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ABsTRAcT A rigorous mathematical solution of the sphering of a red blood cell is
obtained under the assumptions that the red cell is a fluid-filled shell and that it
can swell into a perfect sphere in an appropriate hypotonic medium. The solution
is valid for finite strain of the cell membrane provided that the membrane is iso-
tropic, elastic and incompressible. The most general nonlinear elastic stress-strain
law for the membrane in a state of generalized plane stress is used. A necessary
condition for a red cell to be able to sphere is that its extensional stiffness follow a
specific distribution over the membrane. This distribution is strongly influenced by
the surface tension in the cell membrane. A unique relation exists between the ex-
tensional stiffness, pressure differential, surface tension, and the ratio of the radius
of the sphere to that of the undeformed red cell. The functional dependence of this
stiffness distribution on various physical parameters is presented. A critique of
some current literature on red cell mechanics is presented.

INTRODUCTION

In an earlier article on the theoretical considerations of the elasticity of the red
blood cells (4), it is shown that the assumption that the substance in the interior of
the red blood cell be in the liquid state (which cannot sustain shear stress without
flow) leads to a number of predictions in agreement with observed features of the
red cells. These predictions are based on the biconcave geometrical shape of the
red cell and the thinness of the cell wall (with a radius of order 4 , and a cell wall
thickness of order 100 A, and hence a radius-to-thickness ratio of 400). The red
cell geometry implies that at the equilibrium state the pressure differential across
the cell wall is extremely small, that the cell wall can be deformed into an infinite
number of "applicable" (isometric) surfaces without tearing or stretching and
without change of the enclosed volume (isochoric); consequently the red cell is
capable of large deformation without inducing membrane stresses. These conclu-
sions are independent of the stress-strain law of the cell wall as long as it is elastic,
and are valid whatever the thickness distribution of the cell wall may be. The bi-
concave shape of the red blood cell therefore implies a constant pressure environ-
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ment for the hemoglobin, a great flexibility of the cell as an entity, and a freedom
from membrane stresses in large deformation under normal circumstances. It clearly
relegates any stressing of the cell wall to the action of finite change in volume due
to osmosis, and to the shear stresses which occur when the red cell rubs against a
vascular wall, or when the shear gradient of flow is large in the cellular dimension.
To inquire into further details of the red cell mechanics, it is necessary to know

the stress-strain law of the cell wall, and the wall thickness distribution. For exam-
ple, in order to calculate the tolerable limits of pressure differential within which
the biconcave geometry can be maintained without crenation, we need to know the
elastic modulus and the wall thickness. The same information is needed to compute
the shear and bending stresses to which the cell wall is subjected in the capillary bed.

It is obvious that the direct measurement of the thickness distribution and the
stress-strain law of the red cell wall is extremely difficult. However, it is relatively
easy to observe the geometric changes of the red cell when it is placed in a hypotonic
solution. Therefore, it is of interest to deduce the implications of overall geometric
changes with hypotonicity. One of such changes is the sphering. It is the purpose
of the present article to present an analysis of the sphering of the red cell. Our
objective is to obtain some insight into the law of elasticity obeyed by the cell wall,
or the distribution of thickness of the wall.

Experimental determination of the geometry of the red cell has a particular diffi-
culty in that the dimension of the red cell is so small that the diffraction of visible
light over the three-dimensional object is significant under a light microscope. On
the other hand, an electron microscope cannot observe a living cell and its change
in shape in response to external disturbances. To obtain reliable numerical informa-
tion a method of numerical processing of the photographic plate is promising;
however, it still awaits development.

THE PHENOMENON OF SPHERING

When a red blood cell is placed in a hypotonic solution, it swells to the extent that
the osmotic pressure is balanced by the elastic stresses in cell membrane and any
changes in surface tension. Returning the cell to an isotonic solution recovers the
geometry, so that the transformation seems to be elastic between the initial and the
final states. We shall analyze final states of the swelling; hence the cell membrane
is assumed to be elastic. The cell contents shall be assumed to be in the liquid state.
Whether the red cell behaves viscoelastically during the transient phase of the spher-
ing process is irrelevant to the present study since we shall consider only the states
of static equilibrium.
Under the microscope the red blood cells appear to be able to swell into spherical

shape in hypotonic solution. It is conceivable that the red cell may become a true
sphere. Many observers insisted that this is the case, although accurate documenta-
tion remains to be done. Although whether true sphering really happens or not
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remains to be seen, theoretical simplicity of the spherical form is so great that a
special treatment is warranted.

Consider a relaxed red blood cell which is a body of revolution whose meridional
dimensions are shown in Fig. 1. Let this cell be deformed under a uniform internal
pressure into a sphere of radius a. Since we shall consider only symmetric deforma-
tions, the geometry of the shell is specified completely by a meridian. A point P on
the original shell is moved to a point Q on the deformed shell. The point P on
the meridian of the original shell may be located by the coordinate pairs S and 4),

z

Z S FIGuRE 1 Meridonal cross section of (a) normal
/ Q biconcave red blood cell, and (b) a sphered red

blood cell. Capital letters S, b refer to curvilinear
a coordinates on the normal red cell; the lower

case letters s, se refer to the sphered red cell.
Polar coordiuates are p, e, and a, 0, respectively,
for the normal and sphered cells. Z and z are
axes of symmetry. Equatorial radius of normal
red cell is XO, that of sphered red cell is a.

