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ABSTRACT We suggest a simple method to assess how many normal modes are needed to map a conformational change. By
projecting the conformational change onto a subspace of the normal-mode vectors and using root mean square deviation as a test
of accuracy,we find that the first 20modes only contribute 50%or less of the total conformational change in four test cases (myosin,
calmodulin, NtrC, and hemoglobin). In some allosteric systems, like the molecular switch NtrC, the conformational change is
localized to a limited number of residues. We find that many more modes are necessary to accurately map this collective dis-
placement. In addition, the normal-mode ‘‘spectra’’ can provide useful information about the details of the conformational change,
especially when comparing structures with different bound ligands, in this case, calmodulin. Indeed, this approach presents
normal-mode analysis as a useful basis in which to capture the mechanism of conformational change, and shows that the number
of normalmodes needed to capture the essential collectivemotions of atoms should be chosenaccording to the required accuracy.

INTRODUCTION

Although there are standard methods to experimentally

probe conformational change (x-ray crystallography, NMR,

cryoelectron microscopy (cryo-EM), fluorescence resonance

energy transfer, etc.) (1–4), it is theoretically difficult to ex-

plain and predict this phenomenon. Conformational change

usually occurs in timescales currently inaccessible to molec-

ular dynamics (MD) simulations available today (;1 ms)

(5,6), and therefore other computational methods have to be

applied, which may be limited to simpler or coarse-grained

representations of the protein structure.

Normal-mode analysis (NMA) has proven successful in

representing domain and hinge-bending motions in proteins

(7–9). Indeed, it has been shown that for several systems, the

lowest frequency modes contribute the most to a conforma-

tional change (10–13). NMA expresses the dynamics of a

protein in terms of coordinates that involve the collective

displacement of a large number of atoms.

The beauty of NMA lies in its theoretical simplicity, the

speed of calculation, and the need for few parameters,

relying mostly in the geometry and mass distribution of the

system. NMA handles the effects of solvent implicitly, and

when the elastic network model is used (13–24), it does not

involve energy minimization. In addition, nonatomistic NMA

methods (25) have shown the application of NMA in study-

ing conformational change even when the resolution of the

experimental data is poor, by calculating the normal modes of

cryo-EM density maps.

NMA is based on a harmonic approximation of a pertur-

bation around an equilibrium position. In theory, when

considering the conformational change of a protein between

two states A 4 B, the atomic displacements are large and

the condition of single energy minimum is not met: the

system is out of the range of the quasiharmonic regime.

Nonetheless, in many systems, such as lysozyme, crambin,

and ribonuclease (7), citrate synthase (26), hemoglobin (22),

and many others (11), the lowest-frequency modes still com-

pare well with the experimentally observed conformational

change upon ligand binding.

On the other hand, there are numerous cases where the

NMA approach might fail. These could include large con-

formational changes where the protein assumes a new sec-

ondary structure upon ligand binding, or when the protein

becomes disordered when losing the ligand. However, the

various successful applications of NMA give reason to

believe that normal modes are not merely a mathematical

construction, but in fact do capture physical properties that

are inherent to the connectivity and mass distribution of the

system.

Furthermore, the complex motions and fluctuations of pro-

teins may be decoupled into a linear combination of ortho-

gonal basis vectors, each representing an independent concerted

harmonic motion with a characteristic frequency. Although

other complete coordinate systems could also serve to

represent conformational change, normal modes can dis-

criminate between large-scale (low-frequency) and local

(high-frequency) motions. This is useful in many ways, such

as restricting the degrees of freedom of our system to just

those that are critical to determine a conformational change.

So far, NMA has primarily been employed to qualitatively

characterize a conformational change: given two atomic

structures and a set of collective atomic displacements, it is

found that one or a few of these modes describe the observed

direction of structural change. In fact, a comparative study of

many systems by Tama et al. (11) indicates that a great deal

of information about the conformational change is often

found in a single low-frequency mode of the open form of a

protein that exhibits open/closed conformations, therefore

reducing the number of modes relevant to understand the

conformational change. The relative importance of normal

modes in a conformational change is assessed in different
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works by estimators such as ‘‘involvement coefficients’’ and

‘‘overlap coefficients’’ (11,12,24,26).

However, in general, these results do not quantify the

contribution of each normal mode to the transformation

between two protein conformations, as measured by typical

measures of conformational change, such as the root mean

square deviation (RMSD). Since the NMA methods do

produce an orthogonal set of vectors, it is natural to use the

normal-mode vectors as a coordinate basis set for under-

standing conformational change. However, due to the

approximations often used to generate normal modes, such

as simple, single force constant spring networks, the absolute

values of the mode frequencies should likely not be

considered quantitatively. Thus, in our work, we employ a

different philosophy: we consider the normal-mode vectors

as just a coordinate basis on which to map conformational

change, whereas the frequencies associated with each mode

are simply a way of indexing the basis vectors.

