. (a,b) The electrostatic free energy gel
37 (per base stack) for dsDNA (solid lines) and

the respective ssDNA (dashed lines) as functions of sequence length N in NaCl (a) and MgCl2 (b) solutions. (a) [NaCl] ¼ 3 mM, 10 mM, 30 mM, 100 mM,

300 mM, and 1 M (from the top to bottom); (b) [MgCl2] ¼ 0.1, 0.3, 1, 3, 10, and 30 mM (from the top to bottom). (c,d) The length N-dependence of electrostatic

contribution Dgel
37 ¼ gel

37ðdsDNAÞ � gel
37ðssDNAÞ (per base stack) to folding free energy for dsDNA helix formation in NaCl (c) and MgCl2 (d) solutions.

(Dotted lines) Poisson-Boltzmann theory; (solid lines) the TBI theory. [NaCl] ¼ 3 mM, 10 mM, 30 mM, 100 mM, 300 mM, and 1 M (from the top to bottom);

[MgCl2] ¼ 0.1, 0.3, 1, 3, 10, and 30 mM (from the top to bottom).
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of NaCl concentration, there exist very small differences

between the two theories owing to the increased number of

the (strongly correlated) ions in the tightly bound region. For

example, for a 13-bp DNA at 1 M NaCl, the difference be-

tween the two theories is ;0.07 kcal/mol per base stack.

In the MgCl2 solution

For the MgCl2 solutions, the helix length N-dependence of

Dgel
37 is shown in Fig. 6 d. For high MgCl2 concentration, the

dependence is rather weak due to the large charge neutral-

ization. For low MgCl2 concentration, ds helix is electro-

statically unstable (Dgel
37 . 0), and Dgel

37 decreases rapidly

with the increase of N when N is small, and become saturated

when N is large. This is because as N is increased, the strong

negative electric field near DNA surface causes an increased

tendency of ion binding and charge neutralization, and such

effect is stronger for ds helix than for ss helix, causing a

decrease in Dgel
37: When N becomes sufficiently large, both

ds and ss helix can have strong charge neutralization, so the

decrease of Dgel37 with longer length would slow down

(saturate). In addition, it can be seen that PB and TBI give

similar results for short N and low MgCl2 concentration

because of the smaller number of bound ions and hence the

weaker correlational effect. For large N and high [MgCl2],

more Mg21 ions are bound near the DNA and these ions

become strongly correlated. In such cases, the TBI model

gives improved predictions (55).

Effect of the cation size on DNA stability

To investigate the effect of the cation size on the helix sta-

bility, we choose different radii for the (hydrated) monova-

lent and divalent cations. Specifically, we use 3, 3.5, and 4 Å

for monovalent ions and 4, 4.5, and 5 Å for the divalent ions.

Fig. 7 shows the folding free energy DG37� as a function of

ion concentration and ion size for sequence ATCGTCT-

GGA. We find that smaller cations support higher stability of

dsDNA. We also find that different cation sizes give almost

the same trend of the salt concentration-dependence of DG37�.
Through experimental comparisons, we find that ion radius

of 3.5 Å for Na1 and 4.5 Å for Mg21 can give the best fit for

the experimental results for the helix stability and the melting

temperature.

Small cations are more effective in stabilizing dsDNA

because they can approach the phosphates and the grooves at a

closer distance and can thus interact with DNA more strongly.

Because dsDNA is more negatively charged than the

corresponding ssDNA, the ion size-induced enhancement of

the ion binding is stronger for dsDNA than for ssDNA. Thus,

dsDNA becomes more stable in smaller cation solutions.

The predictions are in accordance with the experiments on

dsDNA helix melting in various salt solutions (37). Recent

experiments on RNA folding have also shown that smaller

cations can stabilize RNA tertiary structure more effectively

than larger ions (13). For more complex nucleic acid struc-

ture, the ion size can affect the ion-binding affinity through

the compatibility with the geometry of binding site.