X and Z, or p and e (see Figs. 1 a and 1 b). The corresponding point Q on the
deformed shell can be specified by s and (p, x and z, or a and 0. Here S is the arc
length measured along the meridian from the pole to P, c1 is the angle between the
normal to the shell at P and the axis of symmetry, and p and e are the plane polar
coordinates as shown in Fig. 1. The equation for the meridional curve (of the
original shell) can be expressed by the functions S = S(4), p = p(O), etc., that of
the deformed shell by s = 9(q'). The deformation is completely described if we
know the transformations 0 to 0, p to a, or S to s.
The stresses in the shell can be represented by the stress resultants (the so-called

membrane stresses) and the stress moments (the bending stresses).' We shall ignore
1The stress resultants are defined as follows. Consider a thin shell. The geometry of the shell is defined
by its middle surface. The spirit of the theory of thin shell is to reduce the analysis of the three-dimen-
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the stress moments,2 and limit our attention to static equilibrium under uniform
internal pressure caused by osmosis. The stress resultants are shown in Fig. 2. The
equations of equilibrium are3

a (rN.) - Ntcosso = 0, (r = r2srnl9) (1)

N8 + Nt = p (2)
ri r2

where r1, r2 are the principal radii of curvature of the deformed shell. See Fig. I
and thertable of notations.

p~~~~~~~~~~NsP
- -~~~~N

FIGURE 2 Notations for stress resultants N., Nt acting in sections passing through the
lines of principal curvature with radii of curvature r , r2 respectively.

If the deformed shell is a sphere of radius a,

r1= r2 = a (3)

sional body into that of a two-dimensional curved surface, namely, the middle surface. Draw a curve
on the middle surface. Pass a plane tangent to this curve and normal to the middle surface. Across
this plane the two sides of the shell interact. This interaction is equivalent to a force and a moment.
The force per unit length of the cross section on the mid-surface is called the traction. The traction,
being a force, has three components which are called the stress resultants. Two of these lie in the
plane tangent to the mid-surface. These are the normal and the shear components, and are often
called membrane stresses. The third, perpendicular to the shell mid-surface, is called the transverse
shear. Now if the curve named above is a meridian of a surface of revolution, as illustrated in Fig. 2,
then we denote the normal stress resultant as Nt, and the shear as Nt.. If the curve is a parallel,
then the corresponding normal stress resultant is denoted by N. and the shear, N,,. For thin shells
it can be shown that N., = NA.. For a symmetricaUy loaded surface of revolution, as is considered
in the present paper, both N., and N,. vanish. Therefore we are left with only N., Nt in the equa-
tions of equilibrium (1) and (2).
2 The justification is discussed in Appendix C.
3 See reference 2, p. 22, with p. = pt = Nt8 = 0, pr = p.
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the unique solution of Equations 1 and 2 is

N8 = Nt - Pa (4)

This simple result holds no matter how the spherical configuration is arrived at.
It is the consequence of the spherical geometry.

This tells us at once that being able to sphere is a very special property. An ar-
bitrary shell cannot become a sphere under internal pressure. A shell with a shape
shown in Fig. 1 a can be transformed into a sphere at a certain pressure only if its
elasticity and wall thickness follow certain special laws.
To deduce these laws, let us first compute the strain. In the meridional direction

xddS

dS FIGURE 3 Notations for the extension ratios Xl = ds/dS X2 = X(S)/
X(S). The upper element belongs to the normal relaxed red cell. The
lower element belongs to the strained, deformed cell. The extension ratios
are formed by dividing the lengths of the corresponding edges.

the extension ratio is obviously ds/dS. In the latitudinal direction it is equal to the
ratio of the circumferences and hence the ratio of the radii (see Fig. 3). These ex-
tension ratios will be denoted by

Xi-ds X2=x(s) (5)
=dS' X(S)

The strain components may be defined in various ways. If Eulerian (Cauchy or

Almansi) strains are used, we have

e8 = Y [I - X1-2], et = Y2[1 -X272]. (6)

On the other hand, the Lagrangian (Green) strains are defined as

e8 = Y -1], et= [X22- 1]. (7)

The former are based on the metric of the deformed shell. The latter are based on the
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metric of the original shell. For a finite deformation' it is necessary to make these
distinctions.4
The elasticity of the shell wall shall be assumed to be nonlinear, isotropic, not

necessarily homogeneous, and shall be specified by the following:

N(e)
- hE

(e8 + vet) (8 a)

Nt(e) - hE (et + ve8) (8 b)1 - V

where E is the Young's modulus, and is a function of the strain invariants:

E = E(et + e8, ete. ; e). (9)

v is another elastic constant which also can be a function of the strain invariants.

//0~~~~~//
F RUBBER->'
cn SME

SOFT
TISSUE FIGURE 4 Possible nonlinear stress-strain relation-

O ,' ships.
< // STRAIN
/

The symbol h denotes the wall thickness of the deformed shell. This, in general, is a
nonlinear stress-strain law. The values of E and v depend, ot course, on whether
e8, et are based on Eulerian or Lagrangian definitions. The justification of Equation
8 is discussed in Appendix A. A general sketch is shown in Fig. 4.
The tension in the membrane consists of two parts: the elastic stress resultant

and the surface tension. Surface tension (force per unit length or surface energy
per unit area) exists on both sides of the cell membrane. Because the nature of the
membrane, as well as the fluids that come into contact with it, may be different on
the two sides of the membrane, we should have two different quantities, y(°),W
to represent the surface tension on the outside and inside of the cell membrane,
respectively. However, only the resultant y,

z = a(i) + (0) (10)

is of importance in the mechanics of sphering when the stress-moments are ignored
Let the membrane stress in the deformed cell be written as

N = N(e) + y, Nt = N(e) +'r (11)

4See reference 5, pp. 89-99 and reference 7.

BIOPHYSICAL JOURNAL VOLUME 8 1968180



where N,(e) and Nt(e) are the elastic stresses which correspond with the strains
e8, et measured from a natural state, and are given by Equation 8. We further as-
sume that the surface tension, as well as the red cell geometry and the elasticity,
is symmetrically distributed. Then when the red cell swells into a sphere, the equi-
librium condition Equation 4 holds, and we obtain, on solving Equation 8 for e.,
et, and applying Equations 4 and 11:

1 (e) (e) I
= (e)e8=et=-N- NvNt N8Eh Eh

= 1 (N_ )= 1Ehv(pE) (12)

To obtain explicit results we shall use plane polar coordinates (Fig. 1) in which
the Eulerian strains of Equation 6 may be written, since

ds = ad, dS =Vp2d02 +dp2,

ee = I I1 _ I [(e - (13 a)2 a2 tdO (12a

I ( p2 Sin2
et = sm4=2 a2 sin22 (13 b)

Equating 13 a and 13 b according to Equation 12, we obtain

1 (d2 + sin20 (dO )2 (14a)

or

=dO [I+_(d )o] d0 (O<O<7r) (14b)

An integration gives the basic transformation

tan = exp{f2[1+½ (dP)2]1 i dO} (15)

where the integration constant has been determined by the condition of sym-
metry, i.e., that 0 = 7r/2 when 0 = 7r/2. It is interesting to note that this trans-
formation is independent of the elastic moduli, wall thickness, surface tension, and
the radius of the sphere a. It follows purely the requirement that for a spherical
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membrane in static equilibrium under internal pressure the principal strains et and
es must be equal.