The primary goal of this study is to assess to what extent

one can map one crystal structure onto another using normal

modes, i.e., how many normal modes are sufficient to

represent this transformation and whether these results can

be generalized or are intrinsic to a particular system. These

findings are especially relevant to model conformational

change based on a coarse-grain model of a protein as well as

to fit low-resolution maps where there is no available atomic-

detailed information describing the structural change.

We employ an analytical method to determine the con-

tribution of each mode to the conformational change. Given

a reference conformation A and target B, we seek to obtain a
good mapping of target B by taking A and a linear com-

bination of its normal modes (Methods, Results). Using this

method, we quantitatively show that the lower-frequency

modes typically bring the reference conformation only 50%

closer to the target conformation based on their RMSD,

whereas the rest of the modes make a significant contribution

(Methods, Results). We also calculate the average per-

residue RMSD to assess to what extent the normal modes

capture the collective displacements between the reference

and the target, without affecting the residues that are not

significantly displaced from the original conformation.

For normal-mode calculations involving conformational

change, previous studies typically have cropped the original

structures in such a way that the reference and target x-ray

structures have the same number of atoms. It is a general

belief that the normal-mode approach is robust enough to

ignore these deletions. However, when studying conforma-

tional change, it is the difference and not the similarities

between structures that becomes the focus of our attention.

By deleting the differences (missing atoms in one confor-

mation), we lose information that could contribute to the

conformational change.

Here we apply a different methodology: the restricted-

vector approach. This scheme allows us not only to retain the

information that makes the structures different, but also to

predict the positions of those atoms that have been omitted in

the crystal structure of the target conformation (Methods,

Results). Technically, in the restricted-vector approach, we

calculate normal modes using the full set of atoms present in

the Protein Data Bank (PDB) file of the reference structure.

However, we restrict the RMSD comparison to the atoms

present in both the reference and target structures. We then

find the best amplitudes for the normal modes, which will

map the reference conformation onto the target conforma-

tion, based on this reduced set of coordinates. In the end, we

express the results in terms of the complete set of atoms of

the reference structure.

For a test set, we use proteins that have been widely

studied, both theoretically and experimentally: myosin motor

domain, NtrC, calmodulin, and hemoglobin. These proteins

have different sizes and conformational change is induced by

different mechanisms: ATP hydrolysis and product release,

phosphorylation, ligand binding, and oxygen binding, re-

spectively. Previous normal-mode analyses of myosin (24,27),

emphasize the importance of the lower-frequency modes to

describe the motion of the converter region. Similar conclu-

sions apply for calmodulin’s central hinge (28). We observe

that the number of relevant normal modes in all these sys-

tems depends on the accuracy we wish to obtain in the trans-

formation between two protein conformations.

MATERIALS AND METHODS

Normal-mode theory

Normal-mode theory involves a harmonic approximation of the potential

energy around a global minimum. Under this approximation, the forces in

such systems become linear in the atomic coordinates, and a generalized

force matrix can be written (14). The diagonalization of this matrix provides

both the generalized coordinates (‘‘normal modes’’) in which the system is

decoupled and the frequencies involved in the oscillation around the

minimum. Complex fluctuations of the protein can be therefore expressed in

terms of harmonic components, and every atomic displacement vector

ri(t) is a linear superposition of 3N normal modes a, each weighted by its

eigenvector coordinate ji
a for the atom mass mi, an amplitude Ca, phase fa

and frequency va:

riðtÞ ¼
1ffiffiffiffiffi
mi

p +
3N

a

C
a
j
a

i cosðvat1faÞ: (1)

The eigenvector coordinates form a transformation matrix Q, which
transforms Cartesian coordinates into normal-mode coordinates.

However, obtaining the relevant spring constants could be quite a

challenge. Instead, Tirion (14) suggested replacing the complex interatomic

potential by a pairwise Hookean spring potential between atoms a and b:

Eðra; rbÞ ¼
C

2
ðjrabj � jroabjÞ

2
; (2)

where jrabj is the distance between atoms a and b and jroabj is their distance in
the equilibrium conformation. The constant C is phenomenological and can

be assumed to be the same for all pairs inside a cut-off distance Kcut. In our

calculations, we use Kcut ¼ 8 Å, as suggested in previous studies (11,15).

We use the code developed by Sanejouand and co-workers (13–15,29).