Thermodynamic parameters as functions of the
ion concentration and the helix length

The availability of the (empirical) thermodynamic parameters

for nucleic acids is limited by the availability of the ex-

perimental data. For example, for nucleic acids in NaCl

solution, most experimental studies have been focused on high

NaCl concentrations (e.g., 1 M), and thus the empirical salt-

dependence fitted from the experiments are valid only for

relatively high [Na1] ( *0.1 M NaCl) (22,40). Moreover, there

are very limited experimental data on the Mg21-dependence

for different helix lengths. Therefore, it is desirable to have

analytical formulas for the thermodynamic parameters as a

function of [Na1], [Mg21], and the helix length N (-bp). Such

formulas would be practically valuable for thermodynamic

FIGURE 7 The folding free energies DG�37 for dsDNA helix formation

as functions of (a) 1:1 and (b) 2:1 salt concentrations for sequence

ATCGTCTGGA. (Solid lines) The TBI theory; (dotted lines) Poisson-

Boltzmann theory. (a) The radii of monovalent cations are: 3, 3.5, and 4 Å

(from the bottom to top). (b) The radii of divalent cations are: 4, 4.5, and 5 Å

(from the bottom to top), respectively.
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studies of nucleic acid stability. In this section, based on the

TBI model and the comparisons with the available experi-

mental data for DNA helix melting (22,32–35,40,87), we

derive such empirical formulas.

NaCl solutions

By computing DG�37 for a wide range of DNA helix length

and Na1 concentrations using the TBI theory, we obtain the

following (fitted) analytical expression for DG�37 as a

function of [Na1] and N (number of basepairs in the helix):

DG�37½Na
1 � ¼ DG�37ð1 MÞ1 ðN � 1ÞDg1: (23)

Here (N � 1) is the number of base stacks in the helix and

Dg1 is a function associated with the electrostatic folding free

energy per base stack:

Dg1 ¼ a1 1 b1=N; (24)

a1 ’ �0:07 ln½Na
1 �1 0:012 ln

2½Na
1 �;

b1 ’ 0:013 ln
2½Na

1 �: (25)

The above empirical expression for the folding free energy

gives good fit with the TBI results for NaCl concentration

from 1 mM to 1 M (shown in Fig. 8 a). Assuming that the

salt-dependence of DGT� is mainly entropic, i.e., enthalpy

change DH� is mainly independent of NaCl concentration

(22,25,30,40,41), we obtain the following expression for

the entropy change DS� (in cal/mol/K) for the helix / coil

transition.

DS�½Na
1 � ¼ DS�ð1 MÞ � 3:22ðN � 1ÞDg1: (26)

From Eqs. 23 and 26, neglecting the temperature-

dependence of the enthalpy and entropy parameters, we

obtain the following expression for the folding free energy

DG�T for any given temperature T and Na1 concentration:

DG�T([Na1]) ¼ DH�(1 M) � TDS�[Na1], where DH�(1 M)

and DS�(1 M) can both be calculated from the nearest

neighbor model with the use of the measured thermodynamic

parameters (17–22,40,61).

Furthermore, from Eqs. 23 and 26, we obtain the fol-

lowing empirical expression for the melting temperature Tm:

1=Tm½Na
1 �¼ 1=Tm�ð1 MÞ� 0:00322ðN�1ÞDg1=DH�ð1 MÞ:

(27)

As shown in Fig. 9 a, the above expression for Tm agrees

with the experimental results, even for very long DNA

(Escherichia coli) (33).

In the MgCl2 solution

Similarly, from Eqs. 3 and 5, we obtain the following ex-

pression for the thermodynamic parameters in MgCl2
solution:

DG�37½Mg
21 � ¼ DG�37ð1 MÞ1 ðN � 1ÞDg2; (28)

DS�½Mg
21 � ¼ DS�ð1 MÞ � 3:22ðN � 1ÞDg2; (29)

1=Tm½Mg
21 �¼1=Tm�ð1 MÞ�0:00322ðN�1ÞDg2=DH�ð1 MÞ;

(30)

where Dg2 is a function associated to the electrostatic folding

free energy per base stack, Dg2 is a function of helix length

N and the Mg21 ion concentration:

Dg2 ¼ a2 1 b2=N
2
; (31)

a2 ¼ 0:02 ln½Mg
21 �1 0:0068 ln

2½Mg
21 �;

b2 ¼ 1:18 ln½Mg
21 �1 0:344 ln

2½Mg
21 �: (32)

The above analytical expressions are valid for N *6

(see Fig. 8 b for the comparison with the TBI calculations).

Fig. 9 b shows the comparison between the above formulas

and the experimental data for Tm for a wide range of Mg21

concentration and DNA length. We find good agreements

between Eq. 30 and the available experimental data.