Equating 13 b and 12 yields the other basic relationship

1- v Pa - = et = I[i a2Sin2Ol (16)

where

sin2 =4tan2 /(1 + tan-) (17)

can be computed from Equation 15. When the red cell shape is specified, the right
hand sides of Equations 15 and 16 are known.

Therefore, sphering is possible if the function (1 - v) (pa - 2v)/(2Eh) follows a
particular variation along the meridian as specified by Equation 16.

Before examining Equation 16 numerically, let us add two formulas. If the elas-
ticity law Equation 8 is based on the Lagrangian strain, the corresponding result for

tan 2 is the same as Equation 15, whereas in place of Equation 16 we now have

Eh (2 ) 2 p si'2

If the red cell shape is specified in X, Z coordinates, we have, in place of Equation
15,5

6 For practical calculations it is desirable to remove the singularities in the integrals in Equations
15 and 19. To remove the singularity at the lower limit, as e -+ 0 and X -+ 0, we subtract and add
1 to the numerators of the integrands in Equations 15 and 19, integrate the last term explicitly, and
reduce the results to obtain

I 2
12

0 0 [12 (2 \g a)
tan - = tan exp d (15 a)2 mesn

tan- =
-

exp

i-i' 'dXX(2 Xo JxX

The integral in Equation 15 a is regular. That in Equation 19 a, however, has a singularity at the
upper limit since dZ/dX -- oo at X0, because the cell wall has a vertical tangent there on account
of the symmetry with respect to the equatorial plane and the continuity of the slope. To remove
the difficulty, we can take Z as the independent variable so that

tan = exp }+ 1 (19 b)

In practice, we use Equation 19 a for 0 < X < 0.98 X0, and Equation 19 b for 0.98 Xo < X < X0o.
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0o f XO[- (Z2 12dX~
tan -= exp{ - I 1+ kdX) ] -jX}(19)

where Xo is the equatorial radius of the red cell. In X, Z coordinates, p sin 0 in
Equation 16 is X.

DISTRIBUTION OF THE EXTENSIONAL STIFFNESS OF THE
CELL WALL

We see that the ability of a red cell to sphere requires that the parameter (1 - v)
(pa - 2-y)/(2Eh) satisfy Equation 16. This parameter depends on the product of E
and h, both of which may vary along the meridian. We shall call the product Eh
the "extensional stiffness" of the membrane.

If the red cell wall is homogeneous and linearly elastic, then E, v, and -y are con-
stants and the extensional stiffness can be a function of 0 satisfying Equation 16

p

I/hX FIGURE 5 Schematic drawing showing variable extensional
stiffness. Distributions Eh(x) and EH(X) in the sphered red

1-@ 7 ~H cell and the normal biconcave red cell, respectively. E is the
X 4 Young's modulus in the strained state; h is the wall thickness in
____________ the strained state; H is the wall thickness in the relaxed state.

only if the thickness variation h is inversely proportional to the right hand side of
Equation 16. We note that h is the wall thickness of the deformed shell, which
varies, of course, with the strain. In finite deformation such a strain-dependent
variation must be taken into account. Furthermore, if the elasticity of the red cell
wall is nonhomogeneous, then E and v vary spatially; if the wall elasticity is non-

linear, then E, v are functions of e8, et.
Let us consider the thickness variation which will be denoted by h(O) and H(0)

for the sphered and the relaxed red cell, respectively (Fig. 5). H(O) can be com-

puted from h(O) if we know the strain and if we know the compressibility of the
material. Let us assume that the material is incompressible, which can be specified
(exactly in infinitesimal strains but approximately in finite strains) by setting the
Poisson's ratio v to be 12. Consider the change of volume of a portion of the sphered
red cell in the form of a narrow circular ring bounded between two neighboring
parallel circles at 6 and 0 + dO. The thickness of the ring being h, the width being
ds = a dO, and the circumference being 27r a sin 0, then the volume of the ring is
2ira2h sin 0 dO. The corresponding ring in the relaxed cell has thickness H, length
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27p sin e, and width dS:

dS =[p2+ d]e

hence the volume 27rpHdS sin 0. Equating these volumes on account of the in-
compressibility, we obtain

a2h sinG dO = p2 H sine [1 + ( d2]I2

Hence

H = h a_5snmG 2_ 11do 20

p2sin0[1+ p2 de)] do (20)

A substitution of dO/dO from Equation (14 b) gives finally

2 2
H =h a sinG (21)p2 sin2 O

We notice that the parameter

2 2
B =

a sin 0 (22)

appears frequently. B can be computed from Equations 17 and 18 or 19. Let the
values of Eh from Equation 16 (using Eulerian strain) and from Equation 18 (using
Green's strain) be distinguished by the superscripts E and G respectively; and simi-
larly for EH, then

EH(E) = Eh(E)B= EH()B= Eh(G)B2. (23)

We are now ready to examine some numerical examples. For the convenience of
computation, we shall choose the unit of length so that Xo = 1. Since Equations
15-19 and 22, 23 are all in dimensionless form, such a choice of scale means only
that we divide all the initial cell dimensions in micra by Xo in micra. Lacking de-
tailed information about the red cell geometry, we shall assume that the meridional
section in the undeformed state can be expressed by a polynomial equation. Since
the equation must be symmetric in +Z and -Z, and in +X and -X, as the red
cell is symmetric with respect to the polar axis and the equatorial plane, the equa-
tion must contain only even powers of Z and X. Thus we assume

Z2 = (1 -X2)(Co + CIX2 + C2X7). (24)

The first factor on the right hand side is dictated by the condition Z = 0 when
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X = 1. If we choose C0, C1, C2 to fit Ponder's data (14, 15) on the red cell diam-
eter, and the locations and values of the maxima and minima of the cell as shown in
Fig. 1, we have

CO = 0.01384083, Ci = 0.2842917, C2 = 0.01306932.

