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ABSTRACT The translational and rotational diffusion constants of tobacco mosaic
virus (TMV) have been determined from homodyne and heterodyne measurements
of the spectrum of laser light scattered from dilute aqueous solutions of TMV. Our
results for the translational and rotational constants respectively, reduced to 20°C,
are: DT = 0.280 i 0.006 X 10-7 cm2/sec, and DR = 320 ± 18 sec-1. We include
a theoretical derivation of the spectrum of light scattered from rod-shaped mole-
cules which reproduces results obtained previously by Pecora, but which is special-
ized at the outset to the problem of dilute solutions so that simple single-particle
correlation functions may be utilized. An analysis of the photocurrent spectrum for
both the homodyne and heterodyne detection schemes is given. Various data reduc-
tion schemes utilized in the analysis of our spectra are described in some detail,
and our results are compared with values of the diffusion constants obtained from
other experiments.

INTRODUCTION

For many years the measurement of light scattered by dilute solutions of polymers
or macromolecules has provided an important technique for molecular weight
determination (1-3).

Until recently, only the intensity and angular dependence of the scattering were
considered. However, it was recognized several years ago that the spectrum of the
scattered light contains additional information related to the hydrodynamic prop-
erties of the scatterers-i.e., the translational and rotational diffusion constants. A
time-dependent correlation function formalism first developed by Van Hove (4) for
neutron scattering was extended to light scattering by Komarov and Fisher (5) and
by Pecora (6). Pecora's basic paper has subsequently been extended to cover addi-
tional macromolecular problems (7, 8).

In 1964, the spectrum of laser light scattered by dilute solutions of polystyrene
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latex spheres was observed, and was indeed found to exhibit broadening due to
particle diffusion, in good quantitative agreement with the theory (9). Other meas-
urements of the polystyrene latex spectrum have subsequently been reported by
other groups who obtained essentially equivalent results (10, 11).

In 1967, Rayleigh linewidth measurements were reported for a series of biological
macromolecules by Dubin, Lunacek, and Benedek (10). These investigators ana-
lyzed their data in terms of a single Lorentzian fit, and found serious discrepancies
for tobacco mosaic virus (TMV), the most highly anisotropic molecule that they
studied.

Pecora had shown that the spectrum of light scattered from anisotropic molecules
would be more complex than the scattering from spheres (where the spectrum con-
sists of a single Lorentzian) and had in fact deduced general expressions for rod-
shaped molecules such as TMV (6, 8). Although no one has heretofore attempted
the more complex analysis implied by Pecora's expressions, the incentive for doing
so lies in the fact that the analysis can simultaneously produce values for both the
translational and rotational diffusion constants.

In this paper we report a new experimental study of light scattering by TMV. In
this study we have utilized Pecora's full theoretical treatment and have extracted
values for the translational and rotational diffusion coefficients which agree well
with the results of previous experiments.

In part I, we give a derivation of the light scattering spectrum, I(co). Although the
results are equivalent to those of Pecora, we wish to show that considerable simpli-
fication of the theory is achieved by utilizing the statistical independence of the
scatterers at the outset. For those primarily interested in dilute macromolecular
solutions this approach is much easier than the more general approach utilized by
Pecora. Numerical tables have been prepared for use in the study of other macro-
molecular systems' and are available on request.

In part II, we discuss the spectroscopic techniques, and part III describes the
instrumentation. Part IV takes up the TMV experiment discussing sample prepara-
tion, data collection, and analysis, and part V covers the results and comparison
with other published data.

I. THE SPECTRUM OF LIGHT SCATTERED BY A DILUTE
SOLUTION OF MACROMOLECULES

Consider a large volume (filled with a solvent) which contains N identical scatterers.
The volume is illuminated with a monochromatic plane wave of frequency wo

polarized perpendicular to the scattering plane, and light scattered at an angle VP is
observed at a distant point Ro (see Fig. 1).

1Very recently Pecora has independently performed some of the same numerical evaluation pro-
cedures performed here (8).
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FIGURE 1 Geometry of the scattering system for which power spectra are to be derived.

The field observed at Ro due to the jh scatterer will be

Ei = Aejetie-swot (1)

where the amplitude Ai may depend on orientation. If we let the position of the
jth scatterer be rj, and we choose the phase O = 0 for a scatterer at the origin,
then:

,j = (Ko - K8)rj = q*rj (2)

where Ko and K8 are the wave vectors of the incident and scattered light respectively
If the scatterer moves slowly (v << c), then Ko I K. so that

q 221 Ko sin (#,12) = (47rno/Xo) sin (#/2) (3)

where no is the refractive index of the solvent. For the total scattered field at Ro
we have

N N

E8= Ej Aj(t)e='rie-iot (4)

The total average scattered intensity is given by:

I8 = (I E8 12)

where the angular brackets denote a time average. Since the scatterers are not
correlated, all cross terms average to zero, whence

I8= (ZI Aj2) = N(I A 12) (5)
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In order to compute the spectrum of the scattered light, we utilize the Wiener-
Khintchine theorem:

1(cw) = 1 L C(ir)e"T dr (6)17r co

where we define C(-T) = C*(Tr).
The autocorrelation function C(T) is defined by

C(T) = (E*(t)E8(t + T)) (7)

Combining Equations 4 and 7,

N N

C(r) = AE *(t)6-iwqrj(t)e;00t E A1(t + r)esqr,(t+7)e-iwo(t+`)) (8)

We now invoke the statistical independence of the scatterers to eliminate cross
terms (j z= 1), the statistical independence of position and orientation to factor
amplitudes and phases, and finally the fact that the N scatterers are identical so that
each must have the same autocorrelation function. Thus,

C(T) = NeC °(A (t)A(t + r))(ei r(t)eiqr(t+T)) (9)

Since we are now dealing with single particle correlation functions, the subscripts
have been eliminated. Equation 6 then becomes:

I(c) = N 21 e [C,A(T)][C,(T)I dr (10)

where

[CA(T)] = (A*(t)A(t + r))

[C+(T) ] = (e-iq r(t)eiq r(t+r))
The separation of orientation and position is not rigorously correct, and should be
considered as a simplifying approximation.

