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ABSTRACT We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic
deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional
forms for thermal undulation and peristaltic amplitudes as a function of wavelength and predicts previously overlooked
relationships between these curves. Undulation and peristaltic spectra display excellent agreement with data from both
atomistic and coarse-grained models over all simulated length scales. Additionally, the model accurately predicts the bilayer’s
response to a cylindrical protein inclusion as observed in coarse-grained simulation. This elastic response provides an
explanation for gramicidin ion channel lifetime versus membrane thickness data that requires no fit constants. The physical
parameters inherent to this picture may be expressed in terms of familiar material properties associated with lipid monolayers.
Inclusion of a finite monolayer spontaneous curvature is essential to obtain fully consistent agreement between theory and the
full range of available simulation/experimental data.

INTRODUCTION

At and near physiological temperatures, lipid bilayers exhibit

significant thermal fluctuations in microscopic structure,

composition, and shape as dictated by equilibrium statistical

mechanics (1,2). Membranes are not static, flat homoge-

neous structures—not only because of metabolic activity

and biological structures at the plasma membrane surface

(cytoskeleton, caveolae, lipid rafts, coated pits, etc.), but

also because of these purely physical considerations.

Although living cells are certainly not equilibrium structures,

it is important to fully understand the thermal behavior of

model membrane systems as a preliminary step toward

unraveling biologically relevant phenomena at membrane

surfaces.

Thermal fluctuations in lipid bilayers have been impli-

cated in a variety of biophysical phenomena, including (but

not limited to) steric repulsions between proximal bilayers

(3,4), shape fluctuations of the red blood cell (5), cellular

motility (6), and entropically driven interactions between

integral membrane proteins (7,8). Traditionally, our theoret-

ical understanding of such phenomena has rested upon

simplified analytical theories, in the spirit of work by

Helfrich (9) and others (3,10,11). Since these theories

describe the bilayer by one or more continuous fields in

space without any atomic/molecular level resolution, we will

refer to them as elastic pictures. Physical properties needed

in the formulation of such theories (elastic moduli, interfacial

tensions, etc.) are typically guessed or inferred (often

indirectly) from experiment. More recently, molecular

dynamics simulation has evolved as a potential means to

connect theoretical models with specific lipid bilayers by

providing physical parameters directly from computer

experiments.

In principle, it should be possible to extract the parameters

inherent to elastic models directly from atomistic simula-

tions. In such a scheme, differences in behavior due to lipid

composition would be fully predicted by detailed simula-

tions of chemically distinct bilayers over relatively small

length scales. In practice, the correspondence between elastic

models and molecular simulations has yet to be fully

developed. Although the extraction of bilayer bending

moduli and surface tensions through analysis of thermal

membrane height fluctuations (undulations) is well estab-

lished (12–19), the corresponding interpretation of bilayer

thickness (peristaltic) fluctuations is less common (13–15).

(See Fig. 1 for an explanation of height versus thickness

fluctuations.) Perhaps one reason for this is that current

protocols for fitting peristaltic data involve separately

analyzing simulations over multiple wavelength regimes,

without clear rules for how to effect such a separation.

Furthermore, one expects that the elastic properties involved

in both peristaltic and height fluctuations derive from the

same source, yet present theories do not fully account for the

interrelations between these two types of deformation.

Finally, it should be noted that there is some discrepancy

in how various groups treat data stemming from the short

wavelength protrusion regime (Fig. 1 A). Although numer-

ous theoretical studies have considered long-wavelength

undulation modes, long-wavelength peristaltic modes, and

protrusion modes in separate contexts (3,9–11,13), to date no

single unifying theory has been advanced that can account

for all of these behaviors. So, although the physical basis for

these behaviors is fairly well established, it is unclear how to

best interpret data quantitatively, since it is not fully clear
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how all of these fluctuation modes are coupled and it is not

known how thermal undulation and peristaltic amplitudes are

expected to relate to one another.

In addition to describing thermal fluctuations, the elastic

properties of lipid bilayers should influence how an other-

wise homogeneous membrane will respond to the insertion

of an integral membrane protein with hydrophobic mismatch

(see Fig. 5). Indeed, much theoretical work has gone into

developing just such a picture (20–32), partly motivated by

the interplay between bilayer properties and the functioning

of integral membrane proteins (33,34). It stands to reason

that the physical properties necessary to predict the bilayer

deformation profile surrounding a protein inclusion are the

same properties necessary to understand thermal fluctuations

(assuming that both phenomena involve comparable ener-

getics). However, some of the elastic theories best suited to

explaining deformation profiles (31) contain a larger set of

physical parameters than theories currently employed to

explain homogeneous bilayer fluctuations. And, although

coarse-grained simulations of proteins within bilayer envi-

ronments sufficiently vast to test elastic theories have

recently become feasible (35–37), simulation results have

yet to be quantitatively analyzed in this context. It is still

uncertain as to whether or not elastic theories can success-

fully predict bilayer response to an embedded protein.

Similarly, it is unclear that a single elastic theory can be

applied to both thermal fluctuations and deformations due to

embedded proteins.

This article presents an elastic model for bilayer energetics

that captures bilayer undulation and peristaltic deformations

over all wavelengths. In particular, the contributions of

microscopic protrusions are handled on equal footing with

the more traditional long-wavelength bending contributions

to bilayer shape. The model is equally well suited to the

study of thermal fluctuations in homogeneous bilayers and

membrane response to embedded protein inclusions.

Other applications are certainly possible as well. Although

many of the underlying components of our theory have been

discussed in specific contexts previously, the unified formu-

lation we present is new and appealing in its ability to

consistently subsume a variety of different physical phe-

nomena. This picture naturally resolves several open ques-

tions and inconsistencies, while serving as a convenient

means to analyze simulated and experimental data. The

picture we advance is fully consistent with an array of such

data. Specifically, we call attention to the following aspects

of this work:

1. We derive an expression for thermal peristaltic fluctua-

tions from an underlying elastic model. The correspond-

ing expressions for thermal undulations are derived from

the same model and correspond to the expected (11)

Helfrich behavior at long wavelengths and protrusion

behavior over molecular wavelengths. Since both thick-

ness and height fluctuations are derived from the same

starting point, we find explicit correspondence between

physical parameters quantifying both types of fluctuation.

In particular, we predict identical bending moduli and

protrusion-associated constants for both phenomena.

2. The possibility of nonvanishing monolayer spontaneous

curvature is central to our model. Under certain param-

eter regimes, this leads to nonmonotonic behavior for

thermal peristaltic fluctuation amplitudes as a function of

wavelength (undulation modes are not affected). Such

behavior has been observed in fully atomic simulations

of dipalmitoylphosphatidylcholine (DPPC) (13) and sphin-

gomyelin (SM) (15) bilayers, but has previously been

attributed to poor sampling. Our treatment provides an

appealing alternative explanation.

3. We have used our theory to fit existing fully atomic MD

simulation fluctuation data from the literature for three

different lipid bilayers (DPPC (13), glycerolmonoolein

FIGURE 1 (A) Fluctuation modes of lipid bilayers (3,11). Over long

lengthscales, fluctuations are dominated by mesoscopic deformations

involving the concerted motion of many lipids. At wavelengths of several

nanometers and longer, molecular-level details are unimportant, with

fluctuations dominated by these long-wavelength or bending modes.

Molecular-level roughness is, of course, unavoidable at sufficiently short

wavelengths. The bilayer motions associated with molecular level fluctu-

ations are traditionally denoted ‘‘protrusions’’. The two leaflets need not

move in phase, which can result in a nonuniform thickness of the bilayer in

both the protrusion and bending regimes. (B) Definition of height and

thickness fluctuations. Shape fluctuations of the bilayer are conveniently

decomposed into height and thickness contributions. In this work, we adopt

the convention that the membrane is fluctuating around an average flat

configuration with normal in the z direction. We denote the midplane

between monolayer leaflets as a function of x,y coordinates as the height field

of the membrane (denoted h, see Eq. 5). The distance between monolayer

leaflets as a function of x,y position is referred to as the ‘‘thickness field of

the membrane’’ (denoted 2t 1 2t0, the fluctuating variable t is defined as the
thickness of a monolayer measured relative to the average tensionless

thickness to conform with convention; see Eq. 6). In practice, the position of

the individual monolayers is dictated by specific atomic groups associated

with the interface between polar and hydrophobic groups along the lipid

chain. We shall use the terms ‘‘height fluctuation’’ and ‘‘undulation’’

interchangeably to describe deviations of the height field away from the flat

reference state. Likewise, we shall refer to ‘‘thickness fluctuations’’ and

‘‘peristaltic modes’’ interchangeably. In contrast to some authors, we allow

these terms to refer to fluctuations over all wavelengths—i.e., bending and

protrusions both contribute to undulations and peristaltic modes.
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(GMO) (14), and SM (15)) and a coarse-grained (CG)

bilayer model developed in our group (16). There are a

total of five fit parameters involved in this process, with

clearly defined physical meanings. Previous fitting

schemes have all involved at least this many constants,

yet did not account for the important contribution of

finite monolayer spontaneous curvature. The obtained

numerical values for these constants are physically rea-

sonable and the quality of our fits to the data sets are

universally very good (see Fig. 4).

4. We critically analyze the results of a coarse-grained

simulation of a cylindrical protein embedded within an

otherwise homogeneous bilayer. The proposed elastic

picture quantitatively predicts the bilayer’s response to

protein-induced deformation, using elastic constants

obtained (within error bars) via analysis of thermal

fluctuations in the homogeneous bilayer. In other words,

the elastic picture we advance finds fully consistent

agreement between two very different simulations.

5. Using elastic properties derived from thermal fluctuation

data of GMO, we predict the effect of bilayer thickness

on gramicidin-A ion-channel lifetimes for monoglyceride-

based bilayers. Our procedure involves no fit parameters

and our model predicts relative lifetimes in good agree-

ment with experiment.

6. Applied to protein-induced deformations, our model

nearly reduces to the picture advanced by Aranda-

Espinoza et al. (31). In contrast to that picture, we include

the possibility of microscopic protrusions and solve for the

thermal average of the deformation profile (numerically) as

opposed to identifying the elastic minimum (analytically).

These differences are expected to produce negligible

effects for three of the four bilayers analyzed in this study

and are explicitly shown to produce negligible effect for

our CG simulation model. In this sense, we have provided

the first direct validation of Aranda-Espinoza’s theory for

predicting membrane shape around symmetric inclusions

with hydrophobic mismatch. In the case of GMO,

protrusion-bending coupling is relatively strong and we

predict that protrusions will affect the deformation profile,

leading to quantitative disagreement with Aranda-Espinoza

et al. (31). In the absence of appropriate simulation data

on GMO, this prediction remains unverified.

