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ABSTRACT A computational method to calculate the orientation of membrane-associated a-helices with respect to a lipid
bilayer has been developed. It is based on a previously derived implicit membrane representation, which was parameterized
using the structures of 46 a-helical membrane proteins. The method is validated by comparison with an independent data set of
six transmembrane and nine antimicrobial peptides of known structure and orientation. The minimum energy orientations of the
transmembrane helices were found to be in good agreement with tilt and rotation angles known from solid-state NMR
experiments. Analysis of the free-energy landscape found two types of minima for transmembrane peptides: i), Surface-bound
configurations with the helix long axis parallel to the membrane, and ii), inserted configurations with the helix spanning the
membrane in a perpendicular orientation. In all cases the inserted configuration also contained the global energy minimum.
Repeating the calculations with a set of solution NMR structures showed that the membrane model correctly distinguishes
native transmembrane from nonnative conformers. All antimicrobial peptides investigated were found to orient parallel and bind
to the membrane surface, in agreement with experimental data. In all cases insertion into the membrane entailed a significant
free-energy penalty. An analysis of the contributions of the individual residue types confirmed that hydrophobic residues are the
main driving force behind membrane protein insertion, whereas polar, charged, and aromatic residues were found to be impor-
tant for the correct orientation of the helix inside the membrane.

INTRODUCTION

Due to the extremely high computational cost of molecular

mechanics simulations using explicit lipid bilayer mem-

branes (1–3), there has been an increasing interest in implicit

membrane representations (4–8) to explore membrane pro-

tein insertion and orientation (9–11) or structure prediction

and folding (8,12). But the relative paucity of structural data

has impeded the development of knowledge-based potentials

that have been successfully applied in globular protein struc-

ture prediction (13). Instead, a set of methods with increasing

levels of sophistication has been developed to predict the

topology of transmembrane (TM) a-helices in membrane

protein sequences, reaching accuracies close to 100% (14–16).

A recent study, however, demonstrated that the number of

membrane protein structures is now sufficient to derive

meaningful potentials of mean force (17). Adapting a method

used for globular proteins (18,19), an implicit membrane

representation was derived from the distributions of amino

acids along the membrane normal. These distributions were

calculated from all a-helical membrane protein structures at

resolutions better than 4 Å available at the time (April 2004;

an up-to-date summary of current structures is provided by

S. H. White—http://blanco.biomol.uci.edu/).

Since the lipid bilayer environment provides the dominant

driving forces for membrane protein folding and integration

(20,21), it was assumed that the preference of different

amino acids for clearly defined regions along the membrane

normal is a direct result of the specific interactions of these

amino acids with the membrane environment. Indeed it was

found that the distributions could be used to calculate a

potential of mean force along the membrane normal for each

amino acid corresponding to an effective implicit membrane

potential. The resulting overall potential as well as the indi-

vidual residue potentials are in good agreement with exper-

imental and computational data (22–24).

This work was motivated by the recent successes in using

solid-state NMR methods in oriented lipid bilayers to deter-

mine the orientation (i.e., tilt and rotation angles) of TM

helices in lipid bilayer membranes (25). So far seven systems

have been studied: Gramicidin (26), the M2 channel segment

of the d-subunit of the nicotinic acetylcholine receptor (AchR)

(27), the influenza A M2 channel (28), the a-factor receptor

M6 helix (29), the membrane conformation of the FD coat

protein (30), virus protein U (VPU) from HIV-1 (31), and

a synthetic peptide derived from the NR1 subunit of the N-

methyl-D-aspanate (NMDA)-glutamate receptor (27). These

systems allow an assessment of the usefulness and accuracy

of the implicit membrane representation to predict correct

orientations of TM helices in their native environment. For

each structure the minimum energy position and orientation

as well as the insertion energy landscape in the membrane was

calculated and compared with experimental data.

To further investigate whether the implicit membrane

model can distinguish a native TM from a non-TM confor-

mation, we repeated the calculations for a number of anti-

microbial peptides. This class of antibiotics is generally
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believed to form amphipathic a-helices that oriented parallel

to the membrane in a surface-bound fashion (32–35). The

peptides work by disrupting the electrochemical gradients

across the cell membranes for a broad spectrum of bacteria,

and in some cases also fungi and red blood and some tumor

cells. Solution NMR structures determined in dodecylphos-

phocholine micelles are currently available for magainin (36)

and a number of cecropin-magainin hybrids (37). The model

peptides ovispirin and novispirin (38) representing the 18

residue N-terminal segment of the powerful endogenous sheep

antibiotic SMAP-29 were determined in trifluoroethanol.

In the last section we examine the individual contributions

of each residue family (hydrophobic, polar, charged, and

aromatic) to the overall free-energy landscape of a peptide,

as well as exploring future improvements to the implicit mem-

brane model.