SPHERICAL SCATTERERS

If the scatterers are spherical, then the scattering amplitude A(t) is a constant and
the amplitude autocorrelation function [CA(r) = I A 12. From Equation 10, the
spectrum is thus given by

I(@) = N A 12 -Lf es(CO-WO)T [C(Tr)] dr (11)27r oo
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The phase autocorrelation function [C,,('r)] is analyzed for three cases in the Ap-
pendix where we find:
A: Static scatterers (fixed random positions)

[C+(T)] = 1 (12 a)

B: Scatterers moving with constant velocity v

[C+(T)I = e ( 12 b)

C: Scatterers undergoing translational diffusion characterized by the diffusion
constant DT

[C+,(T)] = e TQ (12 c)

For each case, the phase autocorrelation function can then be put into Equation 11
to find the spectrum.
A: Static scatterers

I(w) = N I A 126(w - W0) (13 a)

so the total scattered intensity N A 12 appears at the frequency of the incident
light wo , and the scattering is perfectly elastic.

B: Constant velocity v

I(U) = N A 125(C-co+ qv) (13 b)

Again the total scattered intensity appears at a single frequency, but now is Doppler
shifted to w = w- qv

C: Translational diffusion

I(w) = N A 12. + fL0(eiw)oW6DT!2r dr

I(@) = N I A 12 DTq2/7r 9> 13 b)
o-wOO)2 + (DTq2J

The quantity in brackets in Equation 13 c is a normalized Lorentzian centered at
co = wo, with half-width at half-maximum of:

Aw1 = DTq2 (14)

Equation 13 c for the quasielastic scattering from scatterers undergoing transla-
tional diffusion has been utilized in the analysis of the experiments reported in
references 9-11. For the case of spheres in water at 20°C, assuming DT = kT/67rqr
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Es

tdv FIGURE 2 Geometry of a single scatterer for which the
Eo _ \ A scattered amplitude is determined in the Rayleigh-Gans

approximation.

(Stokes's law) and X0 = 6328A it was shown in reference 9 that the linewidth
(Equation 14) becomes

A\ 49 7r sin2 (4/2) (15)
r

where r is the radius of the sphere in microns.

The Scattering Amplitude A

Many biologically important macromolecules are physically anisotropic but op-
tically isotropic. For optically isotropic particles which are very small compared to
the wavelength, the scattering amplitude is independent of orientation, and the
spectrum will be identical to that of spheres regardless of the shape (Rayleigh limit).

If the scatterer is too large to meet the Rayleigh criterion (L << X), but its refrac-
tive index (n) is not too different from that of the solvent (no), then it may meet
the weaker Rayleigh-Gans criterion (2, 3, 12):

2KoL(n - no) << 1 (16)

The Rayleigh-Gans procedure is simply to imagine that each element of the
scatterer is subjected to the incident field Eoe'(KOrWOt), which produces a local di-
pole moment, and then sum up the scattered field by integrating over the scatterer
(see Fig. 2). The amplitude of the scattered field at the distant point Ro is then:

A =fAo eqr dV = AoV{ eiq-r dV}

where Ao is the scattered amplitude per unit volume of scatterer in the Rayleigh
limit L << X. Ao 12 is evaluated in reference 3

A 2 = IoKo4 (n = 47ro )2
0 (2irR) kno l} R O2vac 0( n) 1

The factor {(l/V) eiqr dV} = fq is a normalized "form factor." In the limit

q -* O(O -* 0), f2 = 1. In general f, . 1. For spherical scatterers,
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fA(sphere) = sin (qb)/(qb) (18)

where b is the radius.

Rigid Rods

For rigid rod-shaped scatterers, the form factorf, can be readily evaluated (3,
12).
Let 0 be the angle between the rod axis and q. If a, the cross-sectional area of the

rod is << X2

1 itsr dV=afL/2iqi cos

fq = ed LL, (19)
fA = sin (2 cos o)/ (2 cos )

where L is the length of the rod.
If the rod changes its orientation randomly in time, f will be given by

f = fo + fi(t)

wherefo = (f) is the time average part off, and (f1(t)) = 0.
The amplitude autocorrelation function (from Equation 10)

[CA(r)] = (A*(t)A(t + r))
will thus be given by:

[CA(T) = AoV 12([fo + f1(t)]Lfo + f1(t + T)])
I A0V 12{fo2 + (f1(t)f1(t + r))j (20)

Combining Equations 10 and 20,

I(co) = N IAoV 2. - 0e [C+(T) d

27r co

+ N AoVj12-I e;(@ (Ji(t)f1(t + T))IC,Qr)] dT
Thus the spectrum consists of two parts: The first (spherical) depends only on

[CO(r)] and is equivalent to the spectrum of spherical scatterers considered earlier.
The second (modified) depends on both [C+(T)] and (f1(t)f1(t + r)) and is deter-
mined by both the translational and orientational dynamics of the scatterer.
Assuming only random orientations, the power in the "spherical" and "modified"

parts of the spectrum can be evaluated without specifying the dynamics explicitly.
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Sincef = fo + f1(t), fo = (f) and (f1(t)) = 0,

(fi2) = () - (f)2 (22

J f() dQ =
I [sin 2 cos )/ q os )] sinO dO d

f 2 sin x dx (23)
qL ~x

Similarly
qL/22 ~~~~qL/2

(f)=2 sn_2 dx 2 sinFd si (qL/2). (24)
qL x2 qL I lx (qL/2)

Letting h = qL/2 and

Si 3) = sinXd
x

I (spherical) = (f )2 = [Si (h) /h]2
N(A0 V)2

m(Aodifi)ed) = Si (2h)/h - [sin (h)/h]2 - [Si (h)/h]2

I(total)= (f 2) = Si (2h)/h [sin (h)/h]2 (25)
N(AOV)2

To complete our derivation of the spectrum I(w), the dynamics of the orienta-
tional motion must be specified so that CA(T), the amplitude autocorrelation func-
tion, can be determined. We assume that the rod-shaped scatterer undergoes rota-
tional diffusion due to collisions with the solvent molecules. Accordingly the time
evolution of the ensemble averaged probability of the orientation of the scatterer
is described by the solutions of the classical rotational diffusion equation under
the appropriate initial conditions. As in the case of translational diffusion these
conditions are specified in terms of a conditional probability, G(Q, , go), that a
scatterer oriented into go at time 0 will be oriented into Qr at time r. With this
choice of initial conditions and by the same arguments of homogeneity, isotropy
and stationarity used previously it follows that:

CA(T) = f A (go)A (Q,)G(Q(o, Q) dQ7 d2o (26 a)47r QO

where for a thin rod in the Rayleigh-Gans approximation

A(Q) =Aofeiqrdv
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and

G()g,Qo) = Z Y7(QO) yjm(r)e-l(l+1) DRT
Im

The spherical harmonics, Y , arise in the solution because the rotational diffu-
sion equation is formally equivalent to the Legendre equation. Substitution of
A (Q) and G(U, Q2o) in Equation (26 a) and integration gives:

CA(T) = (AoV)2ZE B1 e 1(1+1) DRT (26 b)
1=0
even

where

B1 = (21 + 1) [If J(x) dx]

h = qL/2 and Jz(x) = Jz+j(x)

as was first shown by Pecora (6). We can now compute the total spectrum for rod-
shaped scatterers undergoing simultaneous rotational and translational diffusion.
From Equation 10,

+Go

1() = N 2Lf ei( )T[CA(T)I[CO( r)] dT

and Equations 12 c and 26 for [C(,r) ] and [CA(r)], we find:

I(@) = N(A°V)2 1+-L t(w-wO)T{ -DTq'T E B e-l(l+1)RT '4d
even

00 ( 1 +00c

1(C)) = N(AOV)2= BN <-j exp [i(e-wo)I
even

exp [-(DTq2+ ( + )DR)T dT} (27 )

The quantity in braces is a normalized Lorentzian centered at co = wo, of half-
width at half maximum:

A@* = DTq2 + 1(1 + 1) DR

Letting L(,B) represent a normalized Lorentzian of half-width ,3, centered at
co = coo:

1(Cw) = N(AOV)2[BOL(DTq2) + B2L(DTq2 + 6DR) + B4L(DTq2

+ 20DR) + - * + BlevenL(DTq2 + 1(1 + I)DR) + ** ] (28)

BIOPHYSICAL JOURNAL VOLUME 9 1969526



0 30 60 90 120 150 180

FIGURE 3 Plot of Bo, B2, B4, and BTOT against scattering angle ^,6 for 3000 A long rods in
water and with 6328 A incident light.

Thus the spectrum consists of a series of Lorentzians. The leading term is a Lor-
entzian of half-width Acoj = DTq2, and is thus the "spherical" part of the spectrum.
Its coefficient N(AoV)2Bo is just the coefficient of the "spherical" part of Equation
25.
The additional terms depend on both translational and rotational diffusion.

The combined intensities in all the terms for I _ 2 is:

I(modified) = N(AOV)2Z B,
1-2
even

and must add up to the "modified" part of Equation 25. The complete spectrum is
given by Equation 28 in terms of an infinite sum of Lorentzians.
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In practice, the successive coefficients decrease rapidly enough so that the spec-
trum can be reasonably approximated by the first two or three terms.

In Fig. 3 we plot the coefficients Bo, B2, and B4 vs scattering angle V/ for 3000 A
long rods in water (no = 1.33) and with 6328 A incident light. In the same figure
we show the normalized total intensity I(total)/N(AoV)2 = Btot. The dependence
of Bt.t on angle is used in the traditional angular intensity experiments, and was
employed in an early study of TMV by Oster (2). Note that at small angles Bo _
Btot as expected. (Compare with Pecora, Fig. 1[8]). Also note that B4 is negligible
at all angles so that Bo and B2 determine the entire spectrum. Equation 28 can be
used to predict the spectrum of light scattered by any rod-shaped scatterer once the
coefficients B1 are known. The B1 can be readily evaluated from Equation 26 b
in terms of h = qL/2. We have prepared tables of Bo, B2, B4 , and Bt.t for values
of h at different scattering angles it in terms ofnoL/X where no is the refractive index
of the solvent, L = the length of the scatterer, and X is the vacuum wavelength
of the incident light. These tables are available on request.

II. SPECTROSCOPIC TECHNIQUES

In part I we found that the spectrum of light scattered from a dilute solution of
macromolecules consists of a series of Lorentzian components centered at Wo ,
the frequency of the incident light (Equation 28). The width Acoi of the Lorentzian
components is typically -3 X I03 Hz, while wo , the frequency of the incident light
is -- 3 X 1015 Hz. Thus direct measurement of the optical spectrum would require
resolving powers in excess of 1012, many orders of magnitude higher than the resolv-
ing powers of the best existing spectroscopic instruments.

Fortunately, there exists a technique which is ideally suited to the measurement of
very narrow spectral lines. The technique utilizes the phenomenon of "optical beats"
first observed by Forrester et al. in 1954 (13). The application of optical beating to
the measurement of narrow spectral lines was subsequently discussed by Forrester
(14). The basic concept of the method is that the intensity of the optical field at the
detector (photomultiplier) fluctuates in time, and that the fluctuations become
slower as the optical field becomes more nearly monochromatic. Since the photo-
electric emission rate is proportional to the optical intensity, the photocurrent will
fluctuate as the intensity fluctuates. Therefore, a measurement of the spectrum of
the fluctuations of the photocurrent can be used to determine the spectral profile
of the optical signal. For spectral lines with widths of several KHz, it is thus only
necessary to measure the fluctuations in the photocurrent in the KHz range.

Glauber has derived the equations describing the light beating effect in a fully
quantum mechanical development (15-17). We will present a similar but somewhat
simpler analysis in which the optical field is treated as a classical variable, a proce-
dure which is permissible for the type of optical fields we will consider here (18).
In our discussion we will assume that the scattering volume is too small to be re-
solved by the collection optics so that the optical field is spatially coherent over
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the photodector. The optical field is described by a real electric field vector ER'
where e is the unit polarization vector. ER(t) is represented as a fourier integral

ER(t) = v(w)eC't dw
00

and we then define the complex analytical signal E(t) (19) as the positive frequency
part of ER (t):

E(t) = f v(w)e50t dw

(For a monochromatic field, ER(t) = 2Eo cos wt while E(t) = Eo e-it).
The instantaneous intensity is defined to be I(t) = E*(t)E(t). The probability

(per unit time) that a photoelectron will be emitted is:

W(ll(t) = (if(t) = flE*(t)E(t) (29)

where ,B is a suitably defined quantum efficiency. The photoelectric current i(t) =
eW(M)(t) = e3E*(t)E(t) while the joint probability that one photoelectron will be
emitted at time t (per unit time) and another at time t + T (per unit time) is

W(2)(t, t + T) = 13E*(t)E(t)E*(t + T)E(t + T) (30)