Then the cell shape as given by Equation 24 is plotted in Fig. 1. The large number
of digits quoted for these constants does not mean that the cell shape is known to
such accuracy, but they are kept to avoid purely numerical rounding-off errors in

7 l
- a/IX0 1.05

6 ----a/X0 1.10 ,3
----aIX0 = 1.2524

SURFACE TENSION y °

44- NORMAL //

six 30 - ----------D CELL

0 0.2 0.4 0.6 0.8 1.0
RADIAL DISTANCE X/Xo

FIGURE 6 The distribution of the extensional stiffness of the red cell wall plotted as a
function of the radial coordinates. Because different areas of the red cell are stretched
differently during the sphering process, the thickness distribution is different in the two
configurations. Surface tension -y is taken to be zero for this figure.

the computational process. The final result is to be accepted with no more than one
or two significant figures accuracy.
As a useful check on the numerical calculations, we note that as X -+ 1, sin2 0

and sin22 tend to 1 and Equation 16 yields the limiting value

(25)

Since X0 is taken to be 1, a in this formula is the ratio of the radius of the sphere
to Xo.
To discuss the numerical results, we shall consider first the case of zero surface
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tension. Numerical integration of Equation 19 and others leads to the results as
shown in Fig. 6 in case the surface tension is zero. Here the original extensional
stiffness distribution of the cell wall, 2EH/(I - v), is plotted as a function of the
radial distance X/Xo. We see that the extensional stiffness of the cell wall is not
uniform for those biconcave cells that can sphere. The stiffness variation depends
on the ratio of the diameter of the sphere to the diameter of the undeformed red
cell, a/Xo . If the ratio a/Xo is very close to 1, a very large local stiffening at the equa-
tor is needed. If the radius of the sphere is only one per cent larger than the unde-
formed cell (a/Xo = 1.05), the stiffness at the equator would have to be 12.4 times
the stiffness at the pole (data for this case was not plotted in Fig. 6). If the radius
of the sphere is 5 per cent larger than the undeformed cell, (a/Xo = 1.05), then the

I I I

FIGURE 7 The necessary ratio of the
extensional stiffness at the equator to
that at the poles in order that a normal
biconcave red cell of radius X0 be able
to become a sphere of radius a in a
hypotonic solution. The surface ten-
sion -y is taken to be zero for this figure.
Only when the surface tension -y is non-
vanishing and variable over the surface
can a biconcave red cell be transformed
into a sphere with radius a smaller
than X0 in a hypotonic solution.

1.1 1.2 1.3 1.4 i.5

a/X0 SPHERE RADIUS/CELL RADIUS

equatorial stiffness is required to be 2.76 times that at the poles. This raio decreases
as the ratio a/Xc increases, until at a/X0 = 1.19 the trend is reversed. See Fig. 7.
For larger spheres the location of the most stiff point is somewhere near the axis
of symmetry. A similar plot of the stiffness distribution in the sphered cell is shown
in the same Fig. 6.

Since we do not know the red cell geometry accurately, it is expedient to examine
the variations in the solution with a whole class of cell shapes. Numerically this is
very easy to do. One just varies the constants C0, C1, and C2 in some systematic
way. A set of such calculations shows, for example, that the stiffness distribution is
quite insensitive to the location of the maximum thickness of the red cell. If this
location is shifted closer to the axis of symmetry by 10 per cent of cell radius, the
maximum change in EH is no more than 5 per cent when a/Xo = 1.05. Variation of
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other parameters produced similar insignificant results. These results are not pre-
sented because when accurate geometric measurements are obtained in the future,
a repetition of the numerical calculations can be done very quickly.

Next, let us consider the effect of surface tension y. The possibility of a variable
surface tension distribution y(o) permits us to consider negative strain e8 = et.
Fig. 8 shows the distribution of e8, and hence of

1-v({pa)_

over a meridional section of the red cell.6 Note that this parameter can be nega-
tive when a/Xo < 1. Since p is a constant, and Eh/(l - v) has to be positive to
have a physical significance, we see that such a change of sign of e8 can happen only
if -y is smaller than pa/2 when X is small and greater than pa/2 when X is large.
Therefore we conclude that if the radius of the sphered red blood cell is smaller than
that of the normal red cell, then the surface tension would have to be greater at the
equator than at the poles (i.e., the dimples).

4 SPHERED CELL RADIUS a
BICONCAVE CELL RAD. To 7

_

2

0.2 0.4 0.6 0.8

<-c-I - RADIAL DISTANCE X/X0

-2

FIGURE 8 The radial distribution of the Eulerian strain e8 = et in the sphered red blood

cell. The strain e. is equal to the parameter (1 E ) - hence this figure shows also

the necessary distribution of the reciprocal of the extensional stiffness of the wall as related
to the surface tension.