7. Applied to thermal membrane fluctuations, our model

predicts continuous functional forms for both undulation

and peristaltic amplitudes over all wavelengths. This

resolves the practical shortcomings of previously intro-

duced piecewise fitting techniques and, as noted above,

explains certain interrelations between these data sets.

This article is organized as follows: A General Model

presents the general theory. Fluctuation spectra of homoge-

neous membranes apply this theory to height and thickness

fluctuations, derive the expected spectra, and fit the four data

sets. Protein-induced deformation profiles applies the gen-

eral theory to inclusion deformations, presents simulation

data for the CG model, and compares material constants

derived by fitting to the deformation profile to those

extracted from thermal fluctuations of the homogeneous

membrane. Prediction of gramicidin-A channel lifetimes

presents predictions for gramicidin channel lifetime as a

function of the thickness of the surrounding bilayer, and

compares to experimental data. Finally, we conclude with a

brief discussion.

A GENERAL MODEL

We derive here our model for bilayer deformations. Because

we seek to explain both height and thickness deformations

(Fig. 1), our considerations begin with a bilayer composed of

two opposing coupled monolayers. The two leaflets do not

necessarily bend in unison, which leads to both height and

thickness fluctuations/deformations. Our starting point is the

general theory for surfactant monolayers presented in Safran

(1), but we retain fluctuations in area per lipid. We assume a

constant volume condition for hydrocarbon tails and addi-

tionally assume that lipids across from one another in

opposing leaflets share the same local area/lipid. This leads

to a theory for membrane elasticity in which thickness and

height deformations are uncoupled. The thickness deforma-

tions obey energetics consistent with the picture developed

in Aranda-Espinoza et al. (31), whereas height fluctuations

are consistent with standard Helfrich energetics. We extend

this approach to include microscopic protrusions as in the

theory of Lipowsky and Grotehans (11), but the formulation

discussed here is more general since it includes the con-

tribution of peristaltic bending modes.

Each monolayer can exhibit bending deformations described

by fields z(1, 2) (denoted as such because we always assume the

x,y plane as the reference configuration for bilayer midplane),

and is also subject to microscopic noise, or protrusions,

described by fields l(1, 2). By convention, we always take the

top leaflet to be monolayer (1). Consequently the bilayer is

described by four separate (but coupled) fields: z(1)(x,y),
z(2)(x,y), l(1)(x,y), and l(2)(x,y) (Fig. 2). From this point on

and for notational simplicity, we assume the x,y dependence

without explicitly writing it. It is convenient to define

l
1
[

l
ð1Þ
1 l

ð2Þ

2
; (1)

l
�
[

l
ð1Þ � l

ð2Þ

2
; (2)

z
1
[

z
ð1Þ
1 z

ð2Þ

2
; (3)

z
�
[

z
ð1Þ � z

ð2Þ � 2t0
2

: (4)

Then, as commonly measured in simulations, the height h of

the bilayer midplane and deviations in the bilayer thickness

2t are described by
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h [ z
1
1 l

1
; (5)

t [ z
�
1 l

�
; (6)

respectively. From a theoretical perspective, we imagine

these fields to reflect precisely defined interfaces between

lipid hydrocarbon tails and surrounding water (Fig. 2). From

a practical perspective, these fields are extracted from

simulation by triangulating a surface using atoms along the

lipid chain to represent the position of such an interface (see

Fluctuation Spectra of Homogeneous Membranes for further

elaboration). Note that our thickness field t refers to

fluctuations of half the bilayer thickness and that these

fluctuations are measured relative to t0, the half-bilayer

thickness for a flat sheet in its minimal energy configuration

at vanishing tension. This seemingly odd definition has been

adopted to facilitate later connection with thickness fluctu-

ation spectra, as previously reported in the literature.

In what follows, we derive the bilayer free energy per unit

area fz(x,y) due to mesoscopic bending contributions

(z fields), and the free energy per unit area fl(x,y) due to

microscopic protrusions (l fields) and z,l coupling. Free

energies per molecule are denoted with a tilde notation ð f̃ Þ to
avoid possible confusion with energies per area.

Bending contribution

To treat bending energetics, we temporarily neglect the fields l

and treat the bilayer as the two opposing elastic sheets z(1)

and z(2). As in Safran (1), we Taylor-expand the free energies
per molecule f̃

ð1;2Þ
z to quadratic order in mean curvature H

and molecular area deviation (S � S0),

The two monolayers share identical material properties;

however, the bottom leaflet (2) is inverted relative to the

orientation of the top (1), which accounts for the sign

differences in terms with first-order curvature contributions.

The value f̃0 is the molecular free energy for a flat monolayer

evaluated at the area per molecule S0 that minimizes the free

energy under conditions of vanishing applied tension. The

primes represent derivatives with respect to S evaluated at

S0. Subscripts simply reflect the power of H that the

constants precede. Note that S(1) and S(2) are the areas per

molecule as measured perpendicular to the local monolayer

normal—i.e.,

S
ð1Þ ¼ Sxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 j=z

ð1Þj2
q

; (8)

S
ð2Þ ¼ Sxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 j=z

ð2Þj2
q

; (9)

where Sxy is area per molecule projected onto the reference

x,y plane. As discussed below, we assume this area to be

locally identical for the two leaflets.

We bind the two monolayers by requiring conservation of

volume for hydrophobic lipid tails and assuming that lipids

directly beneath one another (i.e., same x,y coordinates) in

the bilayer configuration share the same projected area/

molecule (and hence the same thickness by virtue of volume

conservation). Stated mathematically, we assume an equa-

tion of state for lipids relating local monolayer thickness to

local molecular area to be

t0+0
� ðt0 1 z

�Þ+
xy
: (10)

Note that we have made no distinction in thickness or

molecular area between the two leaflets, since we assume

these quantities to be locally identical for the two monolayers.

We comment that Eq. 10 represents only approximate

conservation of volume since we do not include the effect

of protrusions in this expression and we have neglected

contributions due to surface slope and curvature. Furthermore,

fixing identical local thickness between opposing monolayers

represents a seemingly harsh constraint. The scheme we adopt

has the advantage of mathematical simplicity, both in formula-

tion and final results. These assumptions naturally lead to a

decoupling between peristaltic and undulation modes with

identical bending moduli characterizing these two types of

deformation. Similar treatments invoking different assumptions

at this stage predict different bending moduli and/or coupling

between height and thickness fluctuations (unpublished work);

FIGURE 2 Defining the elastic model for bilayer deformations. Micro-

scopic fluctuations l(1, 2)(x,y) roughen the molecularly smooth interface

z(1, 2)(x,y) between each leaflet and water. The values of l(1, 2) are defined

relative to z(1, 2), respectively. Note that it is the sum z(1, 2) 1 l(1, 2) that

defines the interface between polar and hydrophobic groups for each leaflet,

as discussed in Fig. 1. The fields z(1, 2) should be regarded as mesoscopic

fields reflecting an implicit local averaging over molecular fluctuations in the

sense of Landau order parameters. At short wavelengths there are too few

molecules to provide a smooth coarse-grained average, and we include the

effect of these molecular fluctuations via the fields l(1, 2). This is essentially

the picture adopted in Lipowsky and Grotehans (11).

f̃
ð1Þ
z ðSð1Þ

;H
ð1ÞÞ ¼ f̃0 1

1

2
f̃$0 ðSð1Þ � S0Þ2 1 f̃1H

ð1Þ
1 f̃ 91 ðSð1Þ � S0ÞHð1Þ

1 f̃2ðHð1ÞÞ2

f̃
ð2Þ
z ðSð2Þ

;H
ð2ÞÞ ¼ f̃0 1

1

2
f̃$0 ðSð2Þ � S0Þ2 � f̃1H

ð2Þ � f̃ 91 ðSð2Þ � S0ÞHð2Þ
1 f̃2ðHð2ÞÞ2: (7)
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such effects do not seem to be supported by simulation or

experiment. In any event, the ultimate justification of these

simplifications is the correspondence we find between simula-

tion data and the predictions of our theoretical model. The

following sections will demonstrate the correspondence to be

very good.

Implementation of Eq. 10 on the expressions in Eq. 7 is

handled conveniently in the Monge gauge. The bilayer free

energy per area projected onto the x,y plane, fz, is calculated
by noting, for the total bending energy of the bilayer,

Fz ¼
Z
A

f̃
ð1Þ
z

Sxy

dxdy1

Z
A

f̃
ð2Þ
z

Sxy

dxdy

¼
Z
A

fzðx; yÞdxdy; (11)

where A is the area of the surfaces projected onto the x,y plane.
Implementing the Monge representation for small curvatures

((Hð1Þ ¼ 1=2=2zð1Þ;Hð2Þ ¼ 1=2=2zð2Þ)) in our monolayer

free energy expressions, and truncating all expansions to

second-order in deformation fields, we arrive at

fzðx; yÞ ¼ f̃0
2

S0

1
2

t0S0

z
�

� �
1

f̃$0 S0

t
2

0

ðz�Þ2

1
f̃1
S0

=
2
z
�
1

f̃1
t0S0

� f̃
9

1

t0

� �
z
�
=

2
z
�

1
f̃2
2S0

½ð=2
z
1 Þ2 1 ð=2

z
�Þ2�: (12)

It is clear from this expression that undulations and

peristaltic excitations are decoupled. We identify one of the

constants appearing in the above expression, by comparing the

undulation term (the one involving z1) with the usual Helfrich
formula (1,9). The term associated with f̃$0 involves compres-

sion of the bilayer, since z� and (S � S0) are connected

through volume conservation, which allows us to identify this

constant with the usual bilayer compression modulus. The

term in braces on the first line integrates to the total number of

lipids in the bilayer, and so we identify f̃0 with the lipid

chemical potential. Under conditions of vanishing tension, this

quantity vanishes. The remaining constants are clearly related

to the spontaneous curvature of the component monolayers,

as can be seen by examining Eq. 7 (1,31). Explicitly, we

deduce

f̃0 ¼ 0

f̃2
S0

¼ kc

2f̃$0 S0 ¼ kA

f̃1
S0

¼ 2kcc0

f̃ 91
S0

¼ 2kcc90: (13)

For future convenience, the values kA and kc are defined

here as the compressibility modulus and bending modulus for

the bilayer. The analogous quantities associated with the

monolayers are obtained by dividing the bilayer values in half.