We also will need the averages of i(t) and W(2)(t, t + T) which for stationary fields
are:

(i(t)) = e(WJM(t)) = e,3(E*(t)E(t)) = efl(I)
(W'(2)(t, t + T)) = ,2(E*(t)E(t)E*(t + r)E(t + r)) = #2($g(2)(r) (31)

where

g(2) (E*(t)E(t)E*(t + T)E(t + r))

The power spectrum Pi(w) of the photocurrent is given by the Wiener-Khintchine
theorem:

+r00Pi(w) = 2L f7 e wCi (T) dr (32)
where the current autocorrelation function is

Cr(T) = (i(t)i(t + T)) = e2(W'(l)(t) W(')(t + T)) (33)

(For distributed spectra centered at X = 0, Equation 32 is multiplied by 2 for X > 0,
and set = 0 for w < 0). Now the photocurrent i(t) actually consists of a series of
discrete pulses which we will assume to be infinitely narrow. Therefore CQ(r) has
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two distinct contributions: If the electrons at t and t + r are distinct,

(WM()(t)W(1)(t + T)) = (W(2)(t, t + T)) =2()2g(2)()
while if the same electron occurs at t and t + T,

(W(l)(t)W(l)(t + r)) = (W'(t))5(T) = f3(I)ww(r)
Therefore,

Ci(r) = e2f(3I)6(r) + e2f2(I)2g(2)(r)

Ci(r) = e(i)b(r) + (i)2g(2)(T) (34)

We consider below two different detection schemes which were analyzed from a
different point of view by Forrester (14).

Case 1: Homodyne Detection

The homodyne detection scheme in which only the scattered light falls on the
photodetector was first utilized by Ford and Benedek (20) in a study of critical
opalescence, and was employed in the macromolecular scattering experiments of
references 10 and 11.

Suppose the optical field is a narrow band Gaussian random field. (For coherent
laser-light scattered by a dilute solution of scatterers, the Gaussian nature of the
scattered field follows from the central limit theorem.)
The scattered field is characterized by an autocorrelation function

CE(r) = (E*(t)E(t + T)) = (I)g(1)(T)

For Gaussian fields, the second-order correlation function g(2)(T) is related to
g(l)(T) by (reference 18):

g(2) = 1 + g(1)(r) 12 (35)

whence

Ci(') = e(i)6(T) + (i)2(1 + g(l)(r) 12) (36)

In section I, we found that the autocorrelation function for the light scattered by
rod-shaped scatterers underoing simultaneous rotational and translational diffu-
sion is:

(E*(t)E(t + T)) = N(AoV)2{eSO°E BIeC[DT32+7l+l)D()ev0
even
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Thus (I) = N(AoV)2Z B1, and

00

g ()(T) = e$°OTE Ble-[DTq2+J(1+1)DR1T Z B1
1=0 1
even

= eiworTE Ble-rlr/ B1 (where rF = DTq2 + 1(l + l)DR)
1=0 1
even

If we keep only the two leading terms in g(l)(T), then

g(')(r) 2 ~(Bo2e2FoT + 2BoB2e(ro+r2) + B22e221)/(Bo + B2)2

so that:

= e(i)3(T) + (i)2 [1 + (Bo2e2ro + 2BoB2e-(ro+r2)T + B 2e-2r2r)]

The spectrum of the photocurrent is then given by Equations 32 and 38:

Pi(X) = e) + (i)6(Co) +(B +B)2

{Bo2 217o/w (Fr + F2)/r + B 2 2r2/r (39)
2 L~2+ 202 + (o+I)2 2w + 422

Apart from a constant factor this result is the equivalent of that given by Glauber
(17).
The first term in Equation 39 is the shot noise, and the second is a direct current

component (which is blocked in a real experiment). The last three terms are Lor-
entzians centered at w = 0 which arose from the two Lorentzians (ro, r2) in the
optical spectrum. The first and third Lorentzians have, respectively, just twice the
width of the two components in the optical spectrum, while the second Lorentzian
(ro + r2) is a cross-term resulting from the beating of the two optical Lorentzians
against each other in the square-law photodetection process.
The half-widths at half maximum of the three Lorentzian components in the

photoelectric spectrum are:

Awi= 2DTq2

Acoi = 2DTq2 + 6DR

Acoi = 2DTq2 + 12DR (40)

P8(0), the power in the leading Lorentzian (2DTq2) at zero frequency is
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(i)Bo ,_, (i)2
(Bo + B2)27rro =7rDTq2

while P.(O) relative to the constant shot-noise background is the "signal to shot-
noise ratio":

P (°) (i)2 (i) (41)
PN DTq2e(i) eDTq2

which is the mean photoelectron emission rate divided by the optical linewidth.

Case 2. Heterodyne Detection

In case 1, we considered the spectrum of the photocurrent with the detector
illuminated by light scattered by the macromolecules. As an alternative procedure,
the detector can be illuminated simultaneously by the scattered light and by a co-
herent local oscillator signal. This heterodyne detection scheme was utilized in the
original polystyrene experiment of Cummins, Knable, and Yeh (9) and was ex-
tended to the study of critical opalescence by Alpert and coworkers (21, 22).

In the experiments described in this paper, the local oscillator signal was produced
by placing a stationary object within the scattering volume so that the scattered
field and the local oscillator field were spatially coherent. Also, the frequency of the
local oscillator signal is wO , the center frequency of the scattered spectrum.

Let the scattered light field be E, and the local oscillator field be ELO . The photo-
current produced by either E8 or ELO in the absence of the other is i8 or iLo where

(is(t)) = e#(E,*(t)E8(t))

(iLo(t))= e13(ELO*(t)ELO(t)) = ell ELO 2 (42)

since ELO 12 is constant.
The current autocorrelation function

Ci(r) = e2$86(r)(E*(t)E(t)) + e2,12(E*(t)E(t)E*(t + T)E(t + r))

simplifies considerably if the local oscillator field is much stronger than the scat-
tered field so that iLo >> is . When (E*(t)E(t)E*(t + r)E(t + T)) is expanded using
E(t) = Es(t) + ELo(t), the result contains 16 terms of which 10 are zero, and three
are time independent terms whose sum is LLO2 + 2ILO(I,). The remaining three
terms give

ILo{e+2tO7(E8*(t)E8(t + T)) + e-woT(E8(t)E8*(t + r))}

+ (E8*(t)E8(t)E.*(t + r)E8(t + T))