METHODS

Potentials of mean force membrane model

The implicit membrane was parameterized using all 46 a-helical membrane

protein structures currently available in the protein database with resolutions

.4 Å and has been described in more detail in a previous publication (17).

Where several structures of the same protein were available, the highest

resolution structure was used. Any identical chains were removed and the

proteins were structurally aligned with respect to the membrane center,

which was placed at the origin z ¼ 0. The proteins were aligned so that

residues in the TM region facing the extracellular side are along the negative

z axis and residues facing the cytoplasm are along the positive z axis.

The normal distance z of the backbone carbon a�atom from the mem-

brane center was measured for each residue. Subsequently, the distribution

niðzÞDz along the bilayer normal was derived by counting the number of

amino acids of type i ¼ Ala; Arg; Asp; etc: in the interval z/z1Dz, which

was chosen to be Dz ¼ 2:0 Å: The distributions were fitted using the trial

function

f ðzÞ ¼ a0 1 a1exp �a2ðz� a3Þ2
� �

1 a4 exp �a5ðz� a6Þ2
� �

;

(1)

giving smooth potential functions. Gaussians were chosen in good agree-

ment with experimental evidence from lipid distortion (39,40), x-ray, and

neutron diffraction experiments on fluid liquid-crystalline bilayers (41–43),

partitioning experiments on a variety of tryptophan analogs (44,45) as well

as hexane (46) in lipid bilayers and computer simulations of membrane

proteins in explicit fluid lipid bilayers (22).

For each amino acid type i a potential of mean force EiðzÞ was calculated

as a function of the membrane normal (z axis) only. The potentials were

derived by adapting a method used for globular proteins (18,19). The

measured frequency of residues niðzÞDz was normalized giving

fiðzÞDz ¼
niðzÞ
Ni

Dz; (2)

where Ni ¼ +
z
niðzÞDz.

This normalized frequency distribution corresponds to a potential of

mean force

EiðzÞ ¼ �kT ln fiðzÞ: (3)

Here k is the Boltzmann constant and T is the temperature of the native

state of the protein. The potential of mean force of the overall residue dis-

tribution was chosen as the reference state

ErefðzÞ ¼ �kT ln+
n

i

fiðzÞ; (4)

where the sum is over all amino acid types i. The resulting potentials of mean

force are given by

DEiðzÞ ¼ EiðzÞ � ErefðzÞ: (5)

For hydrophobic residues (Ala, Ile, Leu, Val, and Phe) the potentials of

mean force exhibit a single broad potential energy well at the center of the

membrane, whereas charged residues have a narrow peak at the membrane

center and a slight depression at the cytoplasmic interface. Aromatic residues

(His, Trp, and Tyr) have potentials with two wells, one at each membrane

interface, and polar residue potentials (Asn and Gln) display a single broad

peak centered in the membrane. Pro was found to occur predominantly in the

interfacial loop regions. Nevertheless, unlike charged and polar residues, it is

also represented throughout the membrane region. No potentials were

calculated for residues Cys, Ser, and Thr—Cys because it occurs too

infrequently to be statistically valid and Ser and Thr because the potential is

essentially flat after subtraction of the reference state. The potentials are

generally in good agreement with experimental free energies of solvation

both for buried and interfacial locations (23).

Calculating the minimal energy conformation

The minimal energy conformation was calculated by exploring the entire

translational and rotational space of the peptide in the membrane, rep-

resented by the above potentials. For each peptide the range of residues

defining its helical part was selected (see Tables 1 and 2). This segment was

then used to calculate the center of mass using the heavy backbone atoms

(N, C, Ca, and O). The long axis of the helix was determined through

diagonalization of the inertia tensor of the segment, again using only the

heavy backbone atoms. The tilt angle was defined as the angle of the helix

long axis with respect to the membrane normal, whereas the rotation angle

was defined as the angle of rotation around the helix long axis.

The helix was translated from �50 Å to 150 Å along the membrane

normal (membrane center ¼ 0 Å) in 0.5 Å steps. At each step the helix was

rotated through all space to find the orientation of minimum energy by first

tilting it with respect to the membrane normal and subsequent rotation

around its long axis until all tilt and rotational states have been sampled with

a step size of 1�.
For a 30 residue helix each full scan will take ;15 min on a 3 GHz Xeon

CPU. Where several models were present from the NMR experiments,

the calculations were repeated for each structure.

NMR structures

The following TM helices were analyzed in this study (see Table 1). AchR

M2 (1cek) (27), influenza A M2 (1mp6) (28), a-factor receptor M6 (1pjd)

(29), FD coat protein (1mzt) (30), VPU (1pje) (31), and a synthetic peptide

derived from the NR1 subunit of the NMDA-glutamate receptor (2nr1) (27).