The spontaneous curvature c0 and area derivative of the

spontaneous curvature c90 [ @c0/@SjS¼S0
are the values

associated with the individual monolayers. As is evident from

Eq. 12, the derived behavior of the bilayer for two identical

opposing leaflets yields vanishing bilayer spontaneous curva-

ture regardless of the monolayer values. Spontaneous curva-

ture of the monolayers manifests itself only through peristaltic

deformations and fluctuations. Our convention for sign of c0
insures that positive values encourage a monolayer to form

micelles, and that negative values favor reverse micelles.

Adopting the notation specified above, Eq. 12 becomes

fz ¼
kc

2
ð=2

z
1 Þ2 1 kA

2t20
ðz�Þ2 1 2kcc0=

2
z
�

1 2kcz
z
�

t0
=

2
z
�
1

kc

2
ð=2

z
�Þ2; (14)

where we have defined

z [ c0 � c90+0
: (15)

The pieces of Eq. 14 are easily interpreted. The first term

consists of the usual Helfrich bending component associated

with a tensionless fluid surface with vanishing spontaneous

curvature. It is this portion of the energetics that is usually

considered in long wavelength studies of membranes, where

peristaltic fluctuations are assumed to be unimportant. The

remaining terms describe contributions to the energetics due to

out-of-phase motion (peristaltic deformations) of the two

monolayers. The second term corresponds to the energetic cost

of area stretching/compression that accompanies a thickness

fluctuation. The remaining terms reflect bending energetics

due to the peristaltic modes analogous to the undulation

expression. Note, however, the terms resembling (thickness-

dependent) nonvanishing spontaneous curvature contributions

for peristaltic deformations. Spontaneous curvature terms

vanish in bilayer undulations (formed from identical mono-

layers), since the contributions from opposing leaflets exactly

cancel. The opposite is true for peristaltic fluctuations—the

two monolayers’ energetics reinforce one another, and we

expect to see a contribution to the peristaltic modes reflecting

this fact (unless the monolayers themselves have a vanishing

spontaneous curvature and vanishing area derivative of c0).

Protrusion contribution

Thus far, we have neglected the microscopic protrusion

fields l(1,2). We expect the interface between monolayers and

water to be subject to microscopic noise, not represented in

the coarse-grained bending energetics discussed in the

previous section. At the oil-water interface, this noise has

the potential to affect membrane energetics by altering the
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water structuring proximal to the membrane. Although more

refined approaches are possible (11), we adopt an elastic

description of this noise similar to that proposed by

Lipowsky and Grotehans (11). The free energy per unit

area is composed of a surface area term, reflecting the in-

terfacial tension between hydrocarbon tails and water, plus a

binding term to keep the fluctuations localized to the coarse-

grained average fields z(1,2),

f ð1Þ
l

¼ glDAð1Þ
1

kl

2
ðlð1ÞÞ2; (16)

f
ð2Þ
l

¼ glDA
ð2Þ
1

kl

2
ðlð2ÞÞ2; (17)

where the additional surface area introduced by the fields l

is, to quadratic order,

DA
ð1Þ ¼ ð=ðzð1Þ 1 l

ð1ÞÞÞ2 � ð=zð1ÞÞ2

2
; (18)

DA
ð2Þ ¼ ð=ðzð2Þ 1 l

ð2ÞÞÞ2 � ð=z
ð2ÞÞ2

2
: (19)

We subtract off the areas of the bare sheets’ z(1,2) con-
tribution because the interfacial free-energy-associated mo-

lecularly smooth shape changes are incorporated within the

free energy fz. In other words, if the membrane is micro-

scopically smooth, this means l ¼ 0 everywhere, and fl
should vanish.

The interfaces are assumed not to affect one another

beyond those contributions seen in fz, so the total contribu-

tion of protrusion energetics is the sum from both interfaces:

fl ¼ fl
(1) 1 fl

(2). In terms of our symmetric/antisymmetric

variables (Eqs. 1 and 2), the protrusion contribution to the

free energy is

fl ¼ gl½ð=l
1 Þ2 1 ð=l�Þ2 1 2=z

1 � =l1 1 2=z
� � =l��

1 klðl1 2
1 l

�2Þ: (20)

The main difference between Eq. 20 and the expression of

Lipowsky and Grotehans is the presence of the =z� � =l�
term. Lipowsky and Grotehans treated the bilayer as two

microscopic fields grafted to one central elastic sheet, so z�

(the distance between elastic sheets) was necessarily zero

everywhere. An additional minor difference is that in our

model, l1 and l� are naturally bound by the same constant

(kl), whereas Lipowsky and Grotehans allow for two

different constants. Given the present formulation, the use

of a single kl constant is physically required. In some sense,

the idea of two different protrusion constants comes about in

our picture naturally through the incorporation of peristaltic

bending modes (z�). The relation between peristaltic modes

and undulations at short wavelengths is predicted in our

model, based on the bending elastic constants previously

discussed and two constants associated with protrusions.

The total free energy density for the membrane is f ¼
(fz 1 fl), yielding the entire free energy for the bilayer in a

given configuration as

F ¼
Z
A

dxdy
kc

2
ð=2

z
1 Þ21kll

1 2
1glð=l

1 Þ2 1 2gl=z
1 � =l1

�

1
kA

2t
2

0

ðz�Þ2 1 2kcc0=
2
z
�
1 2kcz

z
�

t0
=

2
z
�
1

kc

2
ð=2

z
�Þ2

1 kll
�2
1 glð=l

�Þ2 1 2gl=z
� � =l�

�
: (21)

We emphasize again that A reflects the area of the lipid

bilayer projected to the x,y plane. If the bilayer encompasses

regions devoid of lipids (as when a protein is embedded), the

integral reflects that portion of space occupied by the lipids.

Terms in the first line (1 terms) affect height fluctuations,

whereas terms in the second and third lines (� terms) affect

thickness fluctuations and the two portions are entirely

decoupled. This expression is one of the main results of this

article. All other calculations follow from this expression for

bilayer energetics. We can immediately apply this Hamilto-

nian to both thermal fluctuation spectra for bilayers (next

section) and the deformation profiles induced by membrane

proteins (see Protein-Induced Deformation Profiles). For the

most part, individual terms appearing within Eq. 21 (or slight

variations) have appeared in one or more previous theoretical

treatments of bilayer and/or monolayer energetics. We

believe this to be the first time all relevant physical effects

have been encompassed within a single framework to

describe both undulation and peristaltic excitations over all

wavelengths, including the protrusion regime. This formu-

lation has significant practical and theoretical advantages, to

be elaborated upon in the following sections.

FLUCTUATION SPECTRA OF
HOMOGENEOUS MEMBRANES

The fluctuation spectra characterize the thermal height

fluctuations Æjhqj2æ and thickness fluctuations Æjtqj2æ of the

bilayer as a function of wavevector q. Measurement of the

height fluctuations via simulation has become a standard

(12–19) method to calculate the effective bending rigidity and

surface tension of homogeneous fluid membranes. Fewer

studies (13–15) on thickness fluctuations have been con-

ducted, perhaps because there are few direct experimental

counterparts. The present model predicts continuous func-

tional forms for both Æjhqj2æ and Æjtqj2æ and represents an

immediate application of our Hamiltonian. The following

subsections derive the exact predicted forms for the two

spectra and go on to suggest a physically motivated simpli-

fication that makes the expressions more compact and simpler

to interpret. We demonstrate the close agreement between the

full and approximate forms for reasonable physical constants

in Appendix A. Using the approximate forms (exact forms

yield identical results to within error bars), we fit four sets of

simulation data from different lipid bilayer simulations. The

calculated fits display excellent agreement with simulation

results and predict physically reasonable elastic constants.
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Theory

To derive the fluctuation spectrum for a homogeneous

membrane, we consider the Hamiltonian in Eq. 21 for a

membrane in a square periodic box of area A ¼ L2. We use

the conventions for the Fourier-transform pair of

gq ¼
1

L

Z
drgðrÞe�iq�r

; (22)

gðrÞ ¼ 1

L
+
q

gqe
iq�r
; (23)

for an arbitrary function g and q ¼ 2p(n, m)/L for the

integers n, m ¼ 0, 61, . . .N, where N is dictated by a short

wavelength cutoff. In Fourier space, the Hamiltonian

equation (Eq. 21) becomes

F ¼ 1

2
+
q

ðkcq
4Þz1q z

1

�q 1 2ðkl 1 glq
2Þl1q l

1

�q 1 4glq
2
z
1

q l
1

�q

1
1

2
+
q

ðkA=t20 1 kcq
4 � 4kczq2

=t0Þz�q z��q

1 2ðkl 1 glq
2Þl�

q l
�
�q 1 4glq

2
z
�
q l

�
�q: (24)

Note that since Z
L
2

dr=2
z
� ¼ 0; (25)

under periodic boundary conditions, one term from the

general expression does not appear in Eq. 24. The remaining

expression implies that one cannot measure c0 and c09 in-

dependently using the fluctuation spectra, but only the linear

combination contained within z. To measure c0 indepen-

dently, we use the membrane stress profile (Fig. 3).

F contains terms for coupling protrusion and bending

modes. Although certainly solvable, the resulting averages

are somewhat complicated:

It is well established (12–19) that for long wavelengths

(small q), the height fluctuations of a nearly flat bilayer at

zero tension follow

Æjhqj2æ ¼
kBT
~kkcq

4; (27)

where ~kkc is the effective bending rigidity, essentially defined
by Eq. 27. Expanding Eq. 26 around small q,

Æjhqj2æ ¼
kBT

kcq
4

1

1� 2g
2

l
=ðklkcÞ

1O
1

q2

� �
; (28)

we recover the form of Eq. 27, but with a renormalized

bending rigidity,

~kkc ¼ kcð1� 2g
2

l
=ðklkcÞÞ: (29)

This relationship demonstrates that, as first derived by

Lipowsky and Grotehans (11), protrusions lower the effec-

tive bending rigidity relative to the bare value. Note that ~kkc
remains positive only if 2gl

2/(klkc) , 1, which sets obvious

limitations on the relative magnitudes of the elastic constants

as discussed by Lipowsky and Grotehans (11). The collec-

tion of constants 2gl
2/(klkc) represents a measure of the

coupling strength between protrusions and bending modes.