We apply the RTB (rotational-translational block) approximation, (13,30)

implemented in the code, which treats selected groups of residues as rigid
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entities. The number of blocks determines the number of degrees of freedom

in the system. In our calculations, we define that 1 residue¼ 1 block. There-

fore, there are M ¼ 6R � 6 eigenvectors (normal modes), where R is the

number of protein residues, and the first six eigenvectors are subtracted

because they correspond to the rotations and translations of the entire system

as a rigid body. In addition to the published code, we implemented here the

restricted-vector method as described in the following section.

Restricted-vector normal modes

In the alignment and RMSD calculation of two crystal structures A and B, a
pairwise mapping between corresponding atoms is technically necessary.

However, in general, the crystal structures do not have the same number of

atoms. Indeed, if the conformational change involves a ligand, this will

not be included in the alignment. When a ligand is the cause of the

conformational change, its presence could have a major contribution to the

perturbations around the minimum and affect the normal-mode vectors. To

retain as much information as possible from the crystal structure, we perform

the normal-mode calculation on the intact structure taken as the reference,

using its full PDB coordinates (31).

Given two crystal structures, we chose reference and target structures A
and B, (NA, NB number of atoms, respectively). We calculate the normal

modes on structure A, in its complete form (all NA protein and ligand atoms,

no solvent ions or water). We compare PDB coordinates and select the

number NAB of atoms present in both (A\B) the reference and the target

structures. The alignment and RMSD calculation are restricted to this

common set of NAB atoms. Amplitudes Ca for each mode a will be found as

explained in the next section. The final output is given in terms of the 3NAB

variables x, y, and z; and is a linear superposition of the reference structureA
and its normal modes a, each weighted by its amplitude Ca.

Obtaining the normal-mode amplitudes

Given two conformational states A and B, of a protein with N atoms, if we

consider B a small perturbation from the equilibrium position A, and if at

time t¼ 0 every atom in position ri is found in conformation B with velocity

vi ¼ 0, then to a first-order approximation of state B:

BMap ¼ A1 +
M

a¼1

C
av̂a

; (3)

whereB andA are 3N-dimensional vectors with the atomic coordinates of all

N atoms in conformations B and A. The normal mode v̂a corresponds to each
of the 3N normalized eigenvectors of the force matrix (Hessian) and

represents a collective displacement of atoms expressed in the Cartesian

coordinates.

Because of the symmetric characteristic of the Hessian, there is a linear

transformation Q that preserves distances, such that:

Q ¼ ðv̂1 v̂2 v̂3 � � � v̂3NÞ ¼
j
1

1 . . . j
N

1

..

.
1 ..

.

j
1

N � � � j
N

N

2
64

3
75: (4)

Q is the transformation that has the eigenvectors calculated on state A
arranged in columns. The weight ji

a is the displacement of each Cartesian

degree of freedom i in normal mode b. The eigenvectors v̂a are orthonormal

such that v̂a3v̂b ¼ dab, hence

QtQ ¼ QQt ¼ I: (5)

The transformation Q maps any Cartesian set of coordinates X onto the

normal-mode coordinates (amplitudes) C:

C ¼ QtX; (6)

where X ¼ xAi � xBi
� �� �

3N
is defined as a displacement vector from the

reference structure A.
In particular, given conformation B, we can obtain the normal-mode

amplitudes of B:

C ¼

C
1

C
2

..

.

C
3N

0
BBB@

1
CCCA � QtðB� AÞ; (7)

and express B in terms of the normal modes of A and the amplitudes Cb:

B ¼ A1 +
3N

a¼1

C
av̂a

: (8)

In our work, because we use the RTB method (1 block ¼ 1 residue), the

number M of normal modes depends on the number of residues R as

M ¼ 6R� 6; (9)

for which the previous equations still hold and the eigenvector matrix Q is

rectangular (3N 3 M). The eigenvectors of A, constructed using the RTB

method, do not form a complete base; the intraresidue displacements are not

represented.

We define BMap as the mapped structure of B:

BMap ¼ A1 +
M

a¼1

C
av̂a

: (10)

If the structural change B-A is small, then BMap � B, and therefore BMap

is a good approximation of the target structure B.

RMSD using normal-mode coordinate basis

Given the equilibrium conformational state A and a small perturbation B, of a

protein of N atoms, the RMSD distance between these two conformations is

rmsd
2ðA;BÞ ¼ 1

N
kB� Ak2 ¼ 1

N
+
3N

i¼1

ðxiA � xiBÞ2: (11)

Under the transformation Q, the normal-mode matrix calculated on

conformation A is

xiB � xiA ¼ +
M

a¼1

j
a

i C
a
; (12)

where jai is each of the coefficients of Q, a indexes the normal-mode

coordinates, and i stands for the atomic coordinates. Ca is the amplitude of

each normal mode.