The tilt angle of the above proteins was obtained using solid-state NMR

techniques with the exception of the NR1 subunit, which was nevertheless

found to have a TM orientation.

For VPU (1pje) and a-factor receptor M6 (1pjd), not all residues present

in the peptide were located by the NMR experiment. The missing residues

are the polar and charged residues at the helix termini, which are important

for the correct orientation of the helix in the membrane (see Contributions of

individual residues, below). To be able to compare the current analysis with

the experiment, the missing residues were added with optimized geometry in

an a-helical secondary structure. Ten model structures were generated for

each helix via molecular dynamics simulations with the backbone of the

residues located in the NMR structure held in place by strong harmonic

restraints. For 1pjd Ala-Gln was added at the N-terminus and Lys at the

C-terminus. For 1pje five residues (Gln-Pro-Ile-Gln-Ile) were added to the
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N-terminus and five residues to the C-terminus (Ile-Ile-Glu-Gly-Arg). The

remainder of the C-terminal chain (Gly-Gly-Lys-Lys-Lys-Lys) is a six-

residue ‘‘solubility tag’’ that facilitates the isolation, purification, and sam-

ple preparation and was therefore not modeled.

In the case of the solid-state NMR structure of the AchR M2 (1cek),

which also lacks the charged residues at the termini, the equivalent solution

NMR structures (27) (1a11) were used, which have the complete sequence.

All nine antimicrobial peptide structures investigated in this study have

been determined by solution NMR in micelles (see Table 2), namely,

Magainin (36), 5 cecropin-magainin hybrids (1f0d, 1f0e, 1f0f, 1f0g, and

1f0h) (37), and the model peptides ovispirin (1hu5), novispirin G10 (1hu6),

and T2 (1hu7) (38).

RESULTS AND DISCUSSION

Transmembrane helices

Figs. 1 and 2 show the global minimum energy orientation of

the TM helices with respect to the membrane together with

TABLE 1 Experimental data and computational results for the transmembrane helices

Transmembrane helices

Experimental Calculated

PDB Name Helix (Residues) Tilt (�) Tilt (�) z (Å) (kcal/mol) DE

1a11 Acetylcholine M2 (1cek) 2–24 11 (12) 20 6 5 �0.5 6 0.2 �4.7 6 0.1

158 6 4 �2.5 6 1.3 �4.7 6 0.1

92 6 1 �10.0 6 0.4 �3.3 6 0.4

1mzt FD coat protein 21–44 19 (26) 23 �4.0 �9.7

164 3.0 �7.8

88 �11.0 �5.8

1fdm FD coat protein 28–46 27 6 10 �4.7 6 0.5 �7.2 6 1.2

152 6 8 �1.0 6 4.8 �5.6 6 1.9

87 6 6 13.8 6 0.9 �7.2 6 1.0

1mp6 Influenza A M2 23–45 37 (38 6 3) 41 1.0 �7.8

137 �2.0 �7.2

86 �8.0 �5.9

1pje VPU 8–25 16 (13) 50 6 1 0.0 6 0.0 �10.2 6 0.0

130 6 1 �1.6 6 0.8 �9.8 6 0.2

92 6 2 �6.9 6 0.3 �7.8 6 0.1

1pjd a-Factor receptor M6 4–17 4 (13) 151 6 1 1.0 6 0.0 �5.2 6 0.0

26 6 1 �2.0 6 0.0 �4.8 6 0.0

76 6 1 �8.0 6 0.0 �4.1 6 0.0

2nr1 NMDA receptor 6–26 – 40 6 2 2.3 6 1.6 �4.8 6 0.0

145 6 7 0.8 6 1.4 �4.6 6 0.2

91 6 1 �9.8 6 0.5 �4.8 6 0.0

The table lists the residues defining the helical segment (Helix), the helix tilt angle (Tilt), the displacement of the center of mass of the helix with respect to

the membrane center (z), as well as the insertion energies (DE) for TM, upside-down, and surface-bound configurations. Where several NMR structures were

available, the calculations were repeated for all conformers. For these cases, the conformational average and standard deviations are given. The membrane

center is located at z ¼ 0, and �ve z-values correspond to shifts toward the extracellular side, whereas 1ve z-values correspond to shifts toward the

cytoplasm. The experimental tilt angles were calculated from the aligned solid-state NMR structures deposited in the Protein Data Bank (PDB) using the

method described in the text (see ‘‘Calculating the minimal energy conformation’’). The values in the bracket are the numbers given in the publications.

The dissimilarities are a reflection of the different methods used to calculate tilt angles.