If this coupling were to become very strong, our entire

physical picture would be suspect. We expect (and find in

Comparison to Simulation Data, below) this number to be

quite small for actual lipid systems.

Decoupled protrusion/bending approximation

An obvious way to interpret fluctuation spectra would be to

fit data to the full forms of Eq. 26. This is possible and we

include such curves in Appendix A. The algebraically

complex nature of these expressions makes interpretation

difficult, however—and it would be desirable to have

simpler approximate expressions. Previous analyses of

simulated height fluctuation spectra have involved functions

that display the same small q and large q behavior as in Eq.

26, such as (13–15)

Æjhqj2æ ¼

kBT
~kkcq

4 : q, qc

kBT

2glq
2 : q. qc

;

8>><
>>:

(30)

where qc is typically on the order of the membrane thickness,

or (12)

Æjhqj2æ ¼
kBT
~kkcq

4 1
kBT

2glq
2: (31)

The limiting forms suggested above are easily predicted

from Eq. 26 in the two extreme regimes of q /N and q / 0.

Given actual lipid systems, however, these expressions do

not faithfully reproduce the results of full calculations. In

Appendix A, we compare Eqs. 31 and 26 for several parameter

sets, and demonstrate that Eq. 31 is not a dependable

approximation for wavelengths on the order of the membrane

thickness.

Æjhqj2æ ¼ Æðz1q 1 l
1

q Þðz
1

�q 1 l
1

�qÞæ ¼ kBT
2ðkl 1 glq

2Þ � 4glq
2
1 kcðq4Þ

2ðkl 1 glq
2Þkcðq4Þ � 4g

2

l
q
4

Æjtqj2æ ¼ Æðz�q 1 l
�
q Þðz

�
�q 1 l

�
�qÞæ ¼ kBT

2ðkl 1 glq
2Þ � 4glq

2
1 ðkcq

4 � 4kczq
2
=t0 1 kA=t

2

0Þ
2ðkl 1 glq

2Þðkcq
4 � 4kczq

2
=t0 1 kA=t

2

0Þ � 4g
2

l
q
4 : (26)
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We suggest alternate approximate forms for the spectra

based on the assumption of decoupling between protrusion

and bending modes. When all terms containing z1q l
1
q and

z�q l
�
q are set to zero in Eq. 24, the spectra become

Æjhqj2æ ¼
kBT

kcq
4 1

kBT

2ðkl 1 glq
2Þ

Æjtqj2æ ¼
kBT

kcq
4 � 4kczq

2
=t0 1 kA=t

2

0

1
kBT

2ðkl 1 glq
2Þ
: (32)

The suitability of these expressions for describing numer-

ous bilayer systems is demonstrated in Comparison to

Simulation Data, below, and their numeric equivalence to the

expressions in Eq. 26 for a range of constants is demon-

strated in Appendix A. We note that these expressions could

have been written down immediately by realizing that h and t
both represent the sum of protrusion and bending fields (Eqs.

5 and 6). If these fields are independent of one another (i.e.,

no coupling), the variance of these sums is the sum of the

variances associated with protrusion fluctuations and bend-

ing fluctuations. The two terms in both of the expressions in

Eq. 32 reflect individual contributions from bending and

protrusions. The most novel of all these terms is the bending

contribution of the thickness spectra. To our knowledge, the

incorporation of spontaneous curvature effects has not been

pursued previously. Although the approximations in Eq. 32

do an excellent job for the lipid systems considered in

this work, it is possible that other bilayers will exhibit

stronger coupling between protrusion and bending modes. In

such a case, it would be necessary to employ the full-forms

(Eq. 26). In this work we use the expressions in Eq. 32 to

fit simulation spectra and always find (see caption of Table 1)

that the measure of coupling strength discussed above,

2gl
2/(klkc), is 0.3 or smaller. This provides us with a

consistency check on the use of this approximation.

Although the expressions in Eq. 32 appear similar to

previously published expressions, we emphasize several key

differences:

They are continuous, rather than piecewise, expressions.

This eases data fitting considerably, by avoiding a priori

designation of individual data points to specific regimes.

Although continuous expressions have been put forward

(12) for the case of height fluctuations, no corresponding

expressions have previously been discussed in the context

of peristaltic fluctuations.

The protrusion regimes of both spectra contain the constant

term kl. In the limiting case of q / N this constant is

negligible, but, as shown in Appendix A, most large q-data
for actual systems does not correspond to this limit.

The monolayer spontaneous curvature contributes an effec-

tive negative surface tension to the thickness fluctuations

(we find z . 0 for all simulated data sets). This term,

which was neglected in previous analyses, can result in a

nonmonotonic thickness fluctuation spectrum.

Due to our assumption of volume conservation, the

compressibility modulus kA appears in the thickness

fluctuations (as opposed to a separate leaflet binding

constant ke (13–15)). In Comparison to Simulation Data,

we discuss the validity of calling this constant kA.
We predict the height and thickness spectra to be charac-

terized by the same bending rigidity. Furthermore, this

bending rigidity corresponds to twice the bending rigidity

of each leaflet. In analyzing their simulations, the authors

of Lindahl and Edholm (13), Marink and Mark (14), and

TABLE 1 Material properties of DPPC (13), GMO (14), SM (15), and CG bilayers, as measured by various methods

System Method
kl

10
�20

J

nm
4

� �
gl

10
�20

J

nm
4

� �
kc(10

�20
J)

kA

t
2

0

10
�20

J

nm
4

� �
z

t0

1

nm
2

� �
c0

t0

1

nm
2

� �

DPPC Present 14 (8.9�21) 1.5 (1.0�1.9) 4.3 (3.4�5.8) 1.1 (0.83�1.3) 0.18 (0.13�0.20)

Original (13) 2.5 4 0.4y/8.2*

GMO Present 2.9 (2.1�3.7) 1.3 (1.0�1.6) 3.8 (3.4�4.6) 41 (25�72) 0.73 (0.12�1.4)

Original (14) 0.85 4 6y/27*

SM Present 4.5 (2.9�8.3) 2.1 (1.7�2.5) 41 (25�110) 53 (17�170) 0.53 (0.23�0.63)

Original (15) 4.0 41 6.5y/83*

CG Spectra 6.3 (4.9�7.7) 1.3 (1.0�1.4) 14 (11�18) 12 (9.4�15) 0.085 (0�0.16)

Area fluct. 3.1

Stress profile 0.017

Inclusion:No tilt 10.4 (3.3�16) 0.21 (0.10�0.25) 0.020 (0.0067�0.025)

Inclusion:Tilt 8.2 (4.7�17) 0.23 (0.16�0.37) 0.020 (0.010�0.058)

Present or Spectra means that the undulation and peristaltic spectra were fit to the expressions in Eq. 32. Numbers in parentheses are the 95% confidence

intervals. Original refers to the values reported in previously published work. Except where otherwise noted, these values were extracted from the fluctuation

spectra. All data for the CG model is newly presented in this article, and so there is no Present/Original designation for that data. To calculate kA/t0
2 from the

area fluctuations, we used the following values of t0: DPPC (13), 1.8 nm; GMO (14), 1.5 nm; SM (15), 2.5 nm; and CG, 2.4 nm. The coupling parameter

2g2/klkc is, for DPPC, 0.08; for GMO, 0.3; for SM, 0.06; and for CG, 0.04.

*kA derived from area fluctuations.
ykA derived from thickness fluctuations as interpreted in the original study.
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Chiu et al. (15) allowed thickness and undulation bending

rigidities to differ from one another.

The protrusion regimes of both the height and thickness

fluctuations are identical. Although both Lindahl and

Edholm (13) and Marrink and Mark (14) noted such

equivalence in their data, they did not mandate it in their

fitting procedure. In fact, according to the expressions in

Eq. 32, the height spectrum should, in principle, contain

no information beyond that already contained in the cor-

responding thickness spectrum. In practice, it is easier to

extract kc from the height spectrum than the thickness

spectrum, so it is worthwhile to analyze both data sets

simultaneously.

In summary, we have presented a theory with the same

overall number of fit constants (five) as that presented in

Lindahl and Edholm (13), but which includes the protrusion

restoring force, the monolayer spontaneous curvature, and

the area dependence of this spontaneous curvature.

COMPARISON TO SIMULATION DATA

Four sets of simulation data collected at vanishing tension

were analyzed using the analytical model just described.

The three data sets taken from atomic simulations

(DPPC(13), GMO(14), and SM(15)) have appeared else-

where. The coarse-grained data was taken using a model

presented in Brannigan et al. (16) and readers are referred

there for a full description of the model. The model

parameters remain unchanged from that study, with the

exception of the temperature. The simulations discussed in

this article were all run at kBT ¼ 0.85e, while simulations in

Brannigan et al. (16) were run at kBT ¼ 0.9e, where e

represents the energy scale e ¼ 2.75 kJ/mol. Systems at the

lower temperature equilibrate more quickly. They also have

a much lower monomer fraction (fraction of molecules that

are not in the membrane), which simplifies analysis. Studies

of phase behavior (not presented here) put the melting

temperature of the five bead bilayer at ;kBT ¼ 0.7e, so we

are still well within the fluid region. Also, although

Brannigan et al. (16) discussed a range of values for the

molecular bending rigidity cbend, all simulations in this

article use cbend ¼ 7e.

The height and thickness fluctuation spectra for DPPC,

GMO, and SM are reproduced in Fig. 4, along with the

corresponding data from our coarse-grained (CG) model. In

the case of the atomistic studies, data presented in these

figures necessarily reflect the conventions used in the

original simulations. For DPPC, the position of the water-

hydrophobic tail interfaces (z(1) 1 l(1) and z(2) 1 l(2) in our

notation) were defined by the position of the carbon

connecting the tails to the headgroup (13). A similar

definition was used for SM (specifically, the location of the

C13 atom (15)). In GMO, the interfaces were defined by the

surfaces separating water from hydrophobic components of

the bilayer core, irrespective of which carbon atom(s) along

the chain happened to lie nearest the water (personal

communication, S.-J. Marrink, 2005). In the CG model the

interface was defined by the position of the second bead

along the chain (the so-called interface bead (16)). In DPPC,

GMO, and CG, the thickness is defined as one-half the

distance between corresponding interface groups in oppos-

ing leaflets, whereas in SM the monolayer thickness was

measured directly (the distance between leaflets and corre-

lations between leaflets were neglected). It is worth empha-

sizing at this point that only the data collected for the CG

model, GMO, and DPPC correspond well to the analytical

model we have presented; SM data is somewhat different,

due to the individualized treatment of monolayers.

