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ABSTRACT In considering the problem of steady-state negative conductance in the
squid axon from the standpoint of electrodiffusion, the following assumptions pro-
duce results which are in reasonable agreement with experimental observations:
(1) The major ion distributions are not significantly perturbed by current flows
(2) The electric field in the membrane is essentially uniform. (3) The membrane has
certain properties appropriate to solids, particularly with respect to chemical poten-
tials. (4) Nat and K+ move according to a single-file interstitialcy migration mecha-
nism and independently of each other. (5) The interaction energy of Nat with mem-
brane sites is about 1.4 times that for K+. Assumptions 1 and 2 are sufficient for the
appearance of a negative conductance. Experimental test of the theory is possible
and is specifically suggested.

INTRODUCTION

Of the many properties of the squid axon which have been revealed by voltage clamp
experiments, perhaps the most important is its negative differential conductance (1,
2). The purpose of this report is to suggest a physical basis for this property. A pre-
liminary paper has already appeared (3) and is here both modified and extended.

There are a number of nonbiological systems which exhibit a negative conductance
or N-shaped current-voltage characteristic and in some cases, such as the Esaki
tunnel diode (4), the system is understood well enough so that the mechanism re-
sponsible for this behavior is apparent. In addition to the Esaki diode, this is essen-
tially also true for the positive thermistor (5), the dynatron (6, 7), and the hydraulic
fixed charge oscillator (8, 16, 17). In other cases, however, the relevant mechanisms
are either unknown or only poorly clarified.

It can be shown analytically (9-11) that if a system which exhibits a negative
differential conductance in some region of the current-voltage plane is associated
with appropriate reactances a number of physiologically significant phenomena
such as excitation threshold, repetitive activity, etc., become possible. It is therefore
important to attempt some understanding of the possible physical bases for negative
conductance in certain biological membranes, particularly in systems such as the
squid axon which have yielded to quantitative experiment.



The fundamental problem, well-known to those who have concerned themselves
with this question, is that most of classical electrodiffusion theory by itself seems use-
less to explain the behavior of the squid axon (2, 12). Both the theory of simple elec-
trolytes (13, 14) and the theory of fixed-charge membranes (15) fail to yield the nega-
tive conductance and high rectification produced by the axon membrane. The hy-
draulic fixed-charge oscillator (8, 16, 17) displays a negative conductance, but pres-
sure is a significant variable in this system and a comparable importance of pressure
in the squid axon has yet to be demonstrated. There has been recent interest in the
possibility that semiconductor theory might prove fruitful (18), but in those cases
where negative conductance appears in a semiconductor system whose behavior is
understood, the phenomenon has been related to properties essentially unique to
electrons (e.g., quantum mechanical tunneling or deep trapping) (19). Negative
conductance in other semiconductor systems (20) remains unexplained. It is not
always a simple matter to distinguish between electronic and ionic conduction (21),
but the available evidence indicates that in the squid axon ions are the predominant
charge carriers (1) and an approximate calculation shows that ion tunneling in this
system is very improbable (12).

The negative conductance which appears in the squid axon is ordinarily transient.
Whether this is a result of first order processes for several ions or a single ion higher
order process has not yet been decisively resolved (2, 22). The evidence suggests,
however, that a single ion process, commonly involving Na*, is operating, and the
Hodgkin-Huxley empirical model (1), which has been so successful in describing
laboratory results, makes this assumption. The approach taken here is consistent
with this premise but not dependent upon it.

Perhaps one of the most significant experimental observations is that under certain
conditions the squid axon can show a steady-state negative conductance (23). Be-
cause of this, as Cole (2, 24) has suggested, it seems reasonable to first attack this
problem rather than the more complicated transient phenomena. The aim, there-
fore, has been to isolate assumptions which produce a steady-state negative con-
ductance in agreement with both experimental observations and a hypothetical axon
without “inactivation”. The latter involves a solution to the Hodgkin-Huxley voltage
clamp equations (1) after the inactivation variable has been removed, giving a hypo-
thetical steady-state Nat I-V curve. Three essential demands must be satisfied: (1)
the system must be able to produce a steady-state negative conductance; (2) there
must be a possibility for very substantial rectification; (3) the I-V curves for large
membrane depolarizations must be linear.