TABLE 2 Results for the surface-adsorbed helices. For each peptide 20 solution, NMR structures were available

Surface-adsorbed helices

PDB Name Helix (Residues) Tilt (�) z (Å) DE (kcal/mol)

2mag Magainin 4–21 87 6 7 13.0 6 0.0 �3.52 6 0.07

1hu5 Ovispirin 1 4–16 94 6 11 15.0 6 0.0 �3.85 6 0.06

1hu6 Novispirin G10 4–11 88 6 6 16.0 6 0.5 �3.40 6 0.10

1hu7 Novispirin T2 7–17 87 6 12 16.0 6 0.0 �3.37 6 0.13

1f0d Magainin-cecropin hybrid 11–17 89 6 7 17.6 6 0.9 �3.63 6 0.15

1f0e Magainin-cecropin hybrid P2 10–17 91 6 8 18.7 6 0.7 �3.54 6 0.21

1f0f Magainin-cecropin hybrid P1 4–13 88 6 4 19.3 6 0.7 �3.43 6 0.09

1f0g Magainin-cecropin hybrid P3 NA 90 6 10 17.4 6 0.7 �3.55 6 0.17

1f0h Magainin-cecropin hybrid P4 13–19 86 6 11 18.2 6 0.8 �3.37 6 0.19

Magainin and the magainin-cecropin hybrids were determined in dodecylphosphocholine micelles, whereas the ovispirin and novispirin structures were

determined in trifluoroethanol. The values represent averages over all 20 models.
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the corresponding orientations determined from solid-state

NMR experiments. Values for the position along the mem-

brane normal, tilt angle, and minimum insertion energy are

listed in Table 1 together with experimental tilt angles. Since

the position along the membrane normal (i.e., z axis) is not

known from NMR studies, the figures show the helices with

their centers of mass superimposed. All three peptides have

the correct orientation with respect to the cytoplasmic side of

the membrane (down), and in each case the minimum energy

conformation corresponds to a TM orientation.

Fig. 1 shows the predicted minimum energy orientation of

AchR M2 (1a11, model 2) together with the solid-state NMR

structure (1cek). Whereas the tilt angle differs slightly, the

rotation angle is virtually identical. All 10 AchR M2 solution

NMR structures (1a11, models 1–10) were analyzed. Models

1 and 2 were found to have the best overlap with the solid-

state NMR structure, having tilt angles of 19� and 18�,
respectively, only slightly higher than the 11� found by the

experiment (27). The AchR M2 minimum energy conforma-

tions fall into two distinct categories. One with a TM config-

uration (mean tilt 20� 6 5�) and another orientation with a

tilt of 158� 6 4�, corresponding to a 22� 6 4� angle with

respect to the membrane normal but with the protein upside

down in the membrane (see Table 1). This conformational

dependence will be explored in more detail below (see

Conformational sensitivity).

The orientation of influenza A M2 (1mp6) was found to be

in excellent agreement with the NMR results, with tilt angle

deviations of only 4� and almost identical rotation angles

(see Fig. 1). Both the NMR and the calculated values are

slightly larger than the 32�6 6� tilt angle obtained from site-

directed infrared dichroism spectra reconstituted in lipid

vesicles (47). For the FD coat protein (1mzt), the minimum

energy orientation shows a perfect overlap of the extracel-

lular surface-bound helix and only a slight 4� tilt deviation of

the TM helix compared to the NMR results (see Fig. 1).

Fig. 2 shows the global minimum energy conformation

with respect to the membrane for a-factor receptor M6 (1pjd,

model 1) and VPU (1pje, model 1) together with the corre-

sponding orientations determined from solid-state NMR

experiments. The minimum energy conformations clearly cor-

respond to TM orientations; nevertheless there are significant

differences in the tilt angles. Whereas the NMR data found a

tilt angle of 16� for VPU, the implicit membrane found a tilt

angle of ;50�, both in turn are much larger than the 6.5� 6
1.7� found by infrared dichroism of synthetic VPU1–31 (48).

The discrepancy is almost certainly the result of modeling the

five terminal residues on either side of the peptide in a con-

formation differing from the solid-state NMR experiment,

FIGURE 1 Overlay of computational and solid-state NMR structures

(in red) for acetylcholine M2 (1a11), influenza A M2 (1mp6), and FD coat

protein (1mzt). Each helix lies flat in the plane of the page except 1mzt, where

the tilt into the page is shown. The cytoplasmic side is down (1ve z axis).

Residues Ser8, Gln13, and Asp24, and Trp41 have been highlighted for

acetylcholine and influenza A, respectively, showing that the helices have

virtually identical rotation angles.

FIGURE 2 Overlay of computational and solid-state NMR structures (in

red) for a-factor receptor M6 (1pjd) and VPU (1pje). The 10-solution NMR

structures of a synthetic peptide derived from the NR1 subunit of the NMDA

receptor exhibited two minimum energy conformations (2nr1, models 1 and 3).