For each system, we have two data sets (height and

thickness spectra). We fit these data sets simultaneously to

the expressions in Eq. 32 using the five elastic constants

(kc, kA, z, kl, and gl) as fit parameters. Our fitting algorithm

is described in Appendix B and our fitting script is available

on the Internet (38). Best-fit elastic constants are displayed

in Table 1, along with the 95% confidence intervals for each

fit parameter. The method for obtaining these confidence

intervals is also described in Appendix B.

All four data sets are well described by the analytical

model (expressions in Eq. 32), and, as demonstrated in

Appendix A, the resulting numbers are consistent with the

approximation that protrusion and bending modes are

uncoupled. Furthermore, when we fit these data sets to the

full form for the spectra (expressions in Eq. 26), we obtain

curves that are essentially identical to those resulting from

the approximate fits, and the fit parameters all agree within

confidence intervals. As also shown in Appendix A, the

effective negative tension induced by finite positive z can

play a significant role in determining these spectra. In fact,

this negative tension provides a possible explanation for the

nonmonotonic behavior (previously (13) attributed to poor

sampling) seen in two of the atomistic spectra.

The bending rigidities for undulations remain essentially

unchanged from the original analyses, but we report different

values for the remaining constants. Reported values for the

FIGURE 3 Stress profile for homogeneous coarse-grained bilayer with

128 lipids at constant vanishing tension. The monolayer spontaneous

curvature is related to g(z) through Eq. 33.
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interfacial tension gl originally ranged from 8.5 mN/m2 for

GMO (14) to 40 mN/m2 for SM (15). Since this number is

expected to primarily represent the tension associated with

the oil-water interface (with some renormalization due

to lipid shape (11)), such variation is surprising. Upon

reanalysis, we report gl ranging from 13 mN/m for GMO to

23 mN/m for SM, which is a more reasonable range. Upon

correcting for molecular shape as advocated by Lipowsky

and Grotehans (11), we obtain a range of 11–18 mN/m.

Theoretical predictions suggest that gl should fall between

20 and 50 mN/m (39).

The compressibility modulus kA is usually measured by

area dependence of the surface tension (12) or fluctuations in

the area per molecule (40). The latter method was used to

measure kA in the three studies already published (DPPC,

GMO, SM) and, consequently, we have also used it to

measure kA in the coarse-grained model. Table 1 compares

kA as measured by the area fluctuations, to kA as measured by

the thickness spectrum, for all four systems studied. There is

clear order-of-magnitude correspondence, and the discrep-

ancies do not appear systematic: for DPPC and SM the area

fluctuations suggest a greater kA, whereas for GMO and CG,

the thickness spectrum suggest a greater kA. (We assume it is

a coincidence that DPPC and SM are the double-chained

lipids, although GMO and CG are single-chained.) Aside

from finite size-effects and noted problems in converging kA
(40), other possible sources of the discrepancy are that:

1. The volume per lipid is not strictly conserved in real

systems. In this case, our analytical model is still valid,

but it is not appropriate to identify the constant we have

been referring to as kA with the true area compressibility

modulus.

2. Our assumption that protrusions do not enter into the

volume conservation condition may be incorrect. If the

membrane can pull volume from l as well as z, one
expects our measurement of kA via the thickness fluc-

tuations to be too high. Protrusions allow for another

degree of freedom to facilitate lipid compressibility. Since

we do not see a systematic trend of thickness determined

kA being too large, this possibility cannot account for all

observed discrepancies.

FIGURE 4 Height (Æjhqj2æ) and thickness (Æjtqj2æ) fluc-
tuations for DPPC (13), GMO (14), SM (15), and a coarse-

grained model (CG). Simulation data are displayed as

circles. The lines represent best fits of the data to the

expressions in Eq. 32. Fit parameters are in Table 1.
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3. Definition of the bilayer thickness is subject to a certain

amount of ambiguity as evidenced by the various

procedures employed in calculating this field by the

original workers. For instance, in GMO, the thickness

spectrum reflects a more general definition of the inter-

facial surface than was introduced in the other simulations.

Although the interfaces defined for GMO probably

correspond more precisely with the true interfacial

surfaces than the other simulations, this definition actually

contrasts somewhat with our theoretical treatment of area/

lipid, conservation of hydrophobic volume, and related

issues. It is possible that the procedure used for collection

of GMO data tends to underemphasize thickness fluctu-

ations, relative to the other studies. Such an effect would

lead to an anomalously high value for kA. Similarly, in the

SM data, each leaflet has been Fourier-transformed and

squared separately; consequently, this data neglects cor-

relations between the leaflets. If thickness fluctuations are

anticorrelated across the two leaflets, then this data would

result in a measurement for kA that is too low. (These

variations in collection methods of the original MD data

could also potentially affect the values obtained for other

elastic constants. Since kA is the constant most directly

responsible for thickness deformations, it is reasonable

that we see the largest discrepancies here.)

As previously stated, we cannot directly extract c0 or c09
from the thickness fluctuations; we can only measure z,

which depends on both. Since fluctuation analysis does

provide the value of monolayer bending rigidity, kc/2, we
may infer c0 from analysis of the stress profile (1),

kc

2
c0 ¼ �1

4

Z
dzgðzÞjzj; (33)

where g(z) is the surface tension density at height z and the

integration is over the whole bilayer, centered at z ¼ 0. The

stress profile (Fig. 3) was measured for the CG model, as

documented elsewhere (16,41,42). To avoid the smoothing

effect of undulations (16), we measured the stress profile in a

small system (128 molecules). Using this method (and kc
obtained from the spectra), we estimate c0 ¼ 0.041 nm�1.

Using the fluctuation spectra values z/t0¼ 0.1 nm�2, t0¼ 2.4

nm, and S0¼ 0.59 nm2, we can further estimate c09¼�0.34

nm�3. This information will be useful in comparing to the

information obtained from the protein-induced deformation

data of the following section.

PROTEIN-INDUCED DEFORMATION PROFILES

Theory

Consider the bilayer model discussed in Fluctuation Spectra

of Homogeneous Membranes, above, but with a rigid

cylindrical inclusion of radius R and thickness 2D embedded

in its center. More precisely, 2D represents the thickness

adopted by the membrane right at the edge of the protein.

This value is presumably set by the presence of hydrophobic

and interface favoring residues around the protein’s exposed

surface. We seek to predict the deformation profile Æt(r)æ,
where r is the distance to the inclusion center (Fig. 5). Since

height and thickness deformations are uncoupled, we need

only consider the second and third lines of Eq. 21:

Finc ¼
Z

dr kll
�2
1 glð=l

�Þ2 1 2gl=z
� � =l�

1
kc

2
ð=2

z
�Þ2 1 2kcc0=

2
z
�
1 2kcz

z
�

t0
=

2
z
�
1

kA

2

ðz�Þ2

t
2

0

:

(34)

Instead of integrating over the whole sheet, as in the

previous section, our domain of integration is a square of

side length L with a circle of radius R cut out of the center to

accommodate the protein. Assuming that the inclusion

cannot tilt, the membrane surface is subject to the boundary

condition at r ¼ R of

tðRÞ ¼ D � t0 [ tR: (35)

It should be recalled that t0 is the equilibrium monolayer

thickness, whereas t is defined as the deviation in monolayer

thickness away from this value.

We imagine l(1,2) to represent microscopic noise or

roughness at the lipid interface. With this interpretation, it is

reasonable to assume that our thickness condition above

translates to l�(R) ¼ 0 and z�(R) ¼ D � t0, in terms of our

field variables. Because protrusion and bending deforma-

tions are coupled, this condition is not equivalent to setting

l�(r) ¼ 0 for all r, even for purposes of computing the

thermally averaged deformation. As described below, how-

ever, the inclusion deformation profile for our CG bilayer is

consistent with either constraint l�(R) ¼ 0 or l�(r) ¼ 0

everywhere since protrusions and bending modes are very

FIGURE 5 Inclusion-induced deformation. A symmetric transmembrane

protein with hydrophobic residues around its periphery and a thickness

exceeding that of the surrounding membrane will tend to distort the bilayer

as shown (not to scale). A protein thinner than the surrounding membrane is

expected to induce the opposite effect. The nonmonotonic healing of the

membrane thickness back to equilibrium separation as one moves away from

the inclusion is predicted theoretically by our model (which nearly reduces

to the theory of Aranda-Espinoza et al. (31) in the context of inclusion-

induced deformations), and observed in our simulations and similar coarse-

grained simulations (36,37).
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weakly coupled in this system. If l(r) is set to 0 for all r, Eq.
34 is equivalent to the free energy minimized analytically by

Aranda-Espinoza et al. (31) to predict the zero temperature

membrane deformation profile for a two-dimensional array

of inclusions.

We solve for the average deformation profile predicted by

Eq. 34 using Metropolis Monte Carlo simulation on a

discretized periodic square lattice. Each lattice site has an

associated value of z� and l�. A trial move consists of

randomly choosing a lattice site, which field to perturb, and

the perturbation size. The lattice has either 403 40 sites with

a spacing of 0.75 nm (CG parameters) or 603 60 sites with a

spacing of 0.25 nm (GMO parameters). These choices for the

number of sites and spacing were verified to be sufficiently

large and small, respectively, that further refinement and

system expansion did not alter our results. Lattice sites

within a radius R from the lattice center were discarded, since

the membrane does not exist inside the inclusion radius. The

only conditions directly imposed during the Monte Carlo

were periodic boundary conditions and l�¼ 0 and z�¼ tR at
the inclusion-lipid boundary. This means that membrane

slope and curvature at the inclusion/lipid boundary are

unrestricted and protrusions are allowed to occur everywhere

except at the sites immediately adjacent to the inclusion.

We ran the lattice simulation for two sets of elastic

parameters: those resulting from the CG simulations and

those resulting from the GMO simulations (Table 1). These

correspond to a system in which l� and z� are very weakly

coupled and a system in which l� and z� are more strongly

coupled, respectively. For the spontaneous curvature, which

cannot be obtained from the fluctuation spectrum, we either

used a value obtained from the stress profile (CG) or

assumed that c0 ¼ 0 (GMO). In both cases we set R ¼ 2.25

nm and tR/t0 ¼ 0.094, which coincide with the radius and the

height, respectively, of the nontilting inclusion used to

induce a deformation in the CG membrane (described in

Molecular Simulation, below).