If ILO >> (I.), we can neglect the last term in the preceding line and also keep only
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IL02 of the D.C. terms. Thus

Ci(r) = e2I3ILO6(r) + e2,321L02 + e2f32ILo(I8) (43)

(e+iorg.(l)(r) + e-iog. (1)*(T)
now from Equation 37

g8 (1) ('r) = e-tot7 Bje-r ttl S B,
1-0 1-0
even even

Ci(T) = eiLo8(T) + jL02 + 2iLo(i8)E Ber1/ E B1 (44)
1-0 1=0
even even

so that the photocurrent power spectrum is

=eiLo 00 ri2'w / w2B1 (45)
Pi) eiLO + lLOw(W) + 4iLo(iq) E B 1- +P 1- 4

even even

Again the first term is the shot noise and the second is a direct current signal which
can be blocked.
The last term consists of a sum of Lorentzians centered at w = 0, one for each

Lorentzian in the optical spectrum. Notice that the photocurrent Lorentzians have
the same width as the optical Lorentzians (rather than twice the width as in the
homodyne case) and that there are no cross terms. This is the result of having the
scattered field beat against the local oscillator which has also removed the necessity
of stipulating that the optical field have Gaussian statistics.

Finally, note that the power at w = 0 in the leading Lorentzian relative to the
shot noise is

P8(0) 4iLo (i,)7r _ 4(i8) (46
PN 7rDTq2eiLO eDTq2

which is four times larger than in the homodyne case (Equation 41).

III. INSTRUMENTATION

Apparatus. A schematic diagram of the spectrometer utilized in our ex-
periments is shown in Fig. 4. Plane-polarized, monochromatic (X = 6328 A) light
produced by a Spectra-physics (Spectra-Physics, Inc., Mountain View, Calif.) model
125 He-Ne laser was focused by a thin lens on the sample contained in a cuvette. Light
scattered at an angle 41 to the forward direction, Ko , was collected and imaged on a
variable aperture located at the face of the photomultiplier. An adjustable aperture
located at the focal point of the first collimating lens was used to control the angular
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FiGuRE 4 Schematic diagram of the spectrometer showing teflon wedge in heterodyne
configuration.

acceptance, A4'/st, of the collecting system. In the experiments reported here Alp/lP <
0.015. An RCA 7326 photomultiplier was used as a detector. The aperture in front
of the photomultiplier served to limit the extent of the area of the active surface
of the photomultiplier that was illuminated by the image of the scattering sample
and its diameter was selected to give optimal signal to noise ratios.
The power spectral density of the photomultiplier current was measured by squar-

ing and averaging the output of a Tektronix 1L5 spectrum analyzer (Tektronix,
Inc., Beaverton, Ore.) and recording the final output on a strip chart recorder. A
single power spectral density determination could be made in a minute or so and a
spectrum of ten to fifteen points took 15-20 min to record. During this time the laser
power showed drifts of less than a few tenths of a per cent.

Calibration and Shot-Noise Determination. A shot-noise source consisting
of a battery-powered flash light bulb with an adjustable intensity was utilized in
order to check both the uniformity of frequency response and the linearity of the
over-all system (photomultiplier, amplifiers, spectrum analyzer, and recorder). The
frequency response was flat from 50 Hz to 0. 1 MHz. Linearity in power was checked
by verifying that shot noise power varied linearly with photomultiplier current.
The over-all system showed a stable, reproducible, response linear with average
photomultiplier current to better than 2% of the full scale deflection of the strip
chart recorder.
The flash light bulb source was used also as a substitute source to determine the

shot noise power in the signal. The power spectral density of a sample was measured
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and the average photomultiplier current was noted. The laser beam was then
blocked, and the intensity of the flash light bulb was adjusted to give an average
photomultiplier current equal to that produced by the scattered light. The shot-
noise power for this value of photomultiplier current was measured on the spectrum
analyzer and taken to be equal to the shot noise power present in the photomul-
tiplier current power spectrum, in the presence of the signal from the sample.
Accordingly, it was subtracted from the total power spectrum to obtain the power
spectral density of the photomultiplier current that was due to the light beating
signal or "excess photon noise" in the light scattered by the sample.

Homodyne and Heterodyne Spectra. As shown in section II an optical
signal consisting of two Lorentzians is transformed on homodyning at a photomul-
tiplier into a power spectrum that consists of the sum of three Lorentzians, plus a
flat shot-noise spectrum. The shot noise is easily determined as described above,
but the presence of a third Lorentzian in the spectrum complicates the data analysis
and severely restricts the usefulness of the method. The heterodyning technique,
also discussed in section II does not introduce a third Lorentzian into the power
spectrum and has the added advantage of increasing the signal to noise ratio by a
actor of 4.
Berge and Volochine introduced a plate of appropriately cut smoky quartz into

the sample cuvette as a source of stationary scatterers to serve as a local light
source or oscillator that would heterodyne with the light scattered from the diffusing
scatterers.2 Light scattered from fixed microscopic inclusions in the smoky quartz
experiences no spectral shift and serves as a local heterodyne oscillator that opti-
cally mixes with the spectrally shifted light scattered from diffusing particles that
are close to the surface of the quartz plate. We tried smoky quartz and found that
it did not scatter sufficiently uniformly at all angles to make it generally useful. We
have made "local oscillators" by embedding small polystyrene spheres in the sur-
face of a lucite plate. These showed more uniform scattering and worked satisfac-
torily but were difficult to keep clean when used with protein solutions. The most
successful local oscillator that we have developed so far consists of a small prism
of teflon of triangular cross section. The prism was positioned so that one of its
edges partially interrupted the main beam in that region of the sample that was im-
aged on the photomultiplier. The heterodyne results reported below were obtained
in this way.
We have encountered some difficulty with the heterodyning technique due to

movement of the teflon prism relative to the solution of scatterers. Such movement
produces a spurious signal that contributes to the power spectrum. Building vibra-
tions that disturb the sample are troublesome particularly at low frequencies. At
the time of these studies our spectrometer was not completely isolated from me-

2 Berge, P. Communication presented at the meeting of the French Crystallographic Society. Apri
1967. Unpublished.
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FiGuRE 5 Single Lorentzian half-widths at 250C as a function of sinV/2 obtained from
homodyne and heterodyne spectra of polystyrene latex spheres, 0.126 :1: 0.004, diameter,
0.01 mg/ml; 0, homodyne spectra; 0, heterodyne spectra.

chanical disturbances and we believe that our heterodyne measurements below a
hundred cycles are less reliable on this account.
As a check on the operational characteristics of the spectrometer, homodyne

spectra were recorded for polystyrene latex spheres of diameter 0.126 ± 0.004 ,u
and fitted to single Lorentzians. Half-widths of spectra varied linearly with q2/r
(see Fig. 5) as expected for isotropic particles whose rotation cannot affect the spec-
trum of scattered light. A linear least-squares fit of half-width against q2/7r, reduced
to 20°C, gave a slope corresponding to a translational diffusion constant, of Dr0 =
0.341 i 0.005 X 10-7 cm2/sec. The value for the translational diffusion constant
of these spheres as calculated from the known dimensions of the spheres and the
Stokes-Einstein relationship (23) for the diffusion constant was D20 = 0.338 -i
0.010 X 107 cm2/sec.