Ponder (15) suggested that the surface area remains constant in sphering. If
this were the case, then a = 0.8155 for a red cell geometry specified by Equation
24. We must note that a common belief that the cell membrane must be inextensible
if the total area remains constant is erroneous. An inextensible biconcave shell

6 The radius XO in Fig. 8 refers to that of the relaxed (unstressed) biconcave shell. If the surface
tension is variable and o 0 over the cell membrane in the normal condition, it is necessary to cal-
culate the relaxed configuration from the observed geometry and -y distribution.
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cannot sphere. Local extension is necessary for sphering. This is due to the fact that
no sphere can be isometric with a biconcave shell.
The surface tension y between the red cell membrane and the plasma on the one

side and the hemoglobin on the other has not been measured. The present theory
provides a relation between -y and the sphering radius. If the sphered red cell radius
is smaller than the equatorial radius of the unstrained red cell, then 'y = pa/2 at
the point where e8 = 0. Ifp turns out to be of the order of 2.3 mm H20 as stated by
Rand and Burton (18), then for a * 4 X lO- cm we have 'y - 5 X l0- dyne/
cm, which is five orders of magnitude smaller than that of the water and air inter-
face.
For a red cell to be transformed into a perfect sphere, not only is the parameter

(1 - v) (pa - 2-y)/(2 Eh) required to have the right variation over the cell, it must
also satisfy the specific numerical value shown in these figures. Hence the product
pa is fully determined in each case. The internal pressure p is determined by the
chemical potential. At equilibrium when there is no mass transfer across the cell
membrane the osmotic pressure must balance the hydrostatic pressure p. In other
words, a red cell can swell only into a sphere of a specific radius, if it can do so at
all.

DISCUSSIONS AND CONJECTURES

The simplicity of the present analysis is truly remarkable. It is achieved through
the spherical geometry of the swelled cell. Should it be desired to analyze the swell-
ing of the red cell into an intermediate, ellipsoidal shape, we would have to carry
out a step-by-step numerical integration of a set of nonlinear differential equations
with variable coefficients. Indeed, we know of few nonlinear problems which can
be solved by a method so simple and yet applicable to so general a material and so
complex an initial geometry.

However, since the partial differential equations governing the static equilibrium
of a thin shell (in the full bending-stretching theory) are of the elliptic type, small
deviations in geometry are expected to induce only small changes in the stress and
strain. Hence the perturbation method can be applied so that the theory can be
modified readily to the case in which the red cell swells into an ovaloid which does
not differ too much from a sphere.
The theory is suggestive to the experimenter to look for possible variations in

wall thickness, elasticity, and surface tension, and to determine whether true spher-
ing occurs, and if so, at what radius and what internal pressure. However, there
are a number of recently discovered facts which may be considered in this connec-
tion.
The most important is John Murphy's discovery (13) that the cholesterol in the

erythrocytes is concentrated around the equator. Now cholesterol is a relatively
stiff material. It attaches to the erythrocyte cell membrane, and might very well be
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the cause of a local variation of surface tension and an increased Young's modulus
or an increased effective wall thickness. Murphy's theory of surface-tension-con-
trolled biconcave shape, however, appears to be in error and is discussed in Appen-
dix B.
The second fact is that an erythrocyte in a hypotonic solution behaves differently

than a rubber model in a similar situation. In reference 4, the author discussed the
behavior of a seamless thin-walled latex rubber biconcave shell (radius-to-thickness
ratio of order 400) under internal pressure. When this rubber model of the red cell
is gradually pressurized, the dimples at the poles first pop out, then buckling occurs
along the equator, as shown in Fig. 7 of reference 4. The buckling occurs because as
the cell tries to sphere the equator shortens. The number of buckles increases with
increasing internal pressure. At a sufficiently high pressure the shell becomes smooth
again. However, the rubber model could not sphere, and it failed by aneurism.
When a red cell is observed under the microscope, such buckles cannot be seen.

One may hypothesize that the absence of the buckle is due to the non-linear stress-
strain relationship of the cell material. If the cell wall behaves in a manner similar
to other soft tissues, such as the mesentery, the blood vessels, the skin, the striated
and the heart muscles, then an exponential stress-strain relationship is expected
(Fig. 4). For such a material Young's modulus approaches zero at zero stress, then
it increases linearly with increasing stress, and exponentially with increasing strain.
The essence is that the material is very soft in the natural state, much softer than
the rubber at the corresponding state. Now the buckling such as shown in the Fig. 7
of reference 4 occurs because at the critical compressive buckling stress the compres-
sive strain of the rubber is not large enough to absorb the required shortening. If
the elastic modulus was exponential for the erythrocyte, the critical buckling stress
would approach zero, but the strain could be finite, so that wrinkles might be
absent.

In a larger scale, a similar situation exists in compressing an artery. Rushmer et
al. (11) show that under an external pressure a rubber tube buckles and flattens
whereas a femoral artery just shrinks in size but remains round. Undoubtedly in the
case of the femoral artery, the stability of the blood vessel is increased by the sur-
rounding tissues, but the ability of the artery to reduce its diameter is marked.

If we take the absence of the buckles to mean that a nonlinear stress-strain law
such as the exponential law of the arteries, skin, and muscles is reasonable also for
the erythrocyte, then the extreme flexibility of the normal red cells is to be expected.
For, in addition to the reasons explained in reference 4, we now add that any second-
ary stresses (bending and stretching) resisting a change of shape from the normal
biconcave shape are very small.

Ponder's (15) classical discussion on the sphering of red cells offers much in-
formation. In some details Rand and Burton (18) state that "when equilibrated
with a sufficiently hypotonic medium, so that the dimple curvature has been re-
versed and the cell is a swollen ellipsoid, then the cells very abruptly 'popped' from
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the swollen ellipsoid into a perfect 'glassy' sphere." Since an ellipsoid is a stable con-
figuration, this suggests a rapid change in elasticity between the stages of ellipsoid
and the sphere, which hints at an exponential law similar to other soft tissues.
Of the great flexibility of the red cell wall there is no doubt. Recent work of Guest

et al. (9) shows that the red cell wall can be deformed into cusp-like edges when the
cell moves through capillaries of small calibre. Gregerson and his associates (8)
report on the passage of washed red cells through circular holes in polycarbonate
filters. The red cells can pass through holes less than one third cell diameter without
hemolysis and with no driving force other than the cell's own weight. Teitel (21)
finds in similar experiments on passing red cells through filter papers that the red
cell elasticity (called "plasticity" by Teitel) is influenced critically by heating to
49.50C.
There are several other puzzling facts related to the red cell wall reported re-

cently: (a), Baker's (1) electron microscopic observation on hemolyzing red cells
which grow long hairs prolifically, and his capture of the "crowning" of red cells
when the cell walls were broken locally when the cells were placed in a hypotonic
solution which contained gluteraldehyde for fixation. (b), Stewart's (20) electron
microscopic observation of the detached membrane and integument in an abrazed
red cell. (c), Kochen's (10) observation about pulling the cell wall into a filament
when the cell adheres to a glass surface at a single point. In a speculative vein these
facts taken together suggest that the red cell wall may not be a bimolecular layer of
lipids. It is hard to conceive that such a bimolecular layer would have the great
extensibility and exponential stiffening that is desired. As an alternative one might
suggest that the molecules are arranged in some kind of layered spirals which un-
coil under various stresses. Perhaps the uncoiling may provide the key to the elastic
stiffening, the filament and the hair formation, and the integument appearance in
the process of hemolysis of the red cells.