The numerical results for CG are shown in Fig. 6 A.
Although l� does not vanish for all r, neither does it ever

constitute an appreciable amount of the deformation. Both

z�(r) and t(r)¼ z�(r)1 l�(r) very nearly obey the analytical
expression derived in Aranda-Espinoza et al. (31). Analytical

treatments based on Hamiltonians similar to Eq. 34 do not

directly solve for the thermally averaged deformation profile

(22,29–31,43–46). Instead, the minimum energy configura-

tion is determined by taking the functional derivative of Finc

(in our example), with respect to z�(r), assuming l� ¼ 0

everywhere and cylindrical symmetry of the solution around

the inclusion (31). The resulting expressions for the mini-

mum energy deformation profile are fourth-order differential

equations, the order insured by the bending (kc) terms in the

Hamiltonian. In our Monte Carlo treatment, only two

boundary conditions are necessary to run the simulation as

discussed above and one of these relates to the protrusion

modes that are neglected in analytical treatments. For the

purposes of minimization, however, we need a total of four

boundary conditions to solve the differential equation. In

practice, two of these boundary conditions typically relate to

the deformation profile at points distant from the inclusion

(to keep the solutions bounded at infinity (22), or to enforce

symmetry constraints within periodic boundary conditions

(31)) with two boundary conditions to be specified at the

edge of the inclusion. One obvious boundary condition

simply sets t(R) ¼ D as we have introduced above.

The specific form assumed for the remaining boundary

condition has become a subject of some debate. Three main

approaches have been taken: fixed slope boundary condition

(22,27,47), relaxed slope boundary condition (23,27,45), and

the so-called natural boundary condition (29–31). Those

proponents of the fixed-slope boundary condition argue that

the slope of the membrane at the inclusion boundary is a

property of the inclusion/lipid system that cannot be

determined by elastic models, but instead must be extracted

from experiments. The relaxed slope boundary condition, on

the other hand, requires that the membrane slope assume that

value which minimizes the elastic free energy. The natural

boundary condition argues on mathematical grounds that it is

the membrane curvature, rather than the slope, which should

FIGURE 6 Average deformation profiles of the

fields z� (solid) and l� (dashed) around a cylindrical
inclusion, using Hamiltonian Eq. 34 and elastic

parameters derived from CG (left) or GMO (right),

and calculated by Monte Carlo on a square lattice.

The dotted line is the minimum energy profile

calculated analytically, employing natural boundary

conditions (l neglected) (31). In both cases the

deformation in z� is well described by the analytical

solution. For CG, l� makes a negligible contribution

to the overall thickness t ¼ l� 1 z�, so we expect

that the overall thickness deformation is also well

described by the analytical solution. In GMO, l�

exhibits a deformation of a more sizeable amplitude;

because l� and z� are anticorrelated, the overall

thickness t (see inset) is detectably more smooth than

z� alone.
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be used for the fourth boundary condition. This condition

falls out as a necessary condition when one carries out the

functional derivative in the absence of additional constraints.

Since our Monte Carlo simulation does not fix any mem-

brane derivatives at the inclusion/membrane boundary, it is

tempting to assume that natural boundary conditions are the

most appropriate to employ in a minimization scheme

aiming to reproduce the MC results. Fig. 6 A would tend to

support this conclusion. However, we stress that thermal

averages and free energy minima do not necessarily

correspond with one another. Thermal fluctuations are not

playing a significant role for the particular elastic constants

(and temperature) seen in our CG model and the minimum

energy profile does a very good job of reproducing the

Monte Carlo. The more important question of whether our

MC scheme (and treatment of the protein/bilayer boundary)

applies to reality is addressed in the following section. We

will see that treating the boundary without any additional

constraints does a very good job of reproducing our CG

simulations.

The success of the theory of Aranda-Espinoza et al. (31) in

describing the CG lattice simulation depends upon the weak

coupling between l� and z�. We now turn to a system for

which this coupling is not weak: GMO. In GMO, the

coupling constant 2gl
2/kckl ¼ 0.3, although less than unity,

is not tiny. The deformation profiles calculated using the

GMO elastic parameters are shown in Fig. 6 B. Unlike the CG
case, l� does contribute a detectable amount to the overall

deformation, smoothing out the oscillations in the observable

t ¼ z� 1 l�. Although the analytical solution describes z�

decently, it fails to quantitatively describe l� 1 z� (Fig. 6 B,
inset). Mathematically, this failure is due to the coupling

between l� and z�, which is negligible in the CG case.

Physically, the coupling between l� and z� causes protru-

sions to partially compensate for the bending deformation

induced by the inclusion. In summary, when dealing with a

molecular simulation of an inclusion in GMO, we do not

expect the thickness deformation profile to closely follow the

theory of Aranda-Espinoza et al. (31). However, we do

expect a close correspondence between the thickness

deformation profile and the analytical theory in a molecular

simulation of our CG molecules. Simulation results for the

CG model are presented in the following section. Inclusion

simulations employing GMO are presently unavailable.

MOLECULAR SIMULATION

Our simulation model for inclusions is similar in spirit to

recent studies by Nielsen et al. (37) and Venturoli et al. (36).

We model the bilayer with our CG model, and inclusions are

represented by an assembly of rigidified CG lipids; if the

bilayer lipids were similarly inflexible, there would be no

hydrophobic mismatch (Fig. 7). However, because the lipids

are flexible and the inclusion is rigid, there is a mismatch

between the average equilibrium thickness of the homoge-

neous bilayer and the rigid inclusion. The same interaction

potentials are used for all the beads, regardless of whether

they are in lipid or inclusion molecules. Four concentric

rings comprise the inclusion, and all interbead distances

within the inclusion are held fixed (translation and rotation of

the inclusion are discussed below).

For the inclusion studies, four copies of an equilibrated

bilayer with N ¼ 836, as used in thermal fluctuations, were

used to form a larger square bilayer, which was then

equilibrated. Some lipids were then removed to make room

for the inclusion, for a final total of 3214 lipid molecules and

one inclusion (incorporating 80 lipids). Two different

simulations were run. In one simulation, the inclusion was

not allowed to tilt its major axis away from the z direction

(translation of the protein was allowed), which directly

corresponds to the case considered in our elastic theory. In

the other simulation, the inclusion was allowed to translate

and tilt (average root-mean-squared tilt angle of 7� over the
course of the MC). Both simulations were run at the same

temperature employed in the fluctuation simulations of the

previous section. In the tilt-enabled simulation, the average

thickness at the protein edge was measured to be (tR/t0 ¼
0.082) compared to (tR/t0 ¼ 0.094) with tilt disabled.

The resulting deformation profiles are shown in Fig. 8, for

both the tilting and nontilting inclusions. The deformation

profiles are clearly nonmonotonic. This is consistent with

continuum pictures in which large curvatures are unfavor-

able (22–31), and similar results were observed in recent

solvated coarse-grained simulations by Venturoli et al. (36)

FIGURE 7 (Left) A single lipid from

the coarse-grained model presented in

Brannigan et al. (16). Head beads are

black, interface beads are gray, and tail

beads are white. (Center) Eighty lipid

molecules (400 beads) in four concen-

tric rings form a rigid cylindrical inclu-

sion. Although the molecules used in

the lipids and the inclusions have the

same number of beads, there is still a

mismatch in preferred thickness be-

cause the lipids are flexible. (Right)
Cross-section of the inclusion in the

center of the membrane.
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and Nielsen et al. (37). Quantitative agreement with the

theory proposed in Protein-Induced Deformation Profiles,

Theory, above, using the best-fit parameters measured from

the homogeneous membrane, is fair; although the theory

captures the initial decay, the simulated well is deeper than

theory predicts. To assess the source of this discrepancy we

extracted the relevant physical parameters (kA, z, and c0) by
fitting the simulated profiles directly to the analytical theory

of Aranda-Espinoza et al. (31). The resulting fits are very

good for both the tilting and nontilting cases, and the fit

parameters are also shown in Table 1. Upon comparing the

values extracted from the spectrum/stress profile and from

the inclusions, we observe excellent agreement for kA and c0,
and the measurements for z agree within the 95% confidence

intervals. The fits from the deformation profile and the

spectra show varying degrees of sensitivity to the parame-

ters. For instance, the curve for the peristaltic spectra is not

particularly sensitive to the value of z: using the value

resulting from the deformation profile, rather than the

spectrum best-fit value, leads to a very small change in the

residuals. However, the deformation profile is particularly

sensitive to the value of z, and using the value resulting from

the spectrum, rather than the profile best-fit value, leads to a

detectably worse fit. All three parameters extracted from the

inclusion deformation profile are less for the tilting inclusion

than the nontilting inclusion, but the two profiles are

qualitatively similar. For the purpose of comparison with

the theory presented in this article, the nontilting case is most

relevant. In reality, however, proteins are free to tilt within

the bilayer. Our results suggest that such tilting can be

incorporated through a renormalization of the deformation

parameters.

Prediction of gramicidin A channel lifetimes

When embedded in a lipid bilayer, the dimeric gramicidin

ion channel exists in equilibrium with its monomeric

components (48). It is expected that the dimer configuration

(state D) has thickness 2.17 nm (44), and must stretch by

;0.1 nm (22) at the transition state before breaking into two

monomers (state M, see Fig. 9). The equilibrium thickness of

the surrounding bilayer cannot match that of both the

stretched and unstretched dimer configurations (usually it

matches neither), and therefore hydrophobic mismatch is

expected to play a role in determining the dissociation rate

constant kd. This hypothesis is supported by the clear

dependence (44,48,49) of gramicidin channel lifetime on the

thickness of the surrounding bilayer.

Numerous analytical theories (22,43–46) on inclusion-

induced membrane deformations have been tested against

gramicidin-A channel lifetime data (44,49). This data has

been used to support various claims regarding the slope of

the membrane at the inclusion,(22,27,46,50) and the impor-

tance of spontaneous curvature (32,46) or surface tension

(22,23,45) in the analysis. Reviewing the multiple ap-

proaches to fitting or predicting experimental gramicidin

data is beyond the scope of this article. However, we do note

that the theory of Aranda-Espinoza et al. (31) has not

FIGURE 8 (Circles) Thickness deformation

profile for membrane with 3214 CG lipids and

an embedded inclusion centered at r ¼ 0. (Dashed

lines) Prediction of Lattice Monte Carlo with

parameters derived from homogeneous membrane

thermal spectra data (Table 1, rows 7 and 9).