Each helix lies flat in the plane of the graph except for model 3 of 2nr1,

which lies perpendicular. The cytoplasmic side is down (1ve z axis).

Predicting Helix Tilt Angles 1653
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which unfortunately could not resolve these residues. Never-

theless, the rotation angle is in good agreement with the NMR

structure. For the a-factor receptor M6, the disagreement of

the implicit membrane model with experimental data can be

explained by the fact that the 1pjd peptide only represents the

cytoplasmic half of the M6 TM helix. This also explains why

it was found to be upside down with respect to the cytoplasmic

side, since the implicit membrane model incorporates the

known preference of charged amino acids for the intracellu-

lar side of a membrane (17,49). Repeating the calculations for

a-helical models with a complete sequence of the presumed

TM segment of the M6 TM helix (50) resulted in tilt angles of

10�–20� (data not shown), much closer to the values known

for TM helices in general (21�–24�) (17,51,52).

Interestingly, the 10-solution NMR structures of the NR1-

derived synthetic peptide revealed both TM (models 1, 2, 4,

5, 8, and 9) and parallel surface-bound orientations (models

3, 6, 7, and 10). Two models representative of each ori-

entation (2nr1, models 1 and 3) are shown in Fig. 2. Each

conformation has a well-defined tilt angle and position along

the membrane normal, with only small deviations between

the models (see Table 1). Both orientations have nearly

identical insertion energies. In the intact NMDA receptor this

region is probably not entirely a-helical but may form a

P-loop similar to potassium channels (53). Solid-state NMR

experiments point to an inserted TM orientation, but the

exact tilt angle could not be determined (27).

In general the analysis of the TM helices showed three

distinct minimum energy conformations: i), TM, ii), upside-

down TM, and iii), conformations with the helix long axis

parallel to the membrane in a surface-bound configuration.

All TM helices were found to have an energy minimum close

to the membrane center (see Table 1). The relative energy

differences with respect to the aqueous domain range from

�4.7 kcal/mol for AchR M2 to �10.2 kcal/mol for VPU.

These values compare well with experimental estimates of

the free energy of insertion for a single TM helix, which are

in the range of 5–12 kcal/mol (54–57). It should be noted,

however, that experimental difficulties make these values

somewhat unreliable (58,59).

Recent spectroscopic and NMR measurements of the tilt

angles of the M13 major coat protein, influenza A, and VPU

peptides in lipid bilayers with different hydrocarbon tail

lengths have shown that the helix tilt angle is in fact de-

pendent on the hydrophobic thickness h of the host mem-

brane (60–63). In all cases a decrease of the hydrophobic

thickness resulted in an increased tilt angle as the helix tries

to bury as many of the hydrophobic central residues as

possible in the membrane core. For example, the tilt angle of

the M13 major coat protein increased from 19� 6 4� in

dieicosenoyl-phosphatidylcholine (h ¼ 33.0 Å) to 23� 6 4�
in dioleoyl-phosphatidylcholine (h ¼ 29.5 Å), 26� 6 4� in

dipalmitoleoyl-phosphatidylcholine (h¼ 26.0 Å), and 33�6
4� in dimyristoleoyl-phosphatidylcholine (h ¼ 22.5 Å) lipid

bilayers, indicating that the change in tilt angle of the TM

helix is a principal compensation mechanism for hydropho-

bic mismatch (60).

The hydrophobic thickness is difficult to estimate for the

implicit membrane model, since the Gaussian residue poten-

tials represent averages over proteins from different membrane

environments with diverse lipid compositions. However, the

reasonable agreement with the experimental tilt angles sug-

gests that it lies in the 23–31 Å range of the lipids used in the

solid-state NMR measurements.

Surface-bound helices

All antibiotic peptides analyzed in this study were found to

orient parallel to the membrane in a surface-bound config-

uration, in excellent agreement with theoretical consider-

ations (64,65), solid-state NMR experiments (33,35,36,66),

spectroscopic methods, (67,68) as well as computer simu-

lations (69). Panel A of Fig. 3 shows the minimum energy

orientation for ovispirin (1hu5), novispirin (1hu6), and a

cecropin-magainin hybrid (1f0d). Results for the remaining

antibacterial peptides investigated (1hu7, 1f0e, 1f0f, 1f0g,

1f0h, and 2mag) exhibit exactly similar behavior and are

FIGURE 3 (A) Global minimum energy configurations of ovispirin (1hu5),

novispirin (1hu6), and a magainin-cecropin hybrid (1f0d). (B) Global minimum

conformations of FD coat protein from micelles (1fdm, models 12 and 17).
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summarized in Table 2. All peptides are oriented such that

their hydrophobic residues face the membrane, whereas hy-

drophilic residues point toward the aqueous phase, again in

excellent agreement with theory and experimental observa-

tions (33,35). The mean tilt angles of the peptides are in a

narrow range of 90� 6 4�, identical to the ;90� found for

ovispirin by solid-state NMR (35).