Polystyrene latex spheres (PSL), were obtained from the Dow Chemical Co.,
Midland, Mich. Suspensions containing spheres at a concentration of 0.01 mg/ml
were made up in an aqueous solution of 0.01 % sodium lauryl sulfate. When not
in use these suspensions were stored at 2°C. They showed little or no tendency to
aggregate over periods of several weeks and their light scattering behavior conformed
very closely to theoretical expectations for a monodisperse system of spherical
scatterers. They were on this account useful as a test sample for periodically check-
ing the absolute accuracy and stability of the spectrometer.
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IV. RESULTS

Tobacco Mosaic Virus. Since our major experimental objective was to
check the validity of the theory of spectral broadening on light scattering from a
solution of identical rod-like scatterers it was imperative that any test specimen
used for this purpose be monodisperse. Tobacco mosaic virus particles (TMV)
have a length of 3000 :i 50 A and a diameter of 180 A according to X-ray diffrac-
tion, electron microscopy, and physical chemical studies (24-27). Light scattering,
flow birefringence, viscosity, sedimentation, and diffusion studies on TMV have
established that at low ionic strengths and a pH above 7.3-7.5 dilute, stable, mono-
disperse solutions ofTMV do exist and further that they show no evidencc of mono-
mer-polymer equilibria (24). O'Konski and Haltner found that monodisperse prepa-
rations of TMV in 0.001 M phosphate at pH 7 that were initially monodisperse
showed no dimer formation over a 2 year period (28). They also found that initially
polydisperse preparations with the same concentration of virus particles showed
different amounts of monomer and dimer present. From these results they con-
cluded that a monomer-dimer equilibrium situation does not exist in dilute solutions
of TMV and that the presence of dimer particles had to be attributed to uncon-
trolled variables in the process of preparation or to a property of the biological sys-
tem.

In view of these facts we believe that TMV in dilute solutions of low ionic strength
and pH 7.5 can be regarded as a highly monodisperse suspension of rigid rods of
uniform length and diameter. Consequently, any deviation of the light scattering
behavior of such solutions from that predicted by the theory developed for mono-
disperse systems cannot be attributed to polydispersity.

Steere and Ackers and Steere have described procedures for preparing and keep-
ing highly monodisperse suspension of tobacco mosaic virus (TMV) particles in
aqueous solutions (29, 30). The TMV preparations used in this work were prepared
and fractionated by Dr. Steere in his laboratory and were assayed by him for mono-
dispersity by direct electron microscopic observation. The TMV particles were sus-
pended in 0.001 M sodium phosphate buffer, pH 7.5, at a concentration of 0.1 mg/ml.
Electron microscope assays of the samples showed virtually no short pieces of virus
particles or aggregates. Electron microscopic assay after exposure to the laser beam
for spectral measurements also showed no pieces of virus particles or aggregates.
Furthermore, repeat spectra on the same sample showed good agreement and the
power spectral density did not depend on the beam intensity. Exposure to the laser
beam did not therefore produce any appreciable polydispersity in the sample.

All experiments were done at room temperature (20°-25°C) and diffusion
constants have been reduced to 20°C after corrections for the temperature depend-
ence of the viscosity of water.

Standard errors were computed using Student's t-distribution with 70% confi-
dence limits.
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FIGuRE 6 Single Lorentzian half-widths at 25°C as a function of sin'2V'/2 obtained from
homodyne and heterodyne spectra of TMV; 0, homodyne spectra; O, heterodyne spectra;
solid lines correspond to best-least squares linear fit to data for ip < 600.

TMV Homodyne Spectra. Homodyne spectra of TMV solutions were
recorded at various scattering angles ranging from 200 to 1200. At each angle four
to ten power spectra were measured. A single power spectrum was obtained by
making power measurements at ten to fifteen discrete frequencies ranging from
about one-fifth the frequency of half maximum power to three to four times that
frequency. Each spectrum was fitted to a single Lorentzian by a best-least squares
procedure and the fitted half-widths were averaged. A plot of the half-widths of
these single Lorentzians against sin2 Jp/2 is shown in Fig. 6. Unlike the polystyrene
latex spheres, TMV Rayleigh linewidths do not show a simple linear dependence
on sin22t,/2 if a single Lorentzian power spectral density function is assumed. Since
we know in this case that we are dealing with a monodisperse solution of TMV
particles the observed systematic departure from linearity cannot be attributed to
polydispersity. Its explanation must be sought in some other property of the scat-
terers.

TMV Heterodyne Spectra. Heterodyne spectra were also taken on TMV
solutions in much the same way that the homodyne spectra were obtained except
that a teflon wedge was used to introduce a local oscillator signal as described
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above, and spectra were recorded for scattering angles ranging from about 450
to 1600. Here again each spectrum was fitted to a single Lorentzian and the half-
widths plotted against sin2 4t'/2, see Fig. 6. The heterodyne spectra have half-widths
that are about one-half those of the corresponding homodyne spectra in accord
with the theory of section II, but they too deviate systematically from a linear de-
pendence on sin2 i/2.