(Solid lines) Prediction of lattice Monte Carlo

using parameters obtained by fitting to the

analytical solution outlined in Aranda-Espinoza

et al. (31), with fit parameters in Table 1 (rows 10

and 11). Note that the parameters used for the

solid-line calculations, although different from the

best-fit values extracted from thermal spectra, all

fall within the 95% confidence intervals associ-

ated with the best-fit values. Deformation profiles

are extremely sensitive to the value of z, which

accounts for most of the discrepancy between

dashed and solid lines. (The best-fit analytical

solutions are indistinguishable from the solid
lines.)

FIGURE 9 Dissociation of the gramicidin-A ion-conducting channel

requires stretching the two components to break the connecting hydrogen

bonds. The stretched configuration is expected to be the transition state in the

dissociation process. Adapted from Goulian et al. (47).
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previously been compared against gramicidin lifetime data.

In this section we compare both the Aranda-Espinoza et al.

(31) theory and our own MC predictions against the

gramicidin lifetime data, and find them to be both quite

successful.

We take advantage of the fact that the lifetimes were

measured for gramicidin in various monoglyceride bilayers,

including GMO, as analyzed in Fluctuation Spectra of

Homogeneous Membranes, above. The previously discussed

simulation data on GMO provides us with estimates for

elastic parameters, including those related to the spontaneous

curvature, that have not been measured by experiment. As

discussed in the previous section, however, the coupling

between the macroscopic and microscopic fields in GMO

suggests that our theory (solved by the lattice simulation) and

the theory of Aranda-Espinoza et al. (31) should give at least

slightly different results.

To begin, we calculate the free energy of a bilayer

surrounding an unstretched gramicidin channel in the dimer

configuration by using Eq. 34 and setting

tR ¼ tD [ 1:09 nm� t0: (36)

For the stretched configuration, we do the same, but set

tR ¼ tz [ 1:14 nm� t0: (37)

The stretched configuration represents the transition state

for dimer dissociation, and so the dissociation rate is

expected to obey (Arrhenius equation (51))

kd ¼ ne
�ðDFzÞ=kBT; (38)

where n is the frequency factor and DFz is the difference in

free energy between the stretched and unstretched states.

Separating out the bilayer contribution to DFz, we have

DFz ¼ DFgA 1FmemðtzÞ � FmemðtDÞ; (39)

where DFgA is the free energy to stretch the channel

associated with protein-specific changes (i.e., the free energy

required to break hydrogen bonds, etc.), Fmem(tz) is the

elastic energy of the membrane when the channel is

stretched, and Fmem(tD) is the corresponding energy of the

membrane when the channel is unstretched. Since we expect

that neither n nor DFgA depend on t0, we relate the dis-

sociation constants for two bilayers of thickness 2t0 and

2t90 by

kdðt0Þ
kdðt90Þ

¼ e
ðFmemðt0 ;tDÞ�Fmemðt90 ;tDÞÞ=kBT

e
ðFmemðt0 ;tzÞ�Fmemðt90 ;tzÞÞ=kBT

: (40)

Therefore, we can designate a reference rate constant kd0 ¼
kd (t0 ¼ 1.09 nm), use the lattice simulation (or an analytical

model) to calculate kd(t0)/kd0 for a number of values of t0,
and compare with experimental data.

Up to this point, our analysis has mirrored that of Huang

(22) and others (43–46). The difference in our approach lies

in the calculation of Fmem, primarily in the inclusion of c0
and c09 and the use of natural boundary conditions, as

already discussed. We also use elastic parameters derived

from the GMO simulations previously introduced, which

contrasts with prior studies. The experiments (44,49) were

conducted on various monoglyceride bilayers in aqueous

solution including various organic co-solvents (squalene,

decane, hexadecane, etc.). Ideally, a full set of elastic

constants would be available for each bilayer-solvent

system, making application of Eq. 40 an entirely straight-

forward exercise. Unfortunately, such data is unavailable. As

indicated in Protein-Induced Deformation Profiles, above,

bilayer elastic parameters could potentially be obtained by

simulation of the full set of experimentally tested mono-

glycerides; unfortunately simulation data is presently avail-

able only for GMO (14) in pure water. Our extraction of most

of the necessary parameters from GMO simulation data is

detailed in Fluctuation Spectra of Homogeneous Mem-

branes, above, and we apply these constants to all the studied

bilayers. Using this simulation data for the elastic parameters

is clearly not ideal: the simulations were conducted in pure

water and only investigated one species of monoglyceride.

The bending rigidity (and most likely other elastic constants)

should certainly depend on the membrane thickness (see, for

instance, (52)) but the present approach uses the same elastic

constants for a range of bilayer thicknesses. Furthermore, we

cannot extract from the available GMO data the spontaneous

curvature of the monolayer, a necessary component in Eq.

34. For simplicity we simply set c0 ¼ 0 in the absence of any

information to the contrary. Luckily, our predictions are

most sensitive to the compressibility modulus kA, and kA is

probably not particularly sensitive to chain length (52).

The predictions (Fig. 10) for our own theory were

generated by calculating the average deformation profile

using the procedure described in the previous section, and

then calculating the corresponding value of Fmem ¼ Finc

using Eq. 34. In these calculations, the lattice was 60 3 60

with a spacing of 0.25 nm, and R ¼ 1 nm to correspond with

the gramicidin channel radius. We used the constants

measured from the atomic simulation of GMO and assumed

c0 ¼ 0. As shown in Fig. 10, this method yields a successful

prediction of the general trend of the data. We do not expect

these predictions to be perfect for the reasons outlined above;

however, it is satisfying to see that our model does reproduce

the experimental trends and that it does so without incorpo-

ration of any fit parameters.

Analytically, the predictions (Fig. 10) can also be

estimated by minimizing Eq. 34 (neglecting the protrusion

terms, so this corresponds to the analysis of Aranda-

Espinoza et al. (31)). For comparison, we have shown three

curves generated analytically; each uses a different value of

kA. The dashed line in Fig. 10 uses the value for kA measured

from the thermal fluctuation spectrum, whereas the upper

dotted line corresponds to the upper 95% confidence interval

on kA and the lower dotted line corresponds to the lower 95%
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confidence interval on kA. Nearly all the data points fall

within the prediction range delineated by the confidence

intervals. So although the numerical solution to our theory

does a slightly better job of predicting the data, the relative

success is highly sensitive to kA.
To our knowledge, no other single theory has been tested

against all the experimental data shown in Fig. 10. Although

we believe our favorable results in the absence of fitting

constants calls into question the conclusiveness of other

studies, we emphasize that other elastic models have

successfully fit gramicidin lifetime data. Indeed, these

previous studies motivated us to consider such data in the

context of our own model. For instance, an alternate theory

(22) uses the slope at the inclusion-membrane boundary as a

fit parameter, and finds the slope to be near to vanishing. We

predict the same data using natural boundary conditions. The

deformation profiles resulting from our analysis suggests the

slope at protein contact is relatively steep and depends on the

size of the mismatch. Since both theories can be used to

describe the data, more (and different) experimental data is

clearly needed. Ideally, one would be able to measure the

slope at the inclusion/bilayer boundary, and then easily

distinguish between various theories. Although this is not

currently possible using experiment, it is possible using

simulations, and we have described such a test earlier in this

article (see Protein-Induced Deformation Profiles). This test,

while admittedly not on a GMO/gramicidin bilayer, supports

the use of natural boundary conditions even when the

inclusion is perfectly cylindrical. We feel this is an important

point, since some statements in the literature (32) suggest

that a cylindrical inclusion necessarily dictates vanishing

slope at the protein/bilayer interface and consequently that

monolayer spontaneous curvature is unimportant in predict-

ing deformation profiles around a cylinder. Our simulation

results contradict this. The simulations are well described by

an elastic theory that includes spontaneous curvature with

natural boundary conditions used at the protein/lipid inter-

face; the resulting slope at the interface is nonzero.

DISCUSSION

The study of homogeneous lipid bilayers is motivated partly

by the hope that these model systems can provide insights

into real biomembranes. Although such correspondences are

often vaguely discussed or tacitly assumed, only rarely are

homogeneous bilayer properties carefully compared with

related inhomogeneous counterparts. Although theoretical

work is available spanning both homogeneous and inhomo-

geneous systems, the relation between physical constants,

models, and approximations across different systems is often

hard to justify and difficult to verify via experiment or direct

simulation. In this article, we have verified that, at least for

coarse-grained models, the elastic constants inferred by

fluctuation analysis on homogeneous bilayers are the same

constants that dictate the response of a bilayer to an inserted

protein inclusion. The general elastic model explaining both

of these phenomena draws from a number of existing

theories, but represents the first successful synthesis to

capture both homogeneous and inhomogeneous behavior

consistently. The fact that the same theoretical model is able

to explain fluctuation data for fully atomic bilayer systems in

addition to our CG model raises the hope that this is a fully

consistent elastic picture that could be applied to fully atomic

systems once such data becomes available.

We stress that the correspondence between both types of

behavior as discussed above is not obvious. It has been

argued (50) that the bilayer’s response to an inserted protein

is heavily influenced by specific microscopic details of the

bilayer-inclusion boundary, making it impossible to predict

deformation profiles solely on the basis of lipid behavior in

homogeneous environments. It has also been suggested

(27,50) that even if elastic models are able to predict both

thermal fluctuations and deformation response that the

elastic constants involved might vary from situation to

situation. For example, it has been suggested that the

membrane’s response to an inclusion, which typically ranges

,5–10 nm, is determined by microscopic elastic constants.

These microscopic elastic constants are presumed to be

distinct from the traditional elastic constants used in Helfrich

theory (and typically inferred in experiment by fluctuation

analysis). This work indicates that both behaviors can be

FIGURE 10 Dependence of gramicidin-A dissociation rate on thickness

of surrounding bilayer. Solid circles represent data on various monoglyc-

erides in water with squalene, presented in Elliott et al. (44), and previously

analyzed by Huang (22). Open squares correspond to the data presented in

Kolb and Bamberg (49) on various monoglycerides in water and decane,

hexadecane, or no additional hydrocarbon. The solid line is the MC

prediction based on the full Hamiltonian (Eq. 34) and the dashed line is the

prediction using the analytical theory of Aranda-Espinoza et al. (31). Both

calculations used the following parameters: kc ¼ 3.8 3 10�20 J, kA ¼ 92 3

10�20 J nm�2, z ¼ 1.1 nm�1, c0 ¼ 0, kBT ¼ 4.13 10�21 J, and R ¼ 1.0 nm.

Dotted lines are also predictions from the theory of Aranda-Espinoza et al.