FIGURE 8 The free energy change DG�37 for dsDNA helix formation as

functions of (a) NaCl and (b) MgCl2 concentrations for the sequences:

GCATGC, GGAATTCC, GCCAGTTAA, ATCGTCTGGA, CCATTGC-

TACC, and CCAAAGATTCCTC (from the top to bottom). (a) (Solid lines)
The empirical relation Eq. 23; (symbols) calculated from the TBI theory. (b)

(Solid lines) The empirical relation Eq. 28; (symbols) calculated from the

TBI theory.
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Nonadditivity for the helix stability

The analytical formulas for the thermodynamic parameters

account for the chain length-dependence of the folding

stability. The 1/N expansion clearly shows the saturation

effect as 1/N / 0 for large helix length N (52).

The stability is additive if it can be computed as the sum of

the stability of each base stack. Mathematically, the additiv-

ity corresponds to a linear-dependence of the folding free

energy on the helix length (¼ N � 1 stacks), i.e., Dgz in Eqs.

23 and 28 (z ¼ valence of the ion ¼ 1 for Na1 and 2 for

Mg21) is N-independent or weakly dependent on N, which,

according to Eqs. 24 and 31, occurs if the following con-

dition is satisfied:

N
z � bz=az;

where az and bz are given by Eqs. 25 and 32 for z ¼ 1 (Na1)

and 2 (Mg21), respectively.

The above additivity condition depends on the ion con-

centration. For example, bz/az is not very sensitive to the ion

concentration at high salt region ( *0:1 M for NaCl and

*10 mM for MgCl2). But for lower ion concentration, the

additivity condition becomes more sensitive to the ion con-

centration. bz/az and hence the required chain length N would

increase rapidly in order for the additivity condition to be

satisfied.

Na1 versus Mg21

Previous experiments for a specific sequence have shown that

the 1 M NaCl solution has effectively the equivalent ionic

effect on the helix stability as the 10 mM MgCl2/150 mM

NaCl mixed solution (36). Similar relation has also been

experimentally found for RNA folding: 1 M NaCl has the

similar effect as 10 mM MgCl2/50 mM NaCl mixed solution

for stabilizing a ribosomal RNA secondary structure (90), and

1 M NaCl is similar to 10 mM MgCl2/100 mM NaCl mixed

salt for a hammerhead ribozyme folding (91). With the TBI

theory, which can treat the Mg21 ions, we can now evaluate

and compare the role of Na1 and Mg21 ion in the stabilization

of nucleic acid helix. Because the current form of the TBI

theory does not treat the Na1/Mg21 mixture solution, we

examine the ds helix stability in 1 M NaCl and in 10 mM

MgCl2 solution. We compare the melting temperatures Tm in

these two different solutions (see Eqs. 27 and 30).

We choose thermodynamic parameters of each base

stack in 1 M NaCl (DH�, DS�) ¼ (�8.36 kcal/mol, �22.37

cal/mol/K), as determined from the average parameters over

different sequences (22). So for a N-bp helix, DH+ ’
�ðN � 1Þ8:36 kcal=mol. Eqs. 27 and 30 predict that DTm ¼
Tm½1 M Na1� � TM½10 mM Mg21� ’ 3:5+ for N ¼ 9. So

the helix is only slightly less stable in 10 mM MgCl2 than in

1 M NaCl.

In addition, we find that the melting temperature difference

DTm decreases as the helix length is increased and eventually

becomes saturated for very long helix. Such length-dependence

can be understood from the enthalpy-entropy competition in the

ion-binding process. The ion-binding entropic penalty for

[Mg21] ¼ 10 mM is much larger than that for [Na1] ¼ 1 M.

Therefore, entropically, Mg21 binding is less favorable than

Na1 binding. However, enthalpically, the binding of Mg21,

which carries higher charge and can cause more efficient charge

neutralization, is more favorable than that of Na1. Therefore,

the enthalpic effect becomes more important for a longer helix,

which has stronger electric field near DNA surface. As a result,

as the helix length is increased, Mg21 would stabilize the helix

more effectively than Na1, causing DTm to decrease.

FIGURE 9 Comparisons between the empirical formulas (solid lines) for

Tm (Eqs. 27 and 30) and experimental data (symbols) for (a) NaCl and (b)

MgCl2 solutions. (a) The DNA sequences for NaCl solutions are (59-39):

GGAATTCC (81), GCCAGTTAA (37), ATCGTCTGGA (82), CCATTG-

CTACC (35), ATCGTCTCGGTATAA (35), CCATCATTGTGTCTAC-

CTCA (35), AATATCTCTCATGCGCCAAGCTACA (35), GTTATTCC-

GCAGT-CCGATGGCAGCAGGCTC (35), and E. coli (33) (from the

bottom to top). (b) The sequences for MgCl2 solutions are (59-39):