Double-Lorentzian Analysis of Spectra. As shown in section II the homo-
dyne spectra of rod-like scatterers, after removal of the D.C. and shot-noise terms,
consists of the sum of three Lorentzians, all centered at zero frequency (see Equa-
tion 39). For rods having the dimensions of TMV particles only the first Lorentzian
in equation 39 is significant for 4, < 60'. For 600 < ,t < 1200 the first Lorentzian
and the second Lorentzian are significant and for 1200 < 4,/, the third Lorentzian
becomes significant also.
Heterodyne spectra of TMV however, are closely approximated by two Lorent-

zians at all scattering angles. For heterodyne spectra obtained from TMV particles
only the first Lorentzian is significant for l < 600 and the second becomes ap-
preciable for 1000 < 4&.
On this basis, it is to be expected that homodyne spectra for , < 120' degrees

and heterodyne spectra for all 4, should resolve into two Lorentzians centered at
zero frequency. For homodyne spectra, 1t < 1200, the two significant Lorentzians
have half-widths of 2q2DT and (2q2DT + 6DR) respectively. For heterodyne spectra
at all angles the half-widths are q2DT and (q2DT + 6DR). In both cases, in the limit
of zero scattering angle, the second Lorentzian is negligible and the spectra are
single Lorentzians whose half-widths vary directly with sin24//2. Accordingly, the
single Lorentzian analysis of TMV spectra obtained for i,t < 600 should permit an
estimate of DT. Homodyne spectra obtained for 600 < 4, < 1200 and heterodyne
spectra for V/ > 60' should consist of two Lorentzians, and a determination of the
half-widths of the second Lorentzian from such spectra, together with a knowledge
of the half-widths of the first Lorentzian enables one to estimate DR directly.
Double Lorentzian fits for all spectra were obtained as follows. First for V, < 60°

single Lorentzian best-least squares fits were made under the constraint that the
half-widths should show a linear dependence on sin2 0&/2. These gave half-widths of
705 sin2 s6/2 Hz for homodyne spectra and 353 sin2 V,/2 Hz for heterodyne spectra
corresponding in both cases to a translational diffusion coefficient, DT, reduced to
200C of 0.280 i 0.006 X 10-7 cm2/sec. The solid lines shown in Fig. 6 indicate the
dependence of the half-width of this single "translational" Lorentzian on sin2
p/2.
Using the value of DT obtained from single Lorentzian fits for & < 600, two

Lorentzian fits were obtained for p6> 60° by a best-least squares procedure under
the constraint that the half width of one of the fitted Lorentzians have rF = 2q2DT
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FiuURE 7 Plot of B2/Bo obtained from best double-Lorentzian fits to homodyne spectra
(0) and heterodyne spectra (0) squares. Solid curves were derived from Table I (A and B)
for particles with the lengths indicated.

for homodyne spectra and ro = q2DT for heterodyne spectra. In the case of the
homodyne spectra this fitting procedure yielded a half width of r2 = 2q2DT + 6DR
for the second Lorentzian and the relative powers BO and B2 of the two Lorentzians.
Subtraction of 2q2DT from r' yielded values for 6DR . For the heterodyne spectra
ro was constrained to be q2DT (half that of the homodyne spectra) and r2 = q2DT +
6DR as well as the relative powers Bo and B2 were obtained from the two Lorentzian
fit.
For homodyne spectra at scattering angles corresponding to sin2 4.6/2 = 0.435,

0.500, and 0.575 and for heterodyne spectra at a scattering angle corresponding to
sin2 A/2 = 0.970, the double-Lorentzian fitting procedure produced two Lorentzians
the sum of which gave a significantly better fit to the data than the best single
Lorentzian fit. In this sense the spectra at these angles were "resolved" into their
two Lorentzian components. The homodyne spectra at sin2 46/2 = 0.856 and the
heterodyne spectra at sin2 #P/2 = 0.685, 0.500, and 0.404 did not produce a two-
Lorentzian fit that was any better than the single Lorentzian fit even though their
best single Lorentzian fits departed from linearity. In this sense these spectra were
not resolved into their two component Lorentzians. This does not mean, however,
that these spectra do not consist of two Lorentzians but rather than the intrinsic
errors in the power spectra are of sufficient magnitude to override any improvement
in fit that the two Lorentzian procedure might have produced.

Refinement of Double-Lorentzian Fit. Using the double-Lorentzian pa-
rameters obtained in those instances where the spectra were resolved by the initial
double-Lorentzian fit, a refinement was added to the fitting procedure in order to

BIOPHYSICAL JOURNAL VOLUME 9 1969540



Hz
600

500

1400

0 300

20)
200

1 00

0 I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SIN 4/2

FIGuRE 8 Plot of 6DR/27r, at 250C, against sin24,/2; 0, homodyne spectra; 0, heterodyne
spectra. Open points indicate values derived from initial double Lorentzian fit; filled points
from refined double Lorentzian fit.

resolve those spectra which were initially unresolved. Using the parameters obtained
from the resolved spectra a plot of the ratio of the relative powers, B2/Bo against ,,6
was made. This plot is shown in Fig. 7. Comparison of these data with the values
of the power ratios derived from the Rayleigh-Gans theory of section I showed that
the data conform best to those B2/Bo values that would be found for a rod-like
scatterer 3200 :i 200 A in length. Using this additional information a second double
Lorentzian fit was made on these unresolved spectra under the additional constraint
that the ratio of the relative powers of the two Lorentzians be that given by a
3200 A rod at the corresponding scattering angle. This refined fitting procedure
resolved the homodyne spectra for sin2 t/2 = 0.855 and the heterodyne spectra for
sin2 y/2 = 0.683 into two Lorentzians in the sense that therewas a clearly discernible
small range of values of the half-width of the second Lorentzian which gave a re-
sultant linewidth that corresponded closely to the experimentally observed value
and at the same time was compatible with the values of B2/Bo expected from a
rod-like particle 3200 ± 200 A in length.

Fig. 8 is a plot of the values of 6DR/27r derived from both homodyne and hetero-
dyne spectra including those values of the half-width obtained by means of the
initial double Lorentzian fit and the refined double Lorentzian fit. The refinement
procedure did not lead to a resolution of the heterodyne spectra for values of
sin2 #P/2 < 0.5 even though these spectra gave rise to single Lorentzian fits that
departed significantly from linearity. The average value for 6DR/27r obtained from
the half-width of the second Lorentzian at 25°C was 384 i 22 Hz. This value
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corresponds to a rotational diffusion coefficient, DR, reduced to 20°C of 320. i
18. sec-'.