THEORY

The axon membrane is not a geometrically well-defined physical system and the
actual physiological barrier to the movement of charged particles may involve some-
thing more extensive than the structure revealed by electron microscopy. Enduring
macromolecular regions are undoubtedly present on either side of the lipid layer and
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these should presumably play some role in the partition and movement of ions. It
will be assumed here, however, that the major barrier is a 50 A insulating layer, and
this will be termed the axon “membrane.”

The two fundamental equations which are presumably appropriate are the con-
tinuity equation and the Poisson equation:

ol _ _9p
a(x’t)— E;(fv,t) (1)

JdE _p

where I (coul/cm?-sec) is the current density associated with moving charges; p
(coul/cm?®) is the charge density; £ (v/cm) is the electric field intensity; e
(coul/v-cm) is the absolute dielectric constant which is assumed to be invariant;
x (cm) is the distance; ¢ (sec) is time; and a one dimensional simplification is used.
If equation 2 is differentiated with respect to time and used with equation 1, then:

a_I=_ea_<a_E)____eg_(g:) (3)
ax at \0x dx \ ot

and an integration yields the Maxwell current equation:

I(1) = I(x,1) + ¢ ‘% E(x, t). (4)

The total current density through the membrane is thus the sum of a displacement
current ¢dE/9t and a convection current I(x, ). Although an applied potential
difference across the membrane may be established with a time constant (determined
by the external series resistance) of microseconds, the interior electric field reaches
its final profile with a time constant of ¢/&, where & is a mean specific conductivity.
In the squid axon membrane this latter time constant should be of the order of milli-
seconds (12).

It is convenient to reduce the Poisson equation to dimensionless form by the fol-
lowing transformations:

=
N

x =20y (6)
o= |plo* (7)

_ RTe
A FTR] (8)

where & (cm) is the thickness of the membrane, X (cm) is a Debye length, R (joule/mole
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deg) is the gas constant, F (coul/mole) is the Faraday constant, T (deg) is the Kelvin
temperature, and 7 is the mean charge density. Equation 2 now becomes

9E* _ &
i (9)
suggesting that if A >> 4 it is reasonable to assume

—_~0 (10)

without any restriction on p* other than that it is reasonably small. Equation 9 can
also be written as

« _ N OE*
=55
so that if A < 8, p* & 0 is a sensible approximation.

Consideration of the mean specific conductivity of the axon membrane suggests
that it is unlikely that the Debye length is much smaller than the membrane thick-
ness. The assumption p* =/ 0, i.e. microscopic electroneutrality, is therefore prob-
ably not realistic. An assumption that A >> &, i.e. essentially uniform electric field,
may be appropriate, and this assumption results in a considerable simplification of
the mathematical analysis.

Equation 4 provides an immediate distinction between the charging process asso-
ciated with the establishment of the interior electric field and the redistribution
process associated with the convection current, a distinction discussed by Planck
(13) and more recently by Cole (2). An important point revealed by equation 3 how-
ever, and one which should be emphasized, is that when the charging process is com-
pleted, i.e. when dE/dt = 0 the following must be true:

(11)

oI oE
— =0 when — =
ax v Fri (12)
Therefore, if a redistribution process occurs following the charging process, the
total convection current will be time dependent only. The individual ionic currents,
however, may depend on both time and position, viz.:

oI

or 22
ax

(7]

Equation 13 may be said to describe a quasi-steady state, while d1;/dx = 0 would
imply a true steady state (assuming an already terminated charging process). In
addition, in a true steady state
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oI; ac;
— = —Z,F = = 14
ox at (14)
where C;(mols/cm3) is the concentration of the ith species and Z;F its charge/mole.
With these comments we simplify the analytical problem by assuming that the
membrane Debye length is much greater than the membrane thickness and that a
true steady state exists, i.e.:

oE

ax =0

9E _

t

ol _

—a—t—O (15)
81;__ ) f)ﬁ_
3 = —ZiFgi=0. (16)

Consider now the membrane as a semi-insulating barrier separating two electro-
lyte solutions. The partial ionic current carried by any species can be expressed as the
product of a charge density and a velocity:

I; = PiVs (17)

As a first approximation the velocity, v; , can be considered to be simply propor-
tional to a driving force or energy density gradient. The proportionality factor will
be a parameter dependent upon the type of ion and the medium through which it
moves. A complication arises, however, if more than one type of energy density
gradient is involved, e.g., both thermal (osmotic) and electrical. In this case it is
possible that more than one migration mechanism may be involved, and if this is so
a different proportionality factor must be assigned to each driving force, since pre-
sumably different ion and medium properties would be relevant for different migra-
tion mechanisms. The velocity can therefore be thought of as consisting of a number
of components:

au;"
I; = —p; it 18
Ps ; U; % ( )
where 4™ (cm?- mol/sec-J) is a mobility and U™(J/mol) is an energy density.

