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ABSTRACT In a previous paper, we proposed a model in which the volume growth
rate and probability of division of a cell were assumed to be determined by the
cell’s age and volume. Some further mathematical implications of the model are
here explored. In particular we seek properties of the growth and division functions
which are required for the balanced exponential growth of a cell population. In-
tegral equations are derived which relate the distribution of birth volumes in suc-
cessive generations and in which the existence of balanced exponential growth can
be treated as an eigenvalue problem. The special case in which all cells divide at
the same age is treated in some detail and conditions are derived for the existence
of a balanced exponential solution and for its stability or instability. The special
case of growth rate proportional to cell volume is seen to have neutral stability.
More generally when the division probability depends on age only and growth rate
is proportional to cell volume, there is no possibility of balanced exponential
growth. Some comparisons are made with experimental results. It is noted that the
model permits the appearance of differentiated cells. A generalization of the model
is formulated in which cells may be described by many state variables instead of just
age and volume.

INTRODUCTION

In a previous paper (Bell and Anderson, 1967—hereafter referred to as I) we pro-
posed a model for cell growth and division wherein it was assumed that the divi-
sion probability of a cell and its growth rate were determined by the cell’s age and
volume.! In I some preliminary attempts were made to determine the average growth
rates and division probabilities for populations of mammalian cells in balanced
exponential growth and subsequently these measurements have been substantially
improved.? As these data become available, it is of interest to inquire what sorts of

1 As far as the mathematics is concerned one can everywhere substitute for “volume,” any quantity
which is divided equally between the daughter cells during mitosis. For example, the quantity of dry
mass, protein, or nucleic acid could be used. We prefer to work in terms of volume because of its ex-
perimental accessibility.

2 Anderson, E. C., G. I. Bell, D. F. Petersen, and R. A. Tobey. Data to be published.
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growth rates and division probabilities are required in order that a state of balanced
exponential growth can be achieved by a cell population. While we have, to date,
achieved only partial results in this inquiry, some of them seem to be general enough
to be worth reporting.

Let us first recall a few general features of our model. We have confined our
attention to large populations of cells so that fluctuations from the mean could be
ignored. We therefore described the population by N(¢, r, ¥) dr dV, the number of
cells which at time ¢ have ages between r and r + dr and volumes between ¥V and
V + dV. We assumed that a cell of age r and volume ¥ will in time df have a volume
increment or growth given by F(r, V) dt and probabilities of division or death given
by P(r, V) dt and D(z, V) dt. It was further assumed for simplicity, that cell divi-
sion produces two daughter cells of precisely equal volumes, and this assumption
is well-supported.2 Under these assumptions the evolution of the population was
shown in I to be governed by the following two equations:

and

N(1,0,¥7) = 4 fo ) P(r,2V)N(t, 1, 2V) dr. (2)

For a variety of mammalian suspension cultures in exponential growth it has been
found? that the average growth rate of a cell is approximately proportional to cell
volume. We noted in I, that for this particular growth rate (F ~ ¥) the population
is uniquely sensitive to its initial conditions. One motive for the present inquiry is a
desire to better understand this sensitivity.

In this paper, many of our results are simply embellishments of the following ob-
vious theme: In order that a population of cells may achieve balanced exponential
growth an average cell must double in volume during its lifetime. We wish to under-
stand, in the context of our model, what sorts of coupling between the cell growth
cycle and the cell division cycle are necessary or sufficient for achieving a state of
balanced exponential growth.

We will begin by converting Equation (1) to an integral equation which may then
be combined with Equation (2) to yield a single integral equation for either N(z, 0, V)
or N(t, =, V). This appears to be a convenient formulation for investigating the solu-
tion.

We will generally be considering the mathematical initial value problem. We as-
sume that N(0, r, V) is given and seek properties of the solutions to Equations (1)
and (2) at later times. If a condition of balanced exponential growth is achieved at
late times we take this to mean

N(t’ T V) g eat N(T’ V) (3)

432 BIOPHYSICAL JOURNAL VOLUME 8 1968



and a central question (not really answered herein) is for what functions F, P, and D
will the solution approach Equation (3) and what will be « and N(r, ¥)? From the
biological point of view we may wish to restrict our attention to populations which
have no cells of arbitrarily large or small volumes so that we may require

Norn=o [ZOMOS! @

THE INTEGRAL EQUATIONS

We convert Equation (1) to an integral equation by the method of characteristics
(Courant and Hilbert, 1962). Thus rewrite Equation (1) as:

N , N , _oN F
37+37+FW_—(P+D+6—V-)N. (5)

If we regard the left side as a total derivative along some trajectory (¢(r); V(7)) we
have

dN 9N |, 0N dt , N dV
pusuh Sl AP il AP Mt ik 6
dr 07+6tdr+6Vdf (6)
which on comparison with Equation (5) gives
dt
7= 1
W o FG,v) (7)
dr

with solutions
=7+t = tto, 7)
V=VW, (8)

where 1, is the time of birth of a cell (time at age zero) and V, is its birth volume.
Of course for a general F(r, V) one will not be able to solve Equation (7) for ¥ (V,,7)
in closed form. However, if F is taken to be a function of ¥ only then

v
Vo F (V)
and for simple choices of F(V), this may be solved for ¥V(V,, 7). If, for example,
F(V) = fiV,then V = V'V,
We may now integrate Equation (5) along a characteristic curve or trajectory with
fixed ¥, and 1, , taking care to let # and V vary with r according to Equation (8). To

T (9)