GCCAGTTAA (37), AGAAAGAGAAGA (84), TTTTTTTGTTTTTTT

(38), TAATTTAAAATTTTTAAAAAA (88), TTTTTTTTTTATTAAAA-

TTTATAAA(89), and AAAAAAAAAATAATTTTAAATATTT (89) (from

thebottom to top).Tm(1 M Na1) is calculated from the nearest neighbor model

with the thermodynamic parameters of SantaLucia (20) except forE. coli. For

E. coli, Tm(1 M Na1) is taken as 96.5�C.
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CONCLUSIONS AND DISCUSSION

The tightly bound ion theory can explicitly account for the

correlation and fluctuation of the bound ions (55). Based on

the TBI theory, we investigate the thermal stability of DNA

helix in Na1 and Mg21 solutions for different helix lengths

(5–13 bps) and different salt concentrations (1 mM to 1 M

for NaCl and 0.1 mM to 1 M for MgCl2). The predicted

folding free energy and melting temperature for the helix-

coil transition agree with the available experimental data.

The following is a brief summary for our major findings in

this study.

1. For NaCl solution, both PB and the TBI theory can

successfully predict the thermodynamics of helix-coil

transition up to 1 M NaCl, as compared with experi-

mental data.

2. For MgCl2, the TBI theory can predict the experimental

data, whereas PB underestimates the helix stability and

melting temperature due to the neglected correlation and

fluctuation effects.

3. Helix is stabilized by ions. However, for high ion

concentrations, the helix stability becomes saturated and

further enhancement of the stability is small.

4. The electrostatic part of the helix-coil folding free energy

appears only weakly temperature-dependent for both

NaCl and MgCl2 solutions. Thus, the strong temperature-

dependence of the total folding free energy mainly comes

from the nonelectrostatic contribution.

5. The nearest neighbor model works well for high NaCl

concentration (and long helix), in which case the

electrostatic part of the folding free energy for each base

stack is only weakly dependent on the helix length N.

6. Based on our calculated results, we obtain analytical

formulas for the folding free energy and the melting

temperature as functions of helix length and salt concen-

tration. These empirical formulas account for the non-

additivity of the helix stability and are tested against

extensive experimental results. These analytical expres-

sions can be useful for practical use in predicting nucleic

acid helix stability.

This work for the helix stability involves several sim-

plified assumptions, as explained in the following. The

stability calculation is based on the assumption about the

separable electric and the nonelectric contributions. More-

over, the helix-coil transition is assumed to be two-state

between the mean structures of dsDNA and ssDNA. How-

ever, ssDNA is a denatured structure that, depending on

the sequence and ionic condition, can adopt an ensemble

of different conformations. The uncertainty of the ssDNA

structure may contribute to some of the theory-experiment

differences.

In this form of the TBI theory, we do not treat: a), the

mixed ion solutions, e.g., Na1/Mg21 mixture, and b), the

possible existence of the anions in the tightly bound region.

The generalization of the current TBI framework to treat the

mixed solution and the tightly bound anions is straightfor-

ward but technically challenging. Specifically, the multiple

species (Na1/Mg21 or cation/anion) of the tightly bound

ions can result in: 1), the significantly larger number of the

binding modes, and 2), the much more complicated inter-

actions and the associated potential of mean force functions.

In the TBI theory, we neglect the possible dehydration effect

(92) for the bound ions. We also neglect the binding of ions

(including anions) to specific functional groups of nucleotides

(93) in the tightly bound region. The site-specific binding of

dehydrated cations can contribute significantly to the nucleic

acid tertiary structure folding stability. For the simple helical

structure studied here, however, the binding to specific sites

and the associated dehydration may not play a dominant role

in the folding stability. Nevertheless, this TBI theory may

provide a framework for further inclusion of the dehydration

effects and ion binding to specific sites. A possible approach

would be to place ion(s) to the predetermined specific binding

site(s), and to determine the tightly bound region with the

existence of the prefixed site-bound ion(s). To account for the

desolvation effect for the tightly bound ions, we need to

include the desolvation free energy DGsol in the electrostatic

free energy DGb for the tightly bound ions.

To compute the stability for more complex nucleotide

folds, we must consider the conformational ensemble of the

molecule, including the possible stable intermediate states.