If the relevant driving forces are thermal and electrical, the condition u™ = u” is
not trivial, since the immediate implication is that the Nernst-Einstein relation is not
obeyed and the equilibrium ion distribution is not described by simple Boltzmann
statistics.
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If a steady state exists, equation 18 gives:

-2 u™U™ - U™)
I; = T dx (19)
' opi

where the primes refer to the membrane boundaries.

The central problem, then, is the determination of the integral in equation 19. One
approach to this is the subject of this paper. Other approaches are possible, some
preferable, and will be considered in subsequent reports.

The driving forces of most interest to biologists are gradients of chemical potental
and electric potential. The usual assumption is that the chemical potential of ions in
a biological membrane is given by

wi = ud + RT In a; (20)

where u.’ is a reference energy/mol which depends on the interaction energy with the
solvent, and a; is an activity or mole fraction.

As has been noted previously (3), equation 20 is appropriate for dilute solutions,
but for other systems the expression for the chemical potential of the species may
take another form, and in each case an attempt should be made to relate the chemi-
cal potential to the variables of statistical mechanics, at least until experimental
evidence indicates which form is most convenient. Such experimental evidence does
not yet exist for the axon membrane. If ions in the membrane behave as a lattice gas,
then the appropriate expression for the chemical potential was shown (3) to be:

m=u.-°+RT1n|: G ] (21)

Ws — C¢

where w; is the total density of available sites for the ions. An expression such as
equation 21 is not unreasonable for condensed fixed charge systems, but although
it leads to what appears to be a useful result (linear I~V curve with large depolariza-
tions) it may be totally wrong for the axon membrane.

In reference 3 equation 21 was used to derive a modified electrodiffusion equation
which, assuming a uniform electric field and true steady state, takes the form:

_ o« Wi dei | Fulciv _
L= —RTus % 2oy Tur (Zi=1) (22)

where ¥ (volts) is the potential difference of the axoplasm boundary relative to the
sea water boundary; u,* (cm?/sec-volt) the diffusion mobility; #,° (cm?/sec-volt) the
«electric mobility. Rearranging and integrating across the membrane:
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— (V — V")Fu?’

I; T (23)

o_ RT [e"(wi — C."):I
V‘ - Cﬁ'ln[ci,(wi - cs'”) (24)
of = ud/ud (25)

where the double prime refers to the outside boundary; V,° (volts) is the potential
difference at which the current is zero; and «; , which varies according to migration
mechanism (25), may be called the electrodiffusion constant. It will be assumed that
both Nat+ and K+ move by a collinear (i.e. single-file) interstitial migration mecha-
nism, so thata; = 3. It might be noted that equation 24 can be written as:

b"

n
oo KT c BT, b

2 G K2
o F el a; F

In (26)
where b; (mol/cm3) is the density of unoccupied sites. The relation between bound-
ary concentrations and solution concentrations is not specified, but for what follows
it is enough that ¥ exists and that it can be determined experimentally. Any inter-
facial potentials presumably are not significant for the phenomena under discussion.

The principal-assumption now made is that the electric current produces only a
minor perturbation of the equilibrium ion distribution. From equation 22 the equi-
librium distribution is given by

e = ——— (27)
a; VX
o0 g (o - 275) |+

where F¢; (J/mol) is the interaction energy of ions with sites in the absence of a
total electric field.
Combining equations 23 and 27:

—Tiait(¢ — &°)
- 2

I e®i(e™t — 1) — ait (28)
¢ = FV/RT (29)

£9 = FVO/RT (30)

® = F¢:/RT (31)

b,
ii= RT‘;" wi (32)
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Equation 28 is the principal equation of the steady-state theory. In order to com-
pare theoretical and experimental current-voltage curves, it is convenient to note
that when £ = 0 the current is given by

I_O - —?"&0 ( 33)
P41
and using this in equation 7:

L (&4 Dat(t— &) 1
ok JN .« — 34
I (e —1) —ait & (34)

This procedure reduces any ambiguity due to experimental differences in axons sur-
face area.

There is no a priori basis for estimating ®;, but the values & = —0.7
and &x. = —1 have been found to give satisfactory results.