(31), but with kA ¼ 56 3 10�20 J/nm2 and kA ¼ 160 3 10�20J/nm2 for the

lower and upper lines, respectively. (These kA values are the lower and upper

95% confidence interval on kA.) We emphasize that the lines are predictions

using only the physical constants extracted from thermal spectra data

collected for GMO. There is no fitting involved in this plot.
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consistently described by one model employing identical

elastic parameters and provides an important step toward the

ultimate justification of elastic approaches in membrane

biophysics across a range of length scales. (It is worth noting

that, because simulated membranes are small compared to

experimentally accessible length scales, elastic constants

measured by simulation should correspond to bare values

requiring renormalization (53,54) for direct comparison with

experiment. This type of indirect correspondence between

theory and experiment is straightforward to correct for and

fundamentally different from the microscopic versus tradi-

tional debate discussed above.)

Our mathematical incorporation of protrusions is most

consistent with a picture where protrusion modes are simply

a manifestation of nonspecific microscopic fluctuations not

accounted for in traditional bending pictures. We do not

take the view that protrusions represent a specific type of

membrane deformation, distinct from the nature of bending

deformations. We view protrusions as an unavoidable con-

sequence of noise present at the atomic level. Incorporation

of protrusions as harmonically constrained fluctuations at the

lipid/water interface amounts to smearing the bending results

with a Gaussian profile. This picture seems to work well in

describing both short wavelength thermal spectra and

inclusion-induced deformations.

The presence of microscopic protrusions may affect

measurements of the area compressibility modulus, kA, as
indicated by the discrepancy between kA measured via the

thickness fluctuation spectrum and kA measured via area

fluctuations. When measured via the thickness fluctuation

spectrum, kA represents a restoring force for deformations due

entirely to bending, but when measured via area fluctuations,

kA restores any deformation that results in an area change. In

the CG model, for instance, on average a given thickness

deformation is due approximately half to monolayer bending

and half to microscopic protrusions. If the membrane area

were to strictly conserve volume, including contributions from

protrusion-based roughness, then the measurement of kA via

area fluctuations will be lower than that via the thickness

spectrum. However, the bare kA (measured by the thickness

fluctuation spectrum) seems to be the one that determines the

membrane response to an inclusion. Our use of the name kA in

describing the harmonic potential energy associated with

bending-induced thickness fluctuations should not be taken

overly seriously. There are obvious discrepancies in the CG

data between spectra and area-fluctuation values; however, kA
is such a difficult quantity to predict quantitatively in fully

atomic MD that we believe our values are probably as reliable

as the area fluctuation data available from the fully atomic

studies considered in this work. For this reason, to keep our set

of physical variables to a minimum and to conform with pre-

vious analysis (31), we have retained this somewhat mislead-

ing notation.

Overall, our results underscore the importance of the

thickness fluctuations as a source of information about the

elastic constants of a particular membrane. For instance,

since the membrane bending rigidity manifests itself in

thickness fluctuations as well as the height fluctuations,

ignoring the thickness fluctuations means ignoring valuable

data on the value of that constant. We were also able to

extract the renormalized spontaneous curvature z from the

thickness fluctuations, which proved essential to quantita-

tively understanding the membrane’s response to an inclu-

sion. Furthermore, proteins that are sensitive to the thickness

of the surrounding bilayer are presumably not immune to

fluctuations in the bilayer thickness. Gramicidin channels in

the dimer configuration can exhibit rapid closing-opening

events, before the final dissociation of the channel (55–57). It

would be interesting to see if the frequency of such events is

correlated to the amplitude of bilayer thickness fluctuations.

In this article, however, we have not addressed membrane

fluctuations around the inclusion (which may itself fluctuate

among multiple conformations).

We find that the monolayer spontaneous curvature plays

a significant role in determining both thickness fluctua-

tions and inclusion-induced deformations. For DPPC and

SM, spontaneous curvature effects are consistent with the

nonmonotonic behavior of the thickness fluctuations. In

these systems, the leaflets prefer to bend toward the oil,

inducing an effective negative surface tension for thick-

ness fluctuations that implies an hourglass or bulged con-

figuration is actually favorable over some wavelengths.

Such a configuration is clearly visible in Fig. 3 of Lindahl

and Edholm (13). Many physiological membranes incor-

porate nonbilayer forming lipids, so the spontaneous

curvature of each leaflet may be a property closely reg-

ulated by the cell. Although many studies regarding these

lipids have focused on their role in membrane fusion

(58,59), according to the present model they also affect

thickness fluctuations and bilayer response to an embed-

ded protein.

Finally, this article also highlights the promise and

limitations of generic simulation models. It is heartening to

notice that the material properties of our CG model, despite

its simplified chain molecules and lack of explicit solvent,

are reasonable numbers that lie within the range designated

by DPPC, GMO, and SM. It is especially encouraging that

the tension governing protrusion modes, gl, which is closely

related to the interfacial tension between oil and water (11),

is the same for the solvent-free CG model as for GMO. This

provides further evidence that CG models not containing

explicit solvent are capable of reproducing the lipid-solvent

interfacial tension inherent to a real bilayer. Additionally, the

nonmonotonic behavior observed in the deformation profile

is consistent with that observed in solvated (but also coarse-

grained) models. At the same time, the wide range of

measured elastic constants across the lipid systems studied

here suggests that one must use caution when generalizing

results extracted from a single system, whether it is coarse-

grained or atomistic.
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APPENDIX A: APPROXIMATIONS TO EQ. 26

The full expressions for the spectra (Eq. 26) are complicated functions of q.

In Fluctuation Spectra of Homogeneous Membranes, above, we outlined the

Goetz et al. (12) approximation for undulations, which is expected to work

for small q and large q; and our own approximation, which is expected to

work best when bending modes and protrusion modes are uncoupled (small

g2
l=klkc). In this Appendix we make quantitative comparisons of these

approximations. On the left side of Fig. 11, expected height spectra resulting

from the full expression (Eq. 26), the Goetz et al. (12) approximation

(Eq. 31) and our own approximation (Eq. 32) are compared for the four sets

of constants displayed in Table 1. As should be expected, the quality of our

approximation increases as g2
l=klkc decreases, or as the undulation and

protrusion modes become less coupled. In contrast, the quality of the Goetz

et al. (12) approximation increases as g2
l=klkc increases, or as the undulation

and protrusion modes become more coupled. The difference between our

approximation and the full form is within typical data error bars for all four

cases considered in this work. The Goetz et al. (12) approximation performs

significantly worse (outside error bars) than the decoupling approximation

for all four data sets.

Goetz et al. (12) did not measure thickness fluctuations, but if we attempt

a similar approach as they applied to height fluctuations (i.e., take the small q

limit and the large q limit and add them together) one obtains a nonsensical

result with the small q regime dominated by interfacial tension rather than

predicting a rollover to a constant value. Although there is no established

continuous approximation to compare to for thickness spectra, we have

compared our own approximation (Eq. 33) to the full form for thickness

fluctuations (Eq. 6). It has a similar level of success for thickness fluctuations

as it did for height fluctuations.

A further possible method for simplifying the expression for thickness

fluctuations is to neglect the spontaneous curvature and its area derivative

(i.e., set z to 0). Then the bending portion of the spectrum is equivalent to

that used originally by Lindahl and Edholm (13). The dotted lines on the

right-hand side of Fig. 11 represent this approximation: Eq. 33 with kc, kl,
gl, kA from Table 1 and z ¼ 0. As demonstrated by the figure, neglecting

spontaneous curvature effects can be a dangerous approximation that results

in significantly different expected forms for the spectra for some parameter

sets studied.

APPENDIX B: CURVE-FITTING AND
ERROR ANALYSIS

Our curve-fitting algorithm minimizes the sum of the residuals, x2, with

respect to kc, gl, kl, kA=t20, and z/t0, where

FIGURE 11 (Left, height) Plot of Eq. 26 (solid),

Eq. 32 (dashed), and Eq. 31 (dotted) using the four

sets of constants displayed in Table 1. The data sets

have the following values for the coupling parameter

2gl
2/klkc: DPPC, 0.08; GMO, 0.3; SM, 0.06; and

CG, 0.04. The dashed approximation gets worse as

the coupling parameter increases, whereas the dotted

approximation gets slightly better. (Right, thickness)

Plot of Eq. 6 (solid) and Eq. 33 (dashed), using the

four sets of constants displayed in Table 1, whereas

the dashed-dotted line is Eq. 33, with z set to 0.
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kBT

kcq
4 1

kBT

glq
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2
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2
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��
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kBT

glq
2
1 kl

��2

; (41)

and Æjhqj2æ and Æjtqj2æ represent actual data points. Minimization was

accomplished using the MatLab (The MathWorks, Natick, MA) fitting

procedure nlinfit, which employs a hybrid Gauss-Newton and Levenberg-

Marquardt minimization algorithm. Equation 41 obviously corresponds to

fitting the data to our approximate form (Eq. 32); an analogous expression was

used when fitting to the full form (Eq. 26). Note that our residual function

assesses quality of fit for the logarithms of Æjhqj2æ and Æjtqj2æ. This choice
insures that our best fit lines strive to reproduce the data sets as viewed on a

semilog plot (i.e., the standard plotting method employed in Fig. 4).

Because the data is not perfectly converged, removing one data point

alters the resulting fit parameters. Whether the new fit parameters are more or

less accurate (i.e., close to their true values) depends on the accuracy of the

removed data point. To determine the sensitivity of our fit parameters to

individual data points (and hence our confidence in the extracted fit

parameters) we used the Bootstrap Method (60). This method requires

minimal knowledge of the errors associated with each data point, because it

uses the distribution of the data points themselves to estimate error. Ninety-

five percent confidence intervals reported in the text reflect the range of

values extracted by application of the bootstrap algorithm.

The resulting fit parameters can be influenced by the fitting algorithm. For

instance, instead of using a log transform, we could have weighted the data

appropriately. Or, instead of fitting Æjhqj2æ and Æjtqj2æ simultaneously, we could

have fit Æjhqj2æ first to obtain kc, gl, and kl and then fit Æjtqj2æ to find z and kA.
We experimented with various different fitting procedures and found that,

although best-fit values were predicted differently from algorithm to algorithm,

the associated 95% confidence intervals (calculated as reported above) almost

always bracket the range of fits obtained from different schemes. The present

fitting procedure was ultimately adopted for its simplicity in use and

explanation. Interested parties may obtain the MatLab compatible .m file

that we used to determine the fits reported in this article (38).
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