Substituting Eq. 12 in Eq. 11 for the RMSD:

rmsd
2ðA;BÞ ¼ 1

N
+
3N

i¼1

+
M

a¼1

j
a

i C
a +

M

b¼1

j
b

i C
b

 !

¼ 1

N
+
M

a¼1

+
M

b¼1

CaCb +
3N

i¼1

j
a

i j
b

i

� �
: (13)

Because the orthonormality relation between eigenvectors +
3N

i¼1

jai j
b
i ¼ dab

holds,

rmsd
2ðA;BÞ ¼ 1

N
+
M

a¼1

+
M

b¼1

C
a
C

b
dab: (14)

We obtain a simple equation for the RMSD distance between two

structures, based only on the amplitudes Ca of the M normal modes:
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rmsd
2 ¼ 1

N
+
M

a¼1

C
a2
; (15)

where the sum in a includes all available normal-modes. In vector form:

rmsd
2ðA;BÞ ¼ 1

N
kB� Ak2 � 1

N
kBMap � Ak2 ¼ 1

N
kCk2

(16)

As shown below (Results), these amplitudes Ca are not necessarily

smaller for the higher-frequency modes; even high-frequency modes can

have a major contribution to BMap.

Proteins used in case studies presented

In this work we used several test systems: myosin, calmodulin, NtrC, and

Hemoglobin. In the case of myosin, we used two protein analogs: scallop

myosin and Dictyostelium myosin II. As regards the scallop myosin, we

observe the transition from the reference state ADP-BeFx (ATP-analog)

(PDB code 1KK8), to the nucleotide free ‘‘near-rigor’’ state (PDB code

1KK7) (32,33). For the Dyctyostelium myosin II, the available structures are

reduced to the heavy chain: we consider the Mg-ATP complex (PDB code

1FMW) as the reference structure and the Mg-ADP complex as the target

structure (PDB code 1VOM) (34,35). All coordinate files available at the

RCSB Protein Data Bank (31).

For calmodulin, the reference structure is the ligand-free calmodulin

structure (PDB code 1CLL). We chose two target structures: calmodulin

complexed with trifluoroperazine (TFP) (PDB code 1LIN (37)) and

calmodulin complexed with KAR-2 (PDB code 1AX5, (38)). For the

molecular-switch NtrC, we take the unphosphorylated NMR structure (PDB

code 1DC7) of the receiver domain as reference, and the structure with Asp-

54 phosphorylated (PDB code 1DC8) as the target. For hemoglobin, we

consider deoxy (PDB code 1A3N) and carbonmonoxy (PDB code 1BBB)

human hemoglobin (39), respectively.

RESULTS

Normal-mode spectra as a representation of
conformational change

Given two crystal structures of a protein (reference and

target) we want to express the target structure in terms of the

reference structure and a series of weighted normal modes.

Each normal mode has an amplitude (weight) that is obtained

by projecting the conformational change along the directions

of the different normal modes calculated on the reference

structure (see the Methods section for details). The study of

how each normal mode contributes to the conformational

change is important not only methodologically but also

because it provides insight about the functional components

and subprocesses leading to conformational change. We can

find, for example, whether a bound ligand activates collec-

tive or individual atomic displacements, or compare the

conformations induced by two different ligands. Because

the unbound protein is more likely to populate the low-

frequency modes in equilibrium, the activation of high-

frequency modes suggests that the bound ligand is populating

a different protein conformational state, which would be

otherwise infrequent.

In Fig. 1, we show the amplitude of the normal modes for

the structures studied (myosin, calmodulin, NtrC, hemoglobin).

We call these graphs normal-mode spectra, since it is an

analog to the Fourier transform of a complicated function

into a basis set of orthogonal functions. Amplitudes can

be positive or negative, but their absolute value yields the

contribution of each mode to the conformational change.

We stress that we use the normal-mode vectors simply as a

coordinate basis in which to project the structural change.

For our analysis, we only use the directions and amplitudes

of these vectors; the frequencies associated with each normal

mode simply serve as a way to rank the vectors in increasing

order and separate those modes that entail more cooperative

motions (low frequency).

It is interesting to notice the large differences in spectra

between the systems presented here. In general, the lower-

frequency modes bear the larger amplitudes, coinciding with

previous works that suggest that the lower-frequency modes

are the ones responsible for the conformational change

(10–13) . However, we see that this is not always the case,

and the first 20 normal modes do not necessarily have the

largest amplitudes. In myosin (Fig. 1 A), the first normal

modes are definitely relevant, but modes that rank between

index 90–110 and 450–550 have larger amplitudes than

some of the lower-frequency modes.