For the high resolution full-atomic structure, the TBI calcu-

lation, in particular, the potential of mean force calculation

for the tightly bound ions, would be more time-consuming

because of the atomic details involved. Moreover, for a com-

pact three-dimensional structure, different parts of the chain

(and the associated tightly bound region) are brought together

through the long-range tertiary contacts. As a result, a), the

pairwise potential of mean force used in the helix-coil cal-

culation should be replaced by the multiion potential of mean

force to account for the correlation between the spatially

nearby tightly bound ions, and b), in this case, the division of

the tightly bound region into the tightly bound cells centered

around the phosphates can become ambiguous.

APPENDIX A: STRUCTURAL MODELS FOR
DSDNA AND SSDNA

We adopt B-DNA structure for dsDNA because B-form DNA is the most

common and stable form over a wide range of salt conditions and sequences

(16,94). The grooved primitive model is used instead of the all-atom DNA

model (55,95); see Fig. 1 a. The model has been shown to be able to give

detailed ion distribution that agrees well with the all-atomic simulations (95).

In the grooved model, we represent a N-bp B-form DNA structure as two

helical strands, each with N nucleotide units, around a central cylindrical rod

of radius rcore ¼ 3.9 Å. Two hard spheres are used to represent a nucleotide

unit. A charged sphere with a point charge �e at the center is used to

represent the phosphate group and an electrically neutral sphere to represent

the rest of the atoms. The phosphate sphere is placed at the center of the

phosphate group of the nucleotide and the neutral sphere lies between

the phosphate sphere and the cylindrical rod. Both spheres have radius of
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r0 ¼ 2.1 Å (95). For a canonical B-DNA, the phosphate charge positions (¼
the center of the charged sphere) (rs

i ; u
s
i ; z

s
i ) are given by the following

equations (96): rs
i ¼ 8:9ðÅÞ; us

i ¼ us
01i36�; zs

i ¼ zs
01i3:4ðÅÞ; where s ¼ 1,

2 denotes the two strands and i ¼ 1, 2, . . .N denotes the nucleotides on each

strand. The parameters (us
0; z

s
0) for the initial position are (0�, 0 Å) for the

first strand and (154.4�, 0.78 Å) for the second strand, respectively.

The ssDNA structure is not as well-characterized as the dsDNA. The

structure of ssDNA, which is an ‘‘unfolded’’ state of the dsDNA, can be

dependent on the helix and the ionic condition (94,97–103). Previous

experiments indicated that ssDNA (RNA) structure is neither a maximally

stretched ‘‘rod’’ nor a completely random conformation. Instead, the ssDNA

structure exhibits some single helical order due to self-stacking (94,97–103).

This suggests that the single-strand structure can be modeled as an ordered

helix (58,60). In this work, instead of considering the ensemble of all ssDNA

conformations (104), we model ssDNA using a mean structure averaged

over the previously measured ssDNA structures (32,58,60,100–102). We

use the grooved primitive (55,95) model to describe the ssDNA structure;

see Fig. 1 b. There are three structure parameters to be determined: radial

coordinate of phosphates rp, twist angle per residue Du, and rise per basepair

Dz. The experiments show that, compared with dsDNA, the single-stranded

helices shrink (i.e., rp and Dz decrease) because of the absence of the

interstrand electrostatic repulsion (94,97–99). Previous theoretical modeling

on ssDNA structure suggests that the radial radius of phosphate charges (rp)

is between 5 and 7 Å (32,58,60,100–102). Here, we use rp ¼ 7 Å We also

use Dz ¼ 2.2Å and keep Du ¼ 36�, which is the same as that of dsDNA.

Thus, for ssDNA, the phosphate charge position (ri, ui, zi) can be given by

the following equations: ri ¼ 7 (Å); ui ¼ i 36�; zi ¼ i 2.2 (Å). As a control,

we also perform calculations with the other two different sets of structure

parameters for ssDNA: (Du, rp, Dz) ¼ (36�, 7.5 Å, 1.8 Å) and (Du, rp, Dz) ¼
(36�, 6.4 Å, 2.6 Å) and found negligible changes in the predicted results for

both NaCl and MgCl2 solutions.

APPENDIX B: PARAMETER SETS AND
NUMERICAL DETAILS

In this study, the ions are assumed to be hydrated (55). The radii of hydrated

Na1 and Mg21 ions are taken as 3.5 and 4.5 Å (105), respectively. In

addition, the cation sizes can be changed (3, 3.5, and 4 Å for monovalent and

4, 4.5, and 5 Å for divalent ions) to investigate the cation size effects on the

DNA stability.