CONCLUSIONS

By assuming that the red blood cell is a fluid-filled shell and that it can swell into a
perfect sphere in an appropriate hypotonic medium, we obtain a rigorous solution
of the sphering transformation. The solution presented in this paper is valid for
finite strains of the red cell membrane, under the most general nonlinear elastic
stress-strain law for an isotropic, incompressible material in a state of generalized
plane stress. The surface tension variation is taken into account.
A necessary condition for a red cell to be able to sphere is that the surface tension

and the extensional stiffness follow specific distributions over the membrane. If
the surface tension distribution and the ratio of the radius of the sphere to that of
the undeformed red cell are known, then this extensional stiffness distribution is
determined. Therefore, the measurement of sphering would provide important in-
formation about the mechanical property of the red cell membrane.
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APPENDIX A

Justification of the Stress-Strain Law-Equation 8
We shall show that the formulation of the stress-strain law presented in Equation 8 is the
most general one for a two-dimensional generalized plane-stress field in an isotropic incom-
pressible material under the general assumption that the stress is an analytic function of the
strain. That Equation 8, which is formally similar to the familiar linear elasticity law, is indeed
the most general one in nonlinear finite deformation under a very broad assumption, is a fact
that does not seem to have been pointed out before. The corresponding result valid for a
three-dimensional field was presented earlier by Prager (16). But the two-dimensional result
is very much simpler. In three-dimensional fields, the analogy with the linear elasticity formula
is not valid.

Let us consider a thin membrane stressed by forces acting in the plane of the membrane
while the forces acting on the faces of the membrane are so small that the stresses normal
and tangential to the membrane surface are negligibly small compared with the stresses in
the plane of the membrane. This is the so-called plane state-of-stress. The state of strain
corresponding to a plane state-of-stress is in general not plane; the thickness of the membrane
will vary with the stress. However, if the material is incompressible, then the strain normal
to the membrane is determined entirely by the strain in the plane of the membrane. Hence
in the state so specified the state of stress and strain can be described by the matrices

d (aI a:e (e2 e\y (A. I
O-xy ay exy ey,

where x, y are orthogonal coordinates in the plane of the membrane.
We assume that the material is isotropic and that the stress is an analytic function of the

strain. This means that the stress is expressible as a power series of the strain. Thus

d = coI + cle +c2e2 + c3e3 +*-- (A. 2)

where co, cl , c2 * are constants. The characteristic equation of e is

O Ie- XIIi= (A. 3e

i.e.,

-2 (e. + ey)X + (ezey - exv) = 0. (A. 3 a)

Let the roots of this equation be el and e2 . Then el, e2 are the principal strains which are
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invariant with respect to rotation of coordinates. From Equation (A. 3 a) we have

2
e1+ e2 = e. + ev, e1e2 = ee-eX*e (A.4)

Writing a, # for the first and second invariants of strain,

a = el + e2, (3=eje2 (A. 5)
we have

2- aX + = 0. (A. 6)
According to Cayley-Hamilton's theorem (12), a matrix satisfies its own characteristic equa-
tion. Hence we have the matrix equation

e'-ae+(3I=0 (A.7)

where I is the idemfactor. Multiply Equation A. 7 successively by e, e2, e3 ... and solve for
the highest power, we obtain

ae=ae-(I

e = (a2- #)e - aI

e4 = [a(a2 -() - a]e - (a2-

........... .......(A. 8)

On substituting these powers into Equation A.2, collecting terms, and rearranging, we see
that the result can be written as

d = u(a, O)e + ti(a, )I (A. 9)

where tu(a, O8), ,q(a, (3) are functions of a and (3; i.e., functions of the strain invariants ei +
e2, eie2. Thus the stress tensor is equal to the sum of one term proportional to the strain
tensor and another proportional to an isotropic tensor. If we now write

n (a, () = X(a, ()a, (A. 10)

which in general should be permissible unless at = 0, (in an infinitesimal strain field, in-
compressibility implies ei + e2 + e3 = 0, so that in general e3 = -(el + e2) # 0), then
Equation A.9 becomes

d = /l(a, )e + X(a, (3)(e. + ey)I. (A. 11)
The last equation is identical in form to the linear elasticity law. The functions js(a, p3),
X(a, (3) are the nonlinear analog of the Lam6 constants.

Equation A.11 can be reduced to Equation 8 if we identify7

'See reference 5, p. 129.
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,Eu(3x + 2,u) X
oA + 22() + IA)

Y,= a N,, ha,. (A. 12)

Thus the validity of our assumed law is verified.
The corresponding result for the three-dimensional field given by Prager (16, 17) referred

to above is

d = lAe2 + p2e + p3l. (A. 13)

Here A,u, PU2, and pu are functions of the strain invariants. Since in general we have no right
to remove the e2 term, no analog can be drawn with the linear theory.
A final remark about the assumption of incompressibility. This assumption is not essential.