In Fig. 1 experimental data from Cole and Moore (26) are compared with the
current-voltage relations predicted by equation 34. The agreement is reasonably
good. The discrepancies near the resting potential are difficult to evaluate because of
uncertainty concerning the experimental leakage current.

Equation 34 cannot be used when £;° = 0 (e.g., high external KCl). In this case it
is convenient to note that in equation 28 the limiting slope resistance is given by

R; = RT/FJ;. (35)

A typical experimental value for R; in the squid axon is 15 ohm-cm?, yielding 1.67
ma/cm? for J;. Using this in equation 28 and varying £, generates the family of

¥
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FiGure 1 Comparison of theoretical I-V curve (equation 34) with experimental data
(reference 26, Fig. 15). The experimental points for curve b were taken at 0.2 msec. The ex-
perimental points for curve aq are steady-state,‘hvalues. For the continuous curve a, &k =
—0.7, ax = 3, £x® = —2.4. For the continuous curve b, &y, = —1, ana = 3, £%, = 1.85.
FIGURE 2 Theoretical I-V curves from equation 28 with[; = 1.67 ma/cm?®. curve a,
#x® = —2.5;curve b, &g = —1;curvec, g’ = 0. g = —0.7. ax = 3.
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Ficure 3 Theoretical curve from equation 28 with I; = 1.67 ma/cm?. ¢g® = —2.5, ax = 3,
= —0.7. a is the true mathematical limiting slope. b is the apparent limiting slope.
FiGure 4 Theoretical curve from equation 34 with #x = —2.3, ax = 3, £g° = —2.4. The

dashed line is the mathematical limiting slope.

curves shown in Fig. 2. This is in reasonable quantitative agreement with experi-
mental observations (23, 27) showing a developing region of negative conductance
as £x° is reduced.

From equation 28, for two different equilibrium potentials for the same ion, and
assuming a constant limiting slope resistance, the following can be deduced.

L_t-8&
RS it (36)

Hoyt (28) has shown that the type of “ohmic” relation described by equation 36
can account for a wide range of experimental squid data. The implication of this re-
lation is that the steady-state ion conductance is independent of boundary concen-
trations (if it is assumed that these determine the equilibrium potential).

An interesting feature of the theory is that it produces both a true and an “ap-
parent” limiting conductance, as illustrated in Fig. 3, suggesting a reason for the ap-
parent failure of the limiting conductance of experimental K+I-¥ curves to extrapo-
late to the resting potential (2). In Fig. 3 line a is the true limiting slope given by
I.F/RT while line b is only an apparent limiting slope. The true limiting slope ext-
rapolates to the equilibrium potential.

Another aspect concerns ®x , the reduced zero-field interaction energy of K+ with
the membrane. As shown in Fig. 4, a change in this parameter, producing a marked
inflection in the I~V curve, can account for certain anomalous steady-state I-V curves
which have been observed in the laboratory (24).

A consideration of equations 2 and 6 shows that the theory predicts that when V =
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0 the current is given by

b
- _ Fi Z wp° (37)
8 + 1)
i.e., a linear relation between I° and V. This provides an experimental test for an im-
portant part of the theory, and since some other theoretical formulations predict a
highly nonlinear relation the test is of some significance.

DISCUSSION

The theory which has been presented is based on assumptions involving the fol-
lowing physical picture of the axon membrane:

(1) The electric field in the membrane is essentially uniform.

(2) The membrane has certain properties appropriate to solids, particularly with
respect to chemical potentials.

(3) The major ion distributions are not significantly perturbed by current flow.

(4) Nat+ and K+ move according to a single-file interstitialcy migration mecha-
nism and independently of each other.

(5) The interaction energy of Nat with membrane sites is about 1.4 times greater
than that for K+.

These are the major assumptions which have been shown to produce theoretical
steady state—current voltage relations in agreement with experimental observation.

The essential physical phenomenon responsible for negative conductance in the
theory is a depletion of mobile charges in the membrane over a particular range of
membrane potential.

The problem of the electric field has been discussed above. The assumption of a
membrane Debye length much greater than the membrane thickness is both useful
and reasonable. It has apparently not been previously pointed out that this leads to
an intriguing possibility concerning time-dependent processes. It can be shown (2)
that

TC A’

- (38)
where 7c and 7p are the charging and redistribution time constants respectively, and
A is a Debye length. If the charging time in a system is much greater than the redis-
tribution time, the existence of space-charge transients is possible and in certain
liquid-crystal systems such transients have been experimentally observed and at-
tributed to this cause (29).