In the computation with PB, the dielectric constant e of DNA interior is

set to be 2, and e of solvent is set as the value of bulk water. At 25�C, the

dielectric constant of water is ;78. The dielectric constant of water

decreases with the increase of temperature. We use the following empirical

formula for the temperature-dependence of e (86)

eðtÞ ¼ 87:740 � 0:4008 3 t1 9:398 3 10
�4

3 t
2

� 1:41 3 10
�6

3 t
3
; (33)

where t is the temperature in Celsius.

Both the TBI model and the PB calculation require numerical solution of

the nonlinear PB. We have developed a three-dimensional finite-difference

algorithm to numerically solve nonlinear PB equation (55), by following the

existed algorithms (44–51). A thin layer of thickness equal to one cation

radius is added to the molecular surface to account for the excluded volume

layer of cations (8,9,55). We use the three-step focusing process to obtain the

detailed ion distribution near the molecules (45,55). The grid size of the first

run depends on the salt concentration used. Generally, we keep it larger than

six times of Debye length of salt solution to include all salt effects in

solution. The resolution of the first run varies with the grid size to make the

iterative process viable within a reasonable computational time (55). The

grid sizes for the second run and the third run are kept at 102 and 51 Å,

respectively, and the corresponding resolutions are 0.85 Å per grid and

0.425 Å per grid, respectively. Then the number of the grid points is 1213 for

the second and third run. We use high resolution grid system near the DNA

surface because the ions near the DNA surface make the most important

electrostatic contribution to DNA stability. We have examined our results

against different grid sizes, and the results are quite stable.

We are grateful to Dirk Stigter and Gerald Manning for the stimulating

communications on the development of the TBI theory.

This research was supported by National Institutes of Health/National

Institute of General Medical Sciences through grant No. GM063732 (to

S-J.C.) and by the Molecular Biology Program at the University of

Missouri-Columbia.

REFERENCES

1. Tinoco, I., and C. Bustamante. 1999. How RNA folds. J. Mol. Biol.
293:271–281.

2. Rook, M. S., D. K. Treiber, and J. R. Williamson. 1999. An optimal
Mg21 concentration for kinetic folding of the Tetrahymena ribozyme.
Proc. Natl. Acad. Sci. USA. 96:12471–12476.

3. Woodson, S. A. 2005. Metal ions and RNA folding: a highly charged
topic with a dynamic future. Curr. Opin. Chem. Biol. 9:104–109.

4. Draper, D. E., D. Grilley, and A. M. Soto. 2005. Ions and RNA
folding. Annu. Rev. Biophys. Biomol. Struct. 34:221–243.

5. Sosnick, T. R., and T. Pan. 2003. RNA folding: models and perspec-
tives. Curr. Opin. Struct. Biol. 13:309–316.

6. Auffinger, P., L. Bielecki, and E. Westhof. 2004. Symmetric K1 and
Mg21 ion-binding sites in the 5S rRNA loop E inferred from mole-
cular dynamics simulations. J. Mol. Biol. 335:555–571.

7. Auffinger, P., and E. Westhof. 2001. Water and ion binding around
r(UpA)12 and d(TpA)12 oligomers: comparison with RNA and DNA
(CpG)12 duplexes. J. Mol. Biol. 305:1057–1072.

8. Misra, V. K., and D. E. Draper. 2000. Mg21 binding to tRNA
revisited: the nonlinear Poisson-Boltzmann model. J. Mol. Biol. 299:
813–825.

9. Misra, V. K., and D. E. Draper. 2001. A thermodynamic framework
for Mg21 binding to RNA. Proc. Natl. Acad. Sci. USA. 98:12456–
12461.

10. Heilman-Miller, S. L., D. Thirumalai, and S. A. Woodson. 2001. Role
of counterion condensation in folding of the Tetrahymena ribozyme.
I. Equilibrium stabilization by cations. J. Mol. Biol. 306:1157–1166.

11. Heilman-Miller, S. L., J. Pan, D. Thirumalai, and S. A. Woodson.
2001. Role of counterion condensation in folding of the Tetrahymena
ribozyme. II. Counterion-dependence of folding kinetics. J. Mol. Biol.
309:57–68.

12. Das, R., L. W. Kwok, I. S. Millett, Y. Bai, T. T. Mills, J. Jacob, G. S.
Maskel, S. Seifert, S. G. J. Mochrie, P. Thiyagarajan, S. Doniach, L.
Pollack, et al. 2003. The fastest global events in RNA folding:
electrostatic relaxation and tertiary collapse of the Tetrahymena
ribozyme. J. Mol. Biol. 332:311–319.