Table 2 also lists the distance of the minimum energy con-

formations from the center of the membrane. The distances

can be seen to be in the range of 13–19 Å from the membrane

center. Magainin was found to bind closest of the peptides

studied with a distance of 13 Å. Experimental studies using

colorimetric and time-resolved fluorescence techniques in

biomimetic phospholipid/poly(diacetylene) vesicles found

magainin to insert close to phospholipid glycerol backbone

in bilayers incorporating negatively charged phospholipids

(67). This corresponds to a membrane displacement of

;15 Å, comparable to the 13 Å found in this study. Similar

displacements were found for cecropin-melittin hybrids using

paramagnetic resonance spectroscopy (70).

Insertion ‘‘pathways’’

It is interesting to investigate the free-energy landscape of the

proteins for other, local minimum energy orientations. To

do this the membrane potential was plotted as a function of

position and tilt angle, whereas the rotation angle was opti-

mized (i.e., the rotation angle for each position and tilt angle

is such that the energy is minimal). The resulting free-energy

landscapes for AchR M2 (1a11, model 2) and magainin

(2mag, model 1) are shown in Fig. 4. The potential zero was

chosen at an infinite distance from the membrane. AchR can

be seen to have four distinct minima, with the two deepest

minima corresponding to TM configurations with the helices

approximately parallel to the membrane normal. One is the

global minimum oriented correctly with respect to the cyto-

plasmic side (�0.5 Å, 18�, �4.8 kcal/mol; minima for model

2, the other models have similar values; cf., Table 1),

whereas the other one is upside down in the membrane (�1.0

Å, 162�, �4.8 kcal/mol). The other two minima correspond

to helices bound to the interfacial membrane surface in a

parallel orientation on the cytoplasmic (9.0 Å, 93�, �3.5

kcal/mol) and extracellular (�10.5 Å, 92�, �3.1 kcal/mol)

sides, respectively (see Fig. 5). They are not as deep as the

corresponding TM minima but are the preferred orientations

of the helix near the membrane surfaces. Thus when insert-

ing a helix into a membrane, the current calculations support

a model where it binds to the membrane in a parallel ori-

entation first and subsequently changes to a perpendicular

TM configuration. This is in accordance with general theo-

retical considerations (3) as well the two-stage folding model

for a-helical membrane proteins (21,71), which has recently

been modified to include a third stage (21). There is strong

experimental evidence for independent helix formation and

insertion in the first stage. At the second stage, helices

associate in the membrane-forming concave cavities and clefts

that may facilitate the insertion of loops (e.g., the pore region

in KcsA (72)), more hydrophilic polypeptide sequences (e.g.,

the TM2a helix in SecY (73)), or prosthetic groups (e.g., the

retinal in bacteriorhodopsin (74)) in the third stage.

Repeating the analysis for all 10 AchR M2 solution NMR

structures gave topologically identical free-energy land-

scapes to that shown in Fig. 4. Generally inserted TM con-

figurations are the most stable, with the correctly orientated

conformation having an insertion energy of �4.7 6 0.1 kcal/

mol at the center of the membrane (�0.5 6 0.2 Å). The

upside-down TM orientation has identical insertion energy

but is displaced slightly to the extracellular side (see Table

1). Adsorption of the peptide onto the membrane surface is

also favorable but to a lesser extent, with energy minima of

�3.7 6 0.4 kcal/mol for the cytoplasmic (8.6 6 0.5 Å) and

�3.3 6 0.4 kcal/mol for the extracellular interface (�10.0 6

0.4 Å). These results are in very good agreement with a

FIGURE 4 Insertion energy profiles. The figure shows the free energy

of the helix as a function of the helix tilt and center-of-mass position along

the membrane normal for optimized rotation angle (around the long axis of

the helix). Panel A shows the profile for the AchR helix M2 (1a11, model 2),

and panel B shows the profile for magainin (2mag, model 5). The mem-

brane potentials were chosen such that they are zero at an infinite distance

from the membrane.
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recent theoretical study of the same structures (75,76), which

found average energies of �4.7 6 2.1 kcal/mol and �2.6 6

2.4 kcal/mol for inserted and surface-bound configurations,

respectively. The study used a theoretical continuum-solvent

method developed by Ben-Tal (77) that has been success-

fully applied to estimate the insertion energies of TM

peptides and proteins (78). To compare the results, the helix-

coil transition free energy (DGcon ¼�2.4 kcal/mol) was sub-

tracted, since the current data estimate the insertion energy of

a folded helix.