The idea that a solid-state approach to the axon membrane might be useful was
apparently first suggested by Cole (24). However, if a significant series resistance,
r ,is assumed it can be shown that equation 23 becomes:
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L=——"% (39)

and an assumption of a Boltzmann distribution for c¢; produces results essentially
the same as the excluded volume treatment which has been used. The latter was
chosen primarily because it involves one less parameter and allows a more stringent
comparison with experiment, but the physical model may eventually turn out to be
unnecessarily complicated. A theoretical analysis involving equation 39 is in prepa-
ration (39). It might also be noted that equation 27 can be obtained from a Stern
layer adsorption model (30).

In the preliminary report (3) certain assumptions were made concerning bound-
ary-solution partition functions and the results were used to estimate ion mobilities.
These turned out to be appropriate for solids, being in the range 10—° cm?/sec- volt.
The basic assumptions, however, are arbitrary and lead to difficulties, and have there-
fore been abandoned. The best estimate of ion mobilities is still that given by Cole
(2) (also appropriate for solids).

It might be noted that if the density, b; , of unoccupied sites is taken into account,
equation 22 transforms to:

b
I = —RTu;'[l + &‘]5‘?& 4 FuieV.

b.' dx é (40)

This equation, describing forced diffusion with a concentration dependent diffusion
coefficient (31), illustrates more clearly the modification of the classical dilute solu-
tion electrodiffusion theory.

Perhaps the most critical assumption in the present theory is that the major ion
distributions are not significantly perturbed by current flow, an idea which has been
essentially anticipated by others who have noted that the Hodgkin-Huxley axon has
ion conductances dependent on membrane potential but not on membrane current.
It is this assumption which is responsible for the appearance of a negative conduct-
ance, but there is presently no justification for it except its result, at least in terms of
the approach considered here.

A necessary assumption in this approach is that the simple Nernst-Einstein rela-
tion (32, 33) is not obeyed by either Nat+ or K+ ions. This relation between electric
and diffusion mobilities should be applicable to any system of charged particles dis-
tributed according to Boltzmann statistics, provided that electric conductivity and
diffusion involve the same migration mechanism. If the system is non-Boltzmann or
more than one migration mechanism is present significant deviation from the classi-
cal Nernst-Einstein relation can be expected (25, 34). Such deviations have been ob-
served experimentally in several different kinds of systems, including ion-exchange
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membranes (35). Theoretical explanations of these deviations are somewhat satis-
factory for crystalline systems (25), but as yet incomplete for most other cases (36).
It has also been proposed that even in a Boltzmann system with a single migration
mechanism, if ions are moving in a polarizable medium, considerable deviation from
the Nernst-FEinstein relation may occur (37). In terms of the parameter « which has
been used here, the range of experimental and theoretical deviation can be expressed
as 0.5 < a = 3. A simple physical explanation for the fact that « = 3 seems neces-
sary for the theory is that the ions in the membrane move according to a single-file
interstitialcy mechanism (25). Other possibilities, however, should not be excluded.
It is interesting that Hodgkin and Keynes (38) suggested a ‘‘single-file”” mechanism
to account for isotope flux measurements in the squid axon.

Concerning the interaction energy of ions with membrane sites, a Na+:K* inter-
action energy ratio of about 1.4 has been found necessary. The interaction energy
should presumably be inversely related to the ionic radii, and it is interesting that the
K+:Nat crystal radii ratio is 1.36. Although the agreement may be fortuitous, the
value which has been used in the theory is apparently reasonable.

Perhaps the most general conclusion of this report is that the mere appearance of
a negative conductance (and the associated possibilities for excitation phenomena)
in a biological membrane need not depend upon interaction of divalent ions, con-
formational changes of macromolecules, micelle transformations of lipid systems
enzyme reactions, ion-specific carriers, redistributions of pores, chemical gates, etc.
Any of these may be involved, but there is at present apparently no theoretical
necessity to include them as effective causes.

In summary, the theory which has been outlined, and which is applicable only to
the steady state and a hypothetical axon without inactivation, may provide a means
for describing the current-voltage behavior of the squid axon in terms of molecular
processes. The assumptions upon which the theory is based are not unreasonable,
and the physical parameters involved may be useful in interpreting experimental
results.
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