13. Koculi, E., N. K. Lee, D. Thirumalai, and S. A. Woodson. 2004.
Folding of the Tetrahymena ribozyme by polyamines: importance of
counterion valence and size. J. Mol. Biol. 341:27–36.

14. Fang, X., T. Pan, and T. R. Sosnick. 1999. A thermodynamic
framework and cooperativity in the tertiary folding of a Mg21-
dependent ribozyme. Biochemistry. 38:16840–16846.

15. Bloomfield, V. A. 1997. DNA condensation by multivalent cations.
Biopolymers. 44:269–282.

16. Bloomfield, V. A., D. M. Crothers, and I. Tinoco Jr. 2000. Nucleic
Acids: Structure, Properties and Functions. University Science Books,
Sausalito, CA.

17. Freier, S. M., R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers,
T. Neilson, and D. H. Turner. 1986. Improved free-energy parameters
for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA.
83:9373–9377.

1188 Tan and Chen

Biophysical Journal 90(4) 1175–1190



18. Breslauer, K. J., R. Frank, H. Blocker, and L. A. Marky. 1986.
Predicting DNA duplex stability from the base sequence. Proc. Natl.
Acad. Sci. USA. 83:3746–3750.

19. Turner, D. H., and N. Sugimoto. 1988. RNA structure prediction.
Annu. Rev. Biophys. Biophys. Chem. 17:167–192.

20. SantaLucia, J., H. T. Allawi, and P. A. Seneviratne. 1996. Improved
nearest-neighbor parameters for predicting DNA duplex stability.
Biochemistry. 35:3555–3562.

21. Sugimoto, N., S. I. Nakano, M. Yoneyama, and K. I. Honda. 1996.
Improved thermodynamic parameters and helix initiation factor to
predict stability of DNA duplexes. Nucleic Acids Res. 24:4501–4505.

22. SantaLucia, J., Jr. 1998. A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl.
Acad. Sci. USA. 95:1460–1465.

23. Owczarzy, R., P. M. Callone, F. J. Gallo, T. M. Paner, M. J. Lane, and
A. S. Benight. 1997. Predicting sequence-dependent melting stability
of short duplex DNA oligomers. Biopolymers. 44:217–239.

24. Elson, E. L., I. E. Scheffler, and R. L. Baldwin. 1970. Helix formation
by (TA) oligomers. III. Electrostatic effects. J. Mol. Biol. 54:401–415.

25. Record, M. T., Jr. 1975. Effects of Na1 and Mg21 ions on the helix-
coil transition of DNA. Biopolymers. 14:2137–2158.

26. Patel, D. J., S. A. Kozlowski, L. A. Marky, C. Broka, J. A. Rice, K.
Itakura, and K. J. Breslauer. 1982. Premelting and melting transition
in the d(CGCGAATTCGCG) self-complementary duplex in solution.
Biochemistry. 21:428–436.

27. Hickey, D. R., and D. H. Turner. 1985. Solvent effects on the stability
of A7U7p. Biochemistry. 24:2086–2094.

28. Erie, D., N. Sinha, W. Olson, R. Jones, and K. Breslauer. 1987. A
dumbbell-shaped, double-hairpin structure of DNA: a thermodynamic
investigation. Biochemistry. 26:7150–7159.

29. Delcourt, S. G., and R. D. Blake. 1991. Stacking energies in DNA.
J. Biol. Chem. 266:15160–15169.

30. Anderson, C. F., and T. M. Record. 1995. Salt-nucleic acid inter-
actions. Annu. Rev. Phys. Chem. 46:657–700.

31. Rentzeperis, D., J. Ho, and L. A. Marky. 1993. Contribution of loops
and nicks to the formation of DNA dumbbells: melting behavior and
ligand binding. Biochemistry. 32:2564–2572.

32. Shkel, I., and M. T. Record. 2004. Effect of the number of nucleic
acid oligomer charges on the salt dependence of stability (DG�37)
and melting temperature (Tm): NLPB analysis of experimental data.
Biochemistry. 43:7090–7101.

33. Schildkraut, C., and S. Lifson. 1965. Dependence of the melting
temperature of DNA on salt concentration. Biopolymers. 3:195–208.

34. Blake, R. D., and S. G. Delcourt. 1998. Thermal stability of DNA.
Nucleic Acids Res. 26:3323–3332.

35. Owczarzy, R., Y. You, B. G. Moreira, J. A. Manthey, L. Huang, M. A.
Behlke, and J. A. Walder. 2004. Effects of sodium ions on DNA
duplex oligomers: improved predictions of melting temperatures.
Biochemistry. 43:3537–3554.