In calmodulin (Fig. 1 B), the first 20 normal modes have

the larger amplitudes, but as we show below, they account

for only 50% of the conformational change. In the case of

calmodulin, the normal-mode spectra also provide compar-

ative information about the displacements incurred by the

protein when bound to two different ligands, TFP and KAR-2.

We observe in Fig. 2 B that the spectra of the two different

complexes follow a similar pattern of amplitude, and it

agrees well with the fact that even if the ligands make

different contacts with the residues in the cleft, both

structures are very similar. In the case of the molecular

switch NtrC, the conformational change is restricted to a

small set of residues that are perturbed by the phosphoryla-

tion of Asp-54 (Fig. 1 C). As a result, the normal-mode basis

proves extremely inefficient to probe this conformational

change, which would be better expressed in terms of the

rotation and translation of a few residues. However, we can

still project this change into the normal-mode basis, and

obtain a mapped structure, as we show in the next section,

provided that we use a large number of normal-mode vectors

(;700 vectors).

These examples show that even if the first normal modes

present larger weights, some higher-frequency modes are

also important for mapping the reference into the target

structure. The issue of how many modes must be included in

the mapping of two structures should be addressed by taking

into account the accuracy expected in this process. We define

an accurate mapping as one that yields a structure similar to

that of the target. As we show later in Results, we use the all-

atom root mean-square-distance (RMSD) and the Ca-RMSD

as our metric for accuracy between the target structure and

the mapped structure (obtained by projection). Because the
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FIGURE 1 (Left) Normal-mode spec-

tra for myosin, calmodulin, NtrC, and

hemoglobin. (Right) Reference structure
(blue) and target structure (red) for all

cases. All the normal modes are calcu-

lated on the reference structure. Modes

are indexed according to increasing

frequency. (A) Myosin. The target struc-

ture (PDB code 1VOM), the reference

structure (PDB code 1FMW), and the

ATP ligand (green). (B) Calmodulin

bound to KAR-2 (red) and TFP (green)

(PDB codes: 1XA5 and 1LIN, respec-

tively), ligand-free calmodulin (PDB

code 1CLL). (C) NtrC molecular switch

(reference PDB code 1DC7, target PDB

code 1DC8), phosphorylated in residue

Asp-54 (green). (All 3-D molecular

visualization graphics in figures were

done with visual molecular dynamics

(41).)
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RMSD has a very simple expression in terms of the normal-

mode basis (Eqs. 15 and 16), we can easily express how

RMSD between the reference and target structures depends

on the number of normal-mode vectors included in the

mapping.

Mapping of structures: myosin and calmodulin
as examples

Starting with the reference structure and the normal-mode

spectra as presented in Fig. 1, we can obtain a fairly good

approximation of the target structure B provided we use a

large number of normal-mode vectors. We build the mapped

structure BMap by adding normal modes to the reference

structure A, according to Eq. 10 (see Methods):

BMap ¼ A1 +
M

a¼1

C
av̂a

;

where v̂a is each of the M normal-mode vectors included in

the projection, and Ca is the respective mode amplitude as

shown in the normal-mode spectra (Fig. 1).

In Figs. 2–4, we show two examples: calmodulin and

myosin. In the case of myosin (Figs. 2 and 3), we base our study

on the crystal structures of the motor domain (Methods).

ATP binds to myosin and it is thought that changes in the

nucleotide, as it hydrolyzes from ATP to ADP and phos-

phate, are transmitted through the protein residues to change

the interaction of myosin and actin. The converter domain in

the myosin head is the one that undergoes the major con-

formational change when the phosphate group is released;

and it is responsible for the power stroke that pushes myosin

along the actin filament.

The ADP-myosin complex structure is thought to be close

to the conformation of myosin before the power stroke (34).

The ATP-myosin complex structure is thought to capture the

prehydrolysis state, and we take this structure as the

reference conformation (35). The all-atom RMSD(reference,
target) ¼ 5.4 Å. Because of the computational cost, we only

computed the lower 2214 of the availableM¼ 4434 normal-

mode vectors. By adding 2214 weighted normal modes to

the reference, we obtain a fairly good approximation of the

target: RMSD(mapped, target) ¼ 1.81 Å.

We can calculate the average per-residue RMSD between

two aligned structures A and B by

RMSDresðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nres

+
Nres

i�res

jrAi � rBi j
s

; (17)

where we average the distances between all atoms in a certain

residue.