Interestingly the free-energy landscapes of the other TM

helices investigated in this study displayed topologically

similar behavior, with four distinct energy minima at similar

locations, suggesting that it might be considered a ‘‘finger-

print’’ of a TM helix.

For the antibiotic peptide magainin the free-energy land-

scape can be seen to differ substantially in topology. There are

only two minima and the membrane is represented by a large

barrier spanning the entire tilt range of the helix with an

energy penalty for insertion into the membrane (the barrier

height is 4–6 kcal/mol, with respect to the minima). Fig. 4

shows that the two energy minima correspond to surface-

bound conformations at z ¼ 13 Å and �14 Å, with tilt angles

of 82� and 95�, respectively (DE ¼ �3.6 and �2.7 kcal/mol).

The global minimum was located on the cytoplasmic side

of the membrane. This is a consequence of the implicit

membrane model. Membrane protein structures have on

average a third more charged residues at their cytoplasmic

side, resulting in a potential well. Therefore a highly charged

peptide will prefer the cytoplasmic side. The free-energy

landscapes for ovispirin and the two novispirins are topo-

logically similar to magainin with only two minima, one for

each surface-bound conformation. However, the cecropin-

magainin hybrids displayed more complicated free-energy

landscapes with several local minima at inserted configura-

tions, albeit at much higher energies than the surface-bound

global minima, which were virtually identical for all anti-

microbial peptides investigated (see Table 2).

Conformational sensitivity

Comparing the minimum energy orientations of the solution

FD coat protein NMR structures (1fdm) with the structure

determined from oriented lipid bilayers (1mzt) can provide

some insight into the sensitivity of the implicit membrane

representation in distinguishing native TM from nonnative

TM conformations. Analyses showed a broad spread of tilt

angles ranging from 15� in an inserted TM orientation (z ¼
�4 Å) to 94� where the TM helix orients in a surface-bound

conformation (z ¼ 15 Å). Only two narrowly defined

positions were found, one at the membrane surface 13.8 6

0.9 Å and the other near the membrane center �4.7 6 0.5 Å

(see Table 3). Panel B of Fig. 3 shows the energy minimum
FIGURE 5 Local minimum energy orientations of AchR M2 (1a11, model

2) and magainin (2mag, model 1). The upside-down orientation of AchR M2

is not shown but has a similar tilt angle and central position to panel B.

TABLE 3 Positions, tilt angles, and insertion energies for

the minimum energy configurations of the 20 solution NMR

structures of FD coat protein (1fdm)

FD coat protein solution NMR structures (1fdm)

Model z (Å) Tilt (�) DE (kcal/mol)

1 �4 16 �8.24

5 �4 22 �8.71

8 �4 15 �7.83

9 �4 31 �9.10

13 �5 26 �7.00

14 �5 38 �6.32

15 �5 22 �6.47

16 �5 30 �6.07

17 �5 42 �5.51

18 �5 21 �7.76

19 �5 14 �7.62

20 �5 41 �5.73

Mean �4.7 6 0.5 27 6 10 �7.20 6 1.18

2 14 87 �7.44

3 13 83 �7.87

4 13 91 �7.76

6 13 80 �7.98

7 13 88 �7.57

10 14 93 �7.27

11 15 94 �5.19

12 15 80 �6.31

Mean 13.8 6 0.9 87 6 6 �7.17 6 0.96

The structures were sorted into two groups according to their position along

the membrane normal.
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orientation of one member from each group (1fdm, models

12 and 17). In both cases the polar surface-bound helix has

folded toward the TM helix. Whereas model 12 still inserts

into the membrane in a near-native conformation, the polar

surface-bound helix of model 17 is almost parallel to the TM

helix, thus preventing it from inserting correctly due to the

energy penalty associated with inserting a polar helix into

the hydrophobic core of the lipid bilayer. This suggests that

the implicit membrane is capable of correctly identifying a

TM fold and that it can distinguish it from a structurally

similar non-TM conformation.

This conformational sensitivity might explain why the

calculated orientations of structures that required modeling

of missing residues (1pjd, 1pje) differed considerably from

the solid-state NMR data, whereas structures that did not

require modeling were generally found to be in good agree-

ment with experimental results (1mzt, 1mp6).

Interestingly the structures which best resemble the solid-

state NMR orientation in the membrane also have the lowest

insertion energies (models 1, 5, 9), whereas surface-bound

configurations are generally higher in energy. This finding is

important since for a realistic implicit membrane potential it

is essential that the correct TM conformation has the lowest

free energy.