36. Williams, A. P., C. E. Longfellow, S. M. Freier, R. Kierzek, and D. H.
Turner. 1989. Laser temperature-jump, spectroscopic, and thermody-
namic study of salt effects on duplex formation by dGCATGC.
Biochemistry. 28:4283–4291.

37. Nakano, S., M. Fujimoto, H. Hara, and N. Sugimoto. 1999. Nucleic
acid duplex stability: influence of base composition on cation effects.
Nucleic Acids Res. 27:2957–2965.

38. Hou, M. H., S. B. Lin, J. M. Yuann, W. C. Lin, A. H. J. Wang, and
L. S. Kan. 2001. Effects of polyamines on the thermal stability and
formation kinetics of DNA duplex with abnormal structure. Nucleic
Acids Res. 29:5121–5128.

39. Serra, M. J., J. D. Baird, T. Dale, B. L. Fey, K. Retatagos, and E.
Westhof. 2002. Effects of magnesium ions on the stabilization of
RNA oligomers of defined structures. RNA. 8:307–323.

40. SantaLucia, J., Jr., and D. Hicks. 2004. The thermodynamics of DNA
structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33:415–440.

41. Manning, G. S. 1978. The molecular theory of polyelectrolyte
solutions with applications to the electrostatic properties of polynu-
cleotides. Q. Rev. Biophys. 11:179–246.

42. Oosawa, F. 1971. Polyelectrolytes. Marcel Dekker, New York.

43. Manning, G. S. 2001. Counterion condensation on a helical charge
lattice. Macromolecules. 34:4650–4655.

44. Klapper, I., R. Hagstrom, R. Fine, K. Sharp, and B. Honig. 1986.
Focusing of electric fields in the active site of Cu-Zn superoxide
dismutase: effects of ionic strength and amino-acid modification.
Proteins. 1:47–59.

45. Gilson, M. K., K. A. Sharp, and B. Honig. 1987. Calculating the
electrostatic potential of molecules in solution: method and error
assessment. J. Comput. Chem. 9:327–335.

46. Sharp, K. A., and B. Honig. 1990. Calculating total electrostatic
energies with the nonlinear Poisson-Boltzmann equation. J. Phys.
Chem. 94:7684–7692.

47. Nicholls, A., and B. Honig. 1991. A rapid finite-difference algorithm,
utilizing successive over-relaxation to solve the Poisson-Boltzmann
equation. J. Comput. Chem. 12:435–445.

48. You, T. J., and S. C. Harvey. 1993. Finite element approach to the
electrostatics of macromolecules with arbitrary geometries. J. Comput.
Chem. 14:484–501.

49. Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon.
2000. Electrostatics of nanosystems: application to microtubules and
the ribosome. Proc. Natl. Acad. Sci. USA. 98:10037–10041.

50. Grant, J. A., B. T. Pickup, and A. Nicholls. 2001. A smooth
permittivity function for Poisson-Boltzmann solvation methods.
J. Comput. Chem. 22:608–640.

51. Sept, D., N. A. Baker, and J. A. McCammon. 2003. The physical
basis of microtubule structure and stability. Protein Sci. 12:2257–
2261.

52. Record, M. T., Jr., and T. M. Lohman. 1978. A semiempirical
extension of polyelectrolyte theory to the treatment of oligoelectro-
lytes: application to oligonucleotide helix-coil transitions. Biopoly-
mers. 17:159–166.

53. Fenley, M. O., G. S. Manning, and W. K. Olson. 1990. Approach to
the limit of counterion condensation. Biopolymers. 30:1191–1203.

54. Manning, G. S., and U. Mohanty. 1997. Counterion condensation on
ionic oligomers. Physica A. 247:196–204.

55. Tan, Z. J., and S. J. Chen. 2005. Electrostatic correlations and
fluctuations for ion binding to a finite length polyelectrolyte. J. Chem.
Phys. 122:044903.

56. Kotin, L. 1963. On the effect of ionic strength on the melting tem-
perature of DNA. J. Mol. Biol. 7:309–311.

57. Baldwin, R. L. 1971. Experimental tests of the theory of deoxy-
ribonucleic acid melting with d(T-A) oligomers. Acc. Chem. Res. 4:
265–272.

58. Korolev, N., A. P. Lyubartsev, and L. Nordenskiöld. 1998. Appli-
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