In Fig. 2 A, we plot the average per-residue RMSD

(reference, target) and the RMSD(reference, mapped) for all

residues in the myosin structure. Because the mapped struc-

ture should be close to the target structure, we expect the

deviation from the reference to be localized in the same

residues. We can see from this graph that both RMSD curves

overlap, showing that this method captures the conforma-

tional change incurred by the protein. However, the fact that

both target and mapped structure deviate in the same residues

from the reference does not ensure that they will be similar.

We need to test that the RMSD per residue between the

mapped structure and the reference is not significant, espe-

cially in the converter region. Fig. 2 B plots the average

RMSD per residue between mapped and target. These plots

are made for a variable number of normal modes: 10, 80,

400, and 2200 (out of 2200 total computed normal-mode

vectors). We show here that there is not much improvement

in RMSD by adding from 10 to 80 vectors as regards the

most variable residues, but adding 400 certainly makes a

significant difference in the RMSD. Still, it can be noted that

further high-frequency modes are needed to improve the fit

for residues 660–716, which are the most variable ones in the

converter region (Fig. 2 B).
In Fig. 3,A andB, we can compare and contrast the reference

structure and the target structure, where the converter region

has switched to an open conformation. In Fig. 3 B, residues in

FIGURE 2 (A) Average RMSD difference per residue between the target

and both mapped and reference using all calculated normal modes (2214).

(B) RMSD(mapped, target) shows that using 2214 vectors, the deviation is

reduced considerably when compared to the deviation using 10, 80, and 400

eigenvectors.
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the mapped structure are colored according to the average

RMSD (reference, target) per residue. It is interesting to point

out that residues around the ATP/ADP do not undergo a

big conformational change. The mechanisms that drive and

amplify the perturbation from the ATP binding site to the

converter region are still an interesting unsolved puzzle.

Fig. 4 shows the mapping of the ligand-free calmodulin

structure into the TFP-bound structure. Fig. 4 A shows the

‘‘open form’’ of calmodulin as the reference structure, with

RMSD(reference, target) ¼ 15.09 Å. By adding the first 20

weighted normal modes to the reference structure, we achieve

a closed structure: RMSD(mapped, target) ¼ 7.47 Å;

however, other modes are still needed to get the final position

of helices and loops. As we are using the RTB approximation

(Methods) by which each residue is taken as a rigid body,

there are M ¼ 738 normal-mode vectors (Table 1). Using all

738 normal modes, we obtain an all-atom RMSD(mapped,

target) ¼ 2.26 Å for the TFP-bound structure (Fig. 4 C).
Similar results apply for the structure bound to KAR-2, where

the RMSD(mapped, target) ¼ 2.15 Å.

Which and how many normal modes are needed
depend on the desired accuracy

In this section, we analyze the importance of each normal-

mode vector in the context of the total RMSD incurred in the

conformational change. The RMSD is the distance between

two structures in Cartesian space and thus serves as a

common metric for comparing structures. Previous works

have analyzed the decrease in the RMSD as a function of the

included normal modes (10). Here, we compare this decrease

for different case studies to address the question of how

many modes are needed to describe conformational change.

As shown in Methods (Eq. 15), the all-atom RMSD has a

very simple expression in terms of the amplitudes of the

different modes,

rmsd
2ðreference; targetÞ ¼ 1

N
+
M

k¼1

C
a 2
;

where Ca are the amplitudes of the different normal modes.

As we add the weighted contributions of the normal modes

to the reference structure A, it becomes more similar to the

target structure B, and the RMSD drops, as in Figs. 5 and 6.

In Fig. 5, we present the all-atom RMSD between the

reference and the target as a function of normal-mode vectors

added to the reference. Each added vector is weighted by the

mode amplitude obtained by projection, as shown before

(see Normal-mode spectra as a representation of conforma-

tional change, and Fig. 1), and contributes to drive the ref-

erence structure further toward the target. Fig. 6 parallels the

results of Fig. 5, but with the Ca-RMSD (instead of all-atom

RMSD) between the reference and the target.

Figs. 5 and 6 address the question of how many modes are

needed to achieve certain accuracy in the mapping. These

results suggest that the answer depends on the system in

particular, but in general, many modes (.10) should be

considered. We observe from Fig. 6 (Ca-RMSD) that similar

conclusions apply in the case where the side chains have

been excluded from the model. In the case of calmodulin, for

example, the first 20 normal modes have larger amplitudes,

yet only allow an RMSD drop from RMSD(reference, target)

from 15.09Å to 7.09Å (47% of the total conformational

change as measured by RMSD). Including all the computed

modes (738), the RMSD(mapped, target) ¼ 2.26 Å becomes

15% of its original value. However, this is not the case for the

other systems (myosin, hemoglobin, and especially NtrC)

FIGURE 3 Reference and target structure of

myosin. Residues are colored according to the

average RMSD(reference, target) per residue.