Contributions of individual residues

It is generally recognized that overall hydrophobicity is the

main driving force for the integration of TM helices into the

lipid bilayer (79). Indeed the vast majority of residues in TM

helices are hydrophobic (52). Nevertheless, polar, charged,

and aromatic residues are known to be important for anchoring

the helix termini into the lipid headgroup environment at the

membrane interfaces (44,80,81).

To investigate the relative roles of hydrophobic, polar-

charged, and aromatic groups, their contributions to the total

insertion potential was calculated. Fig. 6 shows the contri-

butions of hydrophobic residues (panel A) and polar-charged

residues (panel B) to the overall free-energy landscape of

AchR M2 (1a11, model 2) shown in panel A of Fig. 4.

Hydrophobic residues are the main contributors to the helix

insertion potential. However, they favor no tilt angle in

particular. On the other hand polar-charged residues show

low energy penalties for helix orientations parallel to the mem-

brane surface, especially on the cytoplasmic side, whereas TM

orientations correspond to local minima separated by high barri-

ers. Nevertheless the overall potential favors TM orientations

since hydrophobic residues strongly prefer an inserted to a

surface-bound configuration.

Panel C of Fig. 6 shows the aromatic contribution to the

insertion energy of the artificial WALP peptide (82). This

peptide has two tryptophan residues, one at each helix

terminus flanking a hydrophobic core made up of alternating

alanine and leucine residues. The aromatic potential land-

scape exhibits four minima. Two represent parallel surface-

bound configurations, whereas the other two are TM ori-

entations. Again, the overall conformation of the helix is

determined by combining the aromatic and hydrophobic

potentials (similar to panel A), resulting in a TM orientation

FIGURE 6 Contributions to the overall insertion energy. Panel A shows

the contribution of hydrophobic residues, and panel B shows the contribu-

tion of polar and charged residues for AchR M2 (1a11, model 2). The total

insertion energy landscape is shown in panel A of Fig. 4. Panel C shows

the contribution of aromatics at the termini of the artificial WALP peptide

(see text).
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even thought the aromatic contribution favors a surface-

bound orientation.

This suggests that although hydrophobic residues are

essential for the overall insertion of the peptide, it is the

polar, charged, and aromatic residues that are crucial for

determining the correct orientation in the membrane. How-

ever, the Gaussian hydrophobic residue potentials have a

tendency to try to orient a purely hydrophobic sequence

parallel to the membrane at the center (cf., strong tilt angle of

VPU). Nevertheless, the termini of naturally occurring TM

segments are generally abundant in charged and polar

residues, which prevent their burial in the hydrophobic core

of a bilayer.

CONCLUSION

Helical membrane protein insertion is thought to occur by

secondary structure formation at the surface and subsequent

insertion of a-helical segments into the lipid bilayer (20,21).

This model is consistent with this study, which found that all

TM helices possess local insertion energy minima for con-

figurations bound parallel to the membrane surface as well as

for inserted orientations with low tilt angles. The inserted

configurations were generally found to have lower minima

than those bound to the membrane surface, as expected for a

TM peptide.

Comparison of the calculated tilt and rotation angles with

solid-state NMR structures in oriented lipid bilayers showed

good agreement for AchR, FD-coat protein, and influenza A.

For VPU the calculated tilt angle was much larger, possibly

due to the modeling of the terminal residues, which were not

located in the NMR experiments; nevertheless the rotation

angle was found to be nearly identical. The a-factor receptor

was the only system to show significant differences with ex-

perimental findings, which is most likely a reflection of the fact

that the structure represents only the cytoplasmic half of a TM

helix.

Calculating the minimum energy orientations of solution

NMR structures of FD coat protein demonstrated the con-

formational sensitivity of the implicit membrane in distin-

guishing native TM from structurally closely related but

nonnative TM conformers. It was found that the structures

most closely resembling the native state also exhibited the

lowest overall insertion energies, a necessary prerequisite for

a realistic implicit membrane potential.

All antimicrobial peptides investigated were found to have

minimum energy conformations for orientations parallel to the

membrane in a surface-bound configuration, pointing their

hydrophobic residues toward the membrane center while

exposing their polar residues to the aqueous environment, in

excellent agreement with experimental data. The free-energy

landscapes showed that there is a penalty for peptide insertion

into the membrane regardless of the tilt angle.

Analysis of the contributions of the individual residues

toward the total insertion energy showed that hydrophobic

residues are the main driving force for insertion of the peptide

into the membrane, whereas polar, charged, and aromatic

residues are crucial for determining the correct orientation.

In general the translational and rotational energy landscapes

described here represent a detailed search of the orientation

space of the peptides considered. The smoothness of the

energy landscapes is remarkable, and the good overall agree-

ment with theoretical, experimental, and simulation data is

encouraging.
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