V. DISCUSSION

The experiments reported here were undertaken in order to resolve the translational
and rotational diffusion broadening components of the Rayleigh line of TMV
particles and to extract from the results estimates of the translational and rota-
tional diffusion constants of these particles. Our results together with experimental
values from the literature and values calculated from various hydrodynamic models
are given in Table I. Our value for the rotational diffusion coefficient is in good
agreement with O'Konski's which was obtained from transient electric birefringence
measurements. Both of these experimental values seem compatible with calculated
values obtained from the Burgers, Broersma, or Filson hydrodynamic models.

TABLE I

A. TRANSLATIONAL DIFFUSION CONSTANTS OF TMV

D20 X 107 (cm2/sec)

Experimental Calculated (rod 3000 A X 180 A diameter)

Rayleigh linewidth 0.280 i 0.006 Perrin equations¶ 0.502
Triebel 0.475 :1: 0.012 Perrin equations, equivalent 0.472

volume**
Dubin et al.*§ 0.350 + 0.020 Burgers equationst 0.486

Broersma equations t 0.396
Bloomfield shell models t 0.480

B. ROTATIONAL DIFFUSION CONSTANTS OF TMV

DRO (sec-1)

Experimental Calculated (rod 3000 A X 180 A diameter)

Rayleigh linewidth 320. :1 18. Perrin equations¶ 429.
O'Konski*II 292. 4 6. Perrin equations, equivalent 402.

volume**
Burgers equations*§§ 385.
Broersma equations*§§ 276.
Filson shell models*§§ 349.

* Reduced from 25°C using temperature and viscosity dependence of Perrin equations, ref-
erence 23.
t Reference 32.
§ Reference 10.
Reference 28.

¶ Reference 23, ellipsoid with axes a = 3000 A, b = 180 A.
** Reference 23, ellipsoid with length a = 3000 A, but axial ratio giving the same volume
as for a 3000 A X 180 A diameter cylinder.
tt Calculated from frictional radii given by Bloomfield, V. A., K. E. Van Holde, and W. 0.
Dalton. 1967. Biopolymers 5: 149.
§§ Filson, 0. P., and V. A. Bloomfield. 1967. Biochemistry 6: 1650.
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The translational diffusion coefficient found here is significantly lower than other
reported values. The value cited by Dubin et al. was obtained from Rayleigh line-
width measurements identical to ours on a sample of TMV whose monodispersity
had not been checked (10). These authors experienced difficulties in obtaining good
single Lorentzian fits to their data. The value for DT which they report, 0.350 ±4
0.020 X 10-7 cm2/sec, was obtained from a best single Lorentzian fit to the spectra
obtained at a scattering angle of 900. They do not report any estimates for DT based
on spectra taken at smaller scattering angles. Presumably their data would have
given a plot of half width against sin2 ,6/2 that deviated from linearity with sin2 s6/2
in a manner similar to our data along a curve that is concave upward, see Fig. 6.
If such were the case an estimate of DT obtained from the limiting slope as 4V ap-
proaches zero would have been smaller than 0.350 X 10-7 cm2/sec, the figure which
they reported. A single Lorentzian fit to our data obtained at 90° yields a value of
0.386 ± 0.14 X 10-7 cm2/sec for DT which is considerably larger than the value
0.280 ± 0.006 X 10-7 cm2/sec, obtained in the limit of zero scattering angle. The
difference between our value for DT and that obtained by Dubin et al., could very
likely be due to the fact that their estimate was not obtained in the limit of zero
scattering angle.
The value of DT given by Triebel et al. corresponds to DT in the limit of zero

concentrations of virus particles. It was obtained by extrapolating sedimentation
measurements made on TMV suspended in 0.02 M phosphate buffer at various con-
centrations of virus particles down to 0.5 mg/ml (31). Our sample was at a much
lower ionic strength, 0.001 M sodium phosphate, and concentration, 0.1 mg/ml.
Since TMV carries a charge in the neighborhood of -2,000 at a pH of 7.5 it is
quite possible that at the low ionic strength of our sample the effects of charge on
the translational diffusion coefficient are appreciable, while at high ionic strengths
they are reduced.

APPENDIX

The Phase Autocorrelation Function

The phase autocorrelation C+(r) is defined in Equation 10 as

[C,0(T)] = (e-iq,r)etqr(t+r)) (A-1)
which is the time average of the quantity e iq r(t)eiq r(t+T). Assuming the system to be ergodic
we can equate this time average to an ensemble average:

[C,(T)] Wf (roX t rO + R, t + T) iaroeiQ.(o+R) d3R)

- Kf WC(ro, t ro + R, t + T)eiqR dR (A-2)

Where WC(ro, t ro + R, t + T) is the conditional probability that a scatterer located at
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ro at time t will be in a unit volume at ro + R at time t + T, and the angular brackets with
a subscript ro mean an ensemble average over all ro. Since the system is isotropic, homo-
geneous, and stationary, WC cannot depend on ro or t. Therefore,

[C+(r)] = f G8(R, r)eiq R d3R (A-3)

where G,(R, r), the ensemble averaged conditional probability that a particle located at
the origin at time t = 0 wil be (in a unit volume) at R at time T, is the "self' part of the
space-time correlation function of Van Hove (4) in the classical limit.
We consider three cases.

Case A: Fixed Scatterers

G8(R, T) = (R) (A-4)

[C+(r)] = f (R)etq R dR = 1 (A-5)

Case B: Scatterers Moving with Fixed Velocity v

G8(R, r) = 5(R - vr) (A-6)

[C+() = f s(R - VT)e qR dR = e'qvr (A-7)

Case C: Diffusion
We consider scatterers undergoing continuous frequent collisions with the (small) solvent
molecules. If we neglect very short times (comparable to the reciprocal of the collision fre-
quency we,), the time evolution of G8 is determined by the macroscopic diffusion equation
which describes the ensemble averaged behavior of the microscopic system. Hence:

aG-1 DT V2G8 (A-8)
at

where DT is the translational diffusion constant.
The diffusion Equation A-8 can be solved directly with G8(r = 0) = 5(R).

G, (R, Tr) = 1 e32 R2/4DTr (A-9)(47rDT ,)rI(

Combining A-3 and A-9,

[C,(.r) e-DT,2, (A- 10)

Equation A-10 can also be found directly from Equations A-3 and A-8 without solving
for G8(R, r).
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The eigenfunctions of the diffusion Equation A-8 are: eI' *Re aDTT. Thus the integra-
tion in (A-3) picks out the q' = q component of G. and leaves, after integration

[C,0,(T)] = e-DT2T
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