ATP residue is in purple.
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where other modes seem to contribute to the RMSD in a

similar amount.

In principle, it would be necessary to include all 3N
normal-mode vectors to be able to obtain an exact projection

between reference and target. However, as we are using the

RTB method (13), by which residues are kept as fixed

entities, the basis set is reduced to M ¼ 6R � 6 degrees

of freedom, where R is the number of residues. Because

intraresidue motions are constrained, the perfect projection

cannot be attained.

In addition, there is another source of error that prevents

the RMSD(mapped, target) from converging to zero. Namely,

the normal modes are calculated using Cartesian coordinates.

Cartesian coordinates fail when dealing with large torsional

displacements. By construction, Cartesian normal modes

work properly for infinitesimal torsions but, when weighted

by large amplitudes, they stretch the residues in nonphysical

ways (i.e., angles are pulled apart, the peptide bond plane is

not preserved). The basis set of the RTB approximation lacks

the intraresidue degrees of freedom needed to compensate for

this distortion. Every algorithm that uses Cartesian normal

modes will suffer from this effect to some extent.

In the case of large proteins, such as myosin, it is com-

putationally very expensive to compute and diagonalize

an all-atom Hessian. To avoid the RTB method and the

stretching of residues, the protein can be coarse-grained into

a system of effective residues, adopting, for example, a Ca-

reduced model (Fig. 6), but if the aim is to obtain an atomic-

detailed model of the structure, reintroducing the side chains

into the model is not straightforward. Because the normal-

mode transformation is orthonormal, it preserves distances.

Accordingly, if instead of using the normal modes of A, we

use another orthonormal linear transformation of the Carte-

sian space (e.g., the normal modes of B), we obtain similar

results for the projection of the change B–A, provided we use
the same number of normal-mode vectors M (Methods).

This analysis differs from other estimators such as overlap

or involvement coefficient used in previous works (11,12,

24,26) since it places the contribution of each normal mode

in the context of the total RMSD distance between the

reference and the target. It greatly facilitates answering how

many modes are needed in terms of the desired accuracy.

DISCUSSION

Normal-mode spectra provide a new framework for studying

conformational change, allowing the ranking of the different

components of that change into collective (low-frequency)

versus local (high-frequency) contributions. At the same

time, analyzing the relative importance of the different

normal modes can provide insight into the nature of the

conformational change.

FIGURE 4 Mapping of calmodulin using 744 normal-mode vectors, all-

atom RTB normal modes. The reference structures (ligand-free) are in blue,

and the target structures (CaM-TFP complex) in cyan. (A) Reference (blue

ribbons) and target (cyan). The reference and the target structures differ with

RMSD ¼ 15.09 Å. (B) Reference with 20 added normal modes (purple

ribbons) fit the target with RMSD ¼ 2.26 Å. (C) Reference with 738 added

normal modes (red ribbons) fit the target with RMSD ¼ 2.26 Å.

TABLE 1 Name and details of proteins taken as case studies

Protein

A, NA

(reference structure)

B, NB

(target structure) NA\NB

Residues

(¼ blocks)

RMSD

(reference/target)

RMSD

(map/target)

No. of vectors

used

Myosin 1FMW, 5884 1VOM, 5775 5601 740 5.40 1.81 2214

Calmodulin 1CLL, 1130 1LIN (TFP), 1244 1AX5 (Kar), 1152 1104 144 15.09 1.97 858

1071 864 13.80 1.96 858

NtrC 1DC7, 1911 1DC8, 1910 1910 123 2.53 1.17 738

Hemoglobin 1A3N, 2271 1BBB 2282 2271 288 2.02 1.08 894
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It has been observed in the modeling of experimental data

that the amplitudes of conformational dynamics can be larger

than the equilibrium thermal fluctuations if one considers the

protein as a system of coupled harmonic oscillators (8).

‘‘Flexible-fitting’’ of cryo-EM structures (36), and refine-

ment of x-ray structures in which the mode amplitudes are

refined against the experimental data show that this is true for

several systems. However, most of these refinements are car-

ried out using ,50 normal modes.

When bound to a structure, a ligand can stabilize a

conformation that is generally unpopulated in the ligand-free

state, or else can stretch the structure along the direction of

certain normal modes that were irrelevant in the unbound

state. Because of this, there is little reason to anticipate which

modes will be active in the ligand-bound state (and fitting

should include as many modes as computationally afford-

able). An extreme example of this point is the case of NtrC,

where the phosphorylation of Asp-54 produces a localized

displacement that does not correlate with any of the normal

modes of the unbound state. To represent such conforma-

tional change, many (if not all) of the modes are needed, but

if restricted by computational cost, then the selection has to

be done based on relevance, not on frequency number. Our

conclusions agree with a recent normal mode study on loop

motions in the binding pocket of protein kinases. Cavasotto

et al. (40) showed that using a relevance measure, few low-

frequency modes (,;10) are necessary to describe loop

flexibility but, remarkably, these relevant modes are not the

first modes in the spectra.