It was introduced merely to justify that the two-dimensional strain tensor e given in Equa-
tion A.1 is sufficient to specify completely the strain in a body in a plane-stress state. It
can be replaced by knowing the three-dimensional stress-strain law (Equation A.13) so that
the normal strain e. and the shear strains e2t,,ez (z is the axis normal to x and y) can be
computed from the two-dimensional strain tensor (Equation A.1) and the conditions of
plane stress, or = ozx = az = 0. However, since for soft biological tissues the bulk modulus
is several orders of magnitude higher than the shear modulus, the assumption of incom-
pressibility is usually applicable.

APPENDIX B

Critique of Some Theories of the Mechanical Properties of
Red Cell Membrane

Many theories of the red cell membrane are based on an analogy with liquid droplets under
the action of surface tension. The most recent and prominent are those of Rand and Burton
(18) and Murphy (13). Since these theories differ in their fundamental approach from the
present paper, it is necessary to discuss the differences.
Murphy (13) discovered that the cholesterol distribution in the red cell is nonuniform,

and suggested that the surface tension in the cell membrane is also nonuniform. He then
showed that an oil drop on water would produce a concavity in the interface if a local de-
crease of surface tension was introduced. A drop of Cristo oil floating on water assumed a
round shape. A tiny speck of detergent was introduced to touch the bottom of the oil drop,
which then changed into a monoconcave shape with the bottom curved upward. Murphy
suggests that the biconcave shape of the red cell is obtained by such a mechanism.

There is a basic difficulty in extrapolating the floating oil drop result to a red cell wholly
immersed in a fluid. Consider the forces that act on an immersed droplet. For simplicity's
sake let us assume that the density of the fluid in the droplet is the same as the external fluid.
Then the hydrostatic pressure due to gravity is the same everywhere on both sides of the
interface. Therefore the only possible pressure differential that may act on the interface is a
uniform internal pressure po .
Now consider the floating droplet. The free surface of the water is perpendicular to the

gravitational field. If we denote the distance from the free surface by z, then at equilibrium
the static pressure inside the droplet is po + pgz, where po is the pressure inside the droplet
at the level of the free surface (z = 0), p is the density of the droplet, and g is the gravi-
tational acceleration. If all pressures are stated as gauge values then the pressure in the air
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is zero, and that in the liquid outside the droplet is pgz, where p is the density of the water.
The pressure distribution acting on the interface may be listed as follows:

Floating droplet Immersed droplet
On upper surface On lower surface On entire surface

Z =-z1 Z = Z2

In droplet p0 -pgzl po + PgZ2 Po + pgz
Outside droplet 0 pgZ2 pgz

Differential P0 - pgzl po + (A -p)gZ2 Po

The pressure differential listed in the last line is what must be balanced by the surface tension
and curvature of the interface. Since zi, Z2 are variable over the droplet, the dissimilar na-
ture between the floating droplet and the immersed one is evident.

Although we have shown that the floating droplet is not a reliable model for the red cell,
we did not say that surface tension is not an important factor in determining the red cell
geometry. In fact, the analysis presented in reference 4, as well as the present paper, argues
for the extreme importance of surface tension. The sphering or antisphering agents probably
act through the control of surface tension. In this connection we observe that the introduction
of hypotonicity by adding water to the medium not only affects the osmosis, but also increases
the surface tension between the cell membrane and the solution. The final osmotic pressure
across the cell wall is balanced by the resultant of the elastic stress and the surface tension.
Following the analysis of reference (4), we conclude that if the red cell shape is biconcave
then at equilibrium the resultant of the surface tension and the elastic stress must approach
zero.

Next we shall discuss the work of Rand and Burton (18), who described an interesting
experiment on sucking red cell membranes into small pipettes. Among other things they
concluded: (a) There is no difference in stiffness between the rim and the biconcavity of the
red cell or between biconcave discs and hypotonically swollen (not sphered) cells. (b) Normal
and swollen cells showed a pressure gradient of 2.3 0.8 (SE) mm H20. If these conclusions
were established rigorously, they would settle many questions about red-cell mechanics. Un-
fortunately, these conclusions were arrived at after the addition of several unwarranted
assumptions which will be discussed below.
Rand and Burton's (18) initial hypothesis is identical with that of this paper, namely, that

the red cell may be treated as a liquid-filled elastic shell. In deciding how to analyze such
a shell, they proposed to investigate which one of the following four theories should apply:
(1) the liquid-interface theory, (2) the "membrane" theory, (3) the "pure bending" (inex-
tensional bending) theory, (4) the complete shell theory. However, instead of developing a
comprehensive theory meeting the requirements of theory 4 named above, and then specialize
into the three successively simpler cases theories 3, 2, and 1, Rand and Burton dismissed the
whole shell theory as "intractable", and introduced the following two equations as the basis
for analysis:

P = Tt +l)(B. 1)

(1 R2)B.2
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The first equation (B.1) is addressed to membrane stretching. It states that a pressure dif-
ferential P (dyne/cm2) across a membrane is balanced by a tension T times the mean curva-
ture of the surface. R1, R2 are the principal radii of curvature. The second equation (B.2)
is supposed to account for the "resistance to bending." Here S is a parameter in units of
dyne/cm, and is supposed to "include both rigidity and tension."
Now the first equation (B.1) is valid only if the principal tensions N8, , Nt (in our notation)

are equal and equal to T. The second equation (B.2) is probably never valid. There is no
theoretical basis for this equation. If it is valid for some special cases, the authors did not
mention any.