The normal-mode spectra are useful to select the most

relevant degrees of freedom (those with larger amplitudes)

and better understand the conformational change. In the case

of calmodulin, its flexible structure is open in the ligand-free

form. Upon binding, it closes upon the ligands like a clamp,

adopting different conformations, resulting in a distinct pro-

tein function. In our work, we study the complexes of cal-

modulin with two noncompetitive drugs, TFP and KAR-2

(38). The spectral analysis allows the comparison between

these ligand-bound structures. Even if the mode amplitudes

that correspond to KAR-2 and TFP differ, it can be observed

(Fig. 1 B) that they follow a certain pattern, especially re-

garding the sign (positive/negative) of the normal-mode

vectors.

This kind of analysis correlates well with the experimental

result (38) that similar tertiary structures form when KAR-2

or TFP bind to calmodulin, even though the two ligands

interact (for the most part) with different residues in the

ligand-binding site. Indeed, calmodulin binds KAR-2 as a

FIGURE 5 All-atom RMSD between the reference

and the mapped structure, as a function of the number

of normal-mode vectors included in the mapping.

Vectors are weighted by the amplitudes obtained by

projection, and are added in order of increasing

frequency. Different systems are shown: myosin

(pink), calmodulin bound to TFP (cyan), hemoglobin

(blue), and NtrC (brown).

FIGURE 6 Ca RMSD between the reference and

the mapped structures, as a function of the number

of the normal-mode vectors included in themapping.
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‘‘noncompetitive’’, ‘‘nonantagonist’’ partner of TFP, and as

suggested by the authors, KAR-2 does not prevent calmod-

ulin from binding most of its physiological targets. By

construction, the normal-mode analysis we use here does not

discriminate between different atoms. Thus, our analysis is

useful to study the tertiary structure and allosteric similarities

between two complexes, independent of the underlying

nature of the interacting contacts.

CONCLUSIONS

Because conformational change implies collective motions

of atoms, NMA offers a natural set of coordinates in which to

map conformational displacements. Thus, we can expect that

a macromolecule fluctuates around the ligand-free equilib-

rium state (8), populating the conformation space along the

low-frequency mode directions. Following the model of a

protein as an elastic system in equilibrium, the square of the

amplitude of each mode is proportional to the temperature

and inversely proportional to the frequency of oscillation,

and thus we expect the energy of the macromolecule to in-

crease when stretched along one of its high-frequency modes.

However, even if in the majority of cases ligand binding

perturbs a system along its lower-frequency normal modes,

this is not always the case. The ligand can stretch the protein

in ways that involve higher-frequency modes provided that

there is an energy gain in the process, and therefore the sys-

tem can populate a new conformational state.

Here we obtain the amplitude of many normal modes

(.700) for several widely studied allosteric systems and

observe that some higher-frequency modes can indeed be

activated by a ligand. As the RMSD (all-atom and Ca) has a

simple expression in terms of the mode amplitudes, we have

an easy way to estimate how many modes are needed to

achieve a certain degree of accuracy between a target struc-

ture and the projection obtained by adding weighted normal

modes to a reference structure.

In regard to applications, the normal-mode spectra of a

protein allow the tertiary-structure comparison between pro-

teins that bind to different ligands, independently of the residues

involved in the contacts. The spectral analysis points out

which are the important normal modes that are involved in

the conformational change. Because of this, NMA could be a

useful tool to generate starting structures for MD simula-

tions. As in the case of calmodulin bound to KAR and TFP, it

is reasonable to expect that new drugs would produce similar

conformations. By sampling on the amplitudes of the most

relevant modes, we could generate starting conformations

that would never be attained by standard MD time steps. This

type of analysis is also useful to reconstruct x-ray structures

of different conformations where some residues are missing.

Using the more complete structure as a reference, missing

residues can be reconstructed in the target by adding normal-

mode vectors to the reference with information drawn from

comparison of the existing atoms.

The analysis we present here shows that the normal-mode

basis can be useful to capture the relevant degrees of freedom

of the system. However, it must be taken into account that

these degrees of freedom might not necessarily be found

among the lower-frequency modes, provided that there is a

free-energy cost paid to activate higher-frequency modes.

These conclusions are especially important at the times of

coarse-graining large biomolecules, where computational

time is the limiting factor and an important challenge for the

future.
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