Equation B.1 is applicable, of course, to a liquid interface, for which T stands for surface
tension. For an elastic membrane it is true only in very special cases. The sphered red cell
(analyzed in this paper) happens to be the one case in which N. = Nt and therefore Equa-
tion B.1 is applicable. For cells not in spherical shape, in general N8 o Nt and Equation
B.1 is not valid. For a cell membrane sucked into a pipette, whose diameter is smaller than
the cell radius, Equation B.1 is definitely nonvalid. It is easy to see that N,, Nt at the
mouth of the pipette.
Rand and Burton (18) stated that the Equations B.1 and B.2 must be validated by ex-

periments. Unfortunately they used liquid droplets for this purpose. Since for liquid drop-
lets Equation B.1 is unquestionably valid and Equation B.2 is irrelevant, the agreement
between theory and experiment does not add new information. But no other justification
was offered for applying the liquid-drop analysis to the red cell.
The method of analyzing the red cell employed by Rand and Burton is illustrated in

Fig. 7 of their paper (18). The solid curve in that figure shows the length of the tongue of
a red cell membrane sucked into a small pipette as a function of the pressure differential;
the dotted curve shows what happens when a liquid drop was sucked by a small pipette.
In the case of the liquid there is a critical pressure at which the liquid flows abruptly and
entirely into the pipette. The same does not happen to the red cell. However, Rand and
Burton identified on the solid curve a point called "critical" on the basis of a tendency for
the cell membrane to vibrate at that pressure. This "critical" pressure is then considered to
have the same meaning as the critical pressure of the liquid droplet. The conclusions drawn
in reference (18) are based on such an identification.

Since neither the identification of the "critical" conditions, nor the critical pressure of
the liquid droplet, has been shown to be applicable to the red cell membrane, the conclusions
reached in reference (18) are not well founded, and further analysis will be needed to derive
the full implications of the interesting and elegant experiments of Rand and Burton.

APPENDIX C

Justification for Neglecting the Effect of Bending on the
Sphering Problem

Although a complete theory of bending is exceedingly complex, still we can obtain a simple
estimate of the effect of bending on the sphering of red cells as follows. Note that the prin-
cipal effect of bending on the equation of equilibium in the radial direction, Equation 2, is
to add terms of the form DV2 (change of curvature), where D is the bending rigidity Eh3/[12
(1 - i2)I, and v is the Laplacian operator. To estimate the magnitude of such a term, let
us consider the polar region (dimple) of the red cell where the change of curvature is the
largest. The mean curvature of the sphere is 1/a, that of the initial dimple is of the order
of -1/a. Therefore the change is of the order of 2/a. This change occurs in a distance of
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the order of a. Hence the bending term is of the order of [Eh3/12 (1 - v2)] (2/a3), which
should be compared with the membrane-stress term N8/a in Equation 2. Now for a conserva-
tive estimate let us ignore the surface tension, so that the membrane-stress term is N8(e)/a.
Using Equations 8 a and 12, we obtain the result that in the equation for the radial equi-
librium the ratio of the contribution from bending to that from stretching is of the order of

Eh3 2 rEhe -1 h2
12(1 - 2) a3 _ v)a_ 12(1 + v)a2e8'

For the red blood cell, we have h 10--6 cm, a - 4 X 10-i cm, v 0.5, and e8 0.2
from Fig. 8; then the ratio named above becomes 1.74 X 10-6 to 1. Thus the effect of bend-
ing is quite negligible.
The equation of tangential equilibrium, Equation 1, is affected by bending through the

transverse shear which is of the order of the gradient of the product of the bending rigidity
D times the change of curvature. By an estimate similar to the above, we find that the ratio
of the order of magnitude of the neglected term to those retained is also of the order of 10-6
to 1.

These estimates break down at the point on the red cell where the extensional strain e8
vanishes. At this point the membrane stress vanishes and the bending terms, though small,
are all that is left in the equation. Thus there exists a narrow region, close to the equator of
the red cell, in which bending predominates. To analyze the stresses in this narrow region
we can use the "edge-layer" theory. The phenomenon of edge layer is well known in the
theory of thin shells. It was first discovered by H. Reissner (19) in 1912 in his study of spheri-
cal domes resting on pillars. He showed that stresses in the domes are governed by the
membrane equations except in a narrow region near the edges, where an adjustment to
bending is necessary to satisfy the boundary conditions. The mathematical reason is very
similar to the boundary-layer theory in fluid dynamics. The important fact is that the width
of such an edge layer is of the order of the thickness of the shell. Related edge layers for
plates and shells are discussed by Friedrichs (3) and by Fung and Wittrick (6).

Hence there is a narrow strip the width of which is comparable to the thickness of the
cell membrane, i.e. of the order of several 100 A, located where e8 = 0, in which bending
predominates. But the over-all effect of such a strip on the sphering of the entire cell is ex-
pected to be very small.

NOTATIONS

Capital letters refer to original shell. Lower cases to deformed shell.

In Text

a radius of sphere; radius vector to point on meridian of sphered red cell
B parameter defined in Equation 20
Co, C1, C2 constants defining the shape of the relaxed red cell (see Equation 23)
E an elastic modulus resembling the Young's modulus, a function of strain
e8 , et components of Lagrangian or Green's strains (see Equation 6)
H, h cell wall thickness before and after sphering
NA, Nt normal stress resultants in the meridional and latitudinal directions, re-

spectively
p internal pressure in the sphered red cell
r radial distance from the axis of symmetry
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R1, rj the radius of curvature of the meridian at P
R2 , r2 the orthogonal radius of curvature of the surface at P, equal to the distance

from P to the intersection of the normal through P and the axis of sym-
metry

S, s arc length measured from the pole to a point on the meridian
X, x the distance of a point to the axis of symmetry
Xo equatorial radius of relaxed red cell
Z, z axial coordinate of point on surface
0, 0 angle of radius vectors p and a from center of red cell to a point on the

meridian before and after sphering
XI , X2 principal extension ratios (see Equation 5)
ly surface tension in cell membrane
v Poisson's ratio
p radius vector to point P on meridian of relaxed red cell
4), so the angle between the normal to a surface and the axis of symmetry

In Appendices

e(ex, e, e2,) strain tensor and strain components respectively
el, e2 principal strains
g gravitational acceleration
I Idemfactor, a diagonal matrix with elements = 1
S a "bending" parameter introduced by Rand and Burton (18) (see Equation

B.2)
T surface tension
z vertical distance from the free surface of water
a, (3 strain invariants defined in Equation A.5
u(a, ,B), s(a, (), elastic moduli defined by Equations A.9 and A.ll
X(dn (3)

p density of fluid outside droplet
p (0-~,,, CZ; ax density of fluid in droplet

d(r,cZ, ry stress tensor and stress components respectively
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