GEORGE 1. BELL Cell Growth and Division. III 433



make this clear we may rewrite Equation (5) as

1
N%N(t(to, 1), 7, V(Vo,7)) = —={P + D + F'(r,V(Vs,7))}  (10)
where we have denoted 3F/aV by F’. For t, > 0 we may start the integration at r = 0
obtaining

N(ts‘r’ V(Vo, 7))
= N(t -7, 0, Vo) exp[—‘/: {P + D + F'(‘r', V(Vo,T'))} d-r']

for t >+ (11)

where each of the functions P, D, and F’ is a function of 7' and V(V,, 7').
For 1, < 0 we are considering cells born before time zero so that we should inte-
grate back to time zero and use the initial condition, obtaining

N(t, 7, Vi(Vo, 737 — 1))
= N0, — t, Vo) exp — f

T

’ (P4+ D+ F)d for >t (12)
—t

where V1(V,, 7; 7 — ¢) is the volume of a cell at age  which had volume ¥, at age
T— 1

Equation (11) says that a group of cells born at time ¢ — r with volume ¥, will
grow up to volume V at age 7 and at time ¢ subject to depletion (in the exponential)
by division and death. The term exp — (J F’ dr’) takes into account that if the cells
start out in a volume interval d¥, , they will end up at age r in a volume interval dV’
which is larger by the factor exp (f F’ d7"). To see this, consider some cells at vol-
ume ¥ and some at V + AV. Then

ds—TV= F(V + AV,7) — F(V,7) = F'(V, 1)AV. (13)
Integrating we have
AV = avie”" (14)

as claimed. We may thus rewrite Equation (11) in a somewhat more transparent
form:

N(r + t0,7,V(Vay 7)) dV = N(to, 0, Vo) dVo exp — fo (P +D)d. (15)

If the volume spectrum of dividing cells were measured at some time #,, one
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would thereby obtain N(¢, 0, V). Equation (15) could then be used to obtain the
age and volume distribution at later times, provided that P, D, and F’ were known.
In Paper I and the forthcoming paper by Anderson et al., values of P and F were
found which are averages over cell age for exponentially growing cells. In particular,
we determined

f N(r, V)F(r, V) dr f N(z, V)P(, V) dr
fy) = ) p(V) = . (16)
fN(‘r, V) dr fN(‘r, V) dr

N(r, V) is the spectrum in exponential growth as in Equation (3). The death rate, D,
was assumed to be negligible. One can inquire whether from f(¥) and p(¥), only,
enough information can be found to solve Equation (15) for the age dependence of
N. The answer is no. However, if one is willing to assume something about the age
dependence of F and P (and D) solutions can be found. The simplest case is if we
take P(r, V) = p(V) and F(r, V) = f(V) in which case ¥, can readily be found and
Equation (15) can be solved. However, this simple choice is by no means unique and
is not attractive from a biological point of view.

Equation (2) gives the spectrum of dividing cells as an integral over the spectrum
of all cells, while Equation (11) gives the spectrum of all cells in terms of the dividing
cells. The two equations may be combined to give an equation for the spectrum of
dividing cells:

N(1,0,V)

t T
= 4[ P(r,2V)N(t — 7,0, Vo(2V, 7)) CXP{—f (P+4+ D+ F') dr’} dr
0 /=0
+ 4‘/‘ P(r,2V)N(O, 7 — t, Vo2V, 7; 7 — 1))

-exp{—f;_f_t (P+ D4 F) dr'} dr, (17)

where Equation (12) was used in obtaining the second term. In this equa-
tion Vo(2V, 7) is the birth volume of a cell which reaches volume 2¥ at age r and
Vo(2V, 7; 7 — t) is the volume which a cell had at age r — ¢, in order to reach volume
2V at age 7. The second term in Equation (17) represents the cells which have just
divided after developing without division from those initially present and we denote
this term by (¢, V). It is a function of the initial conditions. If we assume that D = 0,
use Equation (14) to remove F’ (obtaining d¥,/2dV), and define

B(r,2V) = P(r,2V) exp — {fj_o P, V'(Vo(2V, 1), 7)) d-rr} . (18)
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Then Equation (17) may be written

N(1,0,V) = 2f PB(r,2V)N(t — 1,0, Vo(2V, ‘r)) Ve dr + I1(t, V). (19)

The function Pdt in Equation (18) is the probability that a cell grows up to vol-
ume 2V and age r without division (this is the exponential) and thereupon divides in
time dt. Thus Equation (19) says that those cells which are born at time ¢ with volume
V must have had mothers which were born at some time ¢ — 7, with vol-
umes Vy(2V, r) such that at age r they had attained volume 2V. If all cells divide,
then for fixed V,,

j: B(r,V(Vo,7))dr =1 — exp — {f: P(r', V(Vo, 7)) dr'} =1 (20)

P is always a nonnegative function, though it is presumably zero for small
values of 7.

We will presently exploit Equation (19) to obtain some information about solu-
tions. But first we note that the integral in Equation (19), which is over the ages of
dividing cells, can be transformed to an integral over the birth volumes of the mother
cells. In making the transformation it is important to remember that every dividing
cell has to arrive at volume 2V at time ¢. Thus let 7(V,, 2V) beinterpreted as the age
at which a cell of birth volume ¥, reaches volume 2¥. We find

NGO V) =2 [ Ble(Vo, 20), 21Nt — +(Vo, 27), 0, Vi)

- ( ;;o) ("V") Vo + 1(t, V). (21)

Here the derivative (— dr/dV,) must be evaluated for a constant final volume. For
example, suppose that F(V, r) = fiV. Then for cells of final volume 2V, we have
2V = Vo'V so that (— dr/dV,) = (fiVe) ™. We may also note that d¥,/dV must be
evaluated at constant r so that for this example dV,/dV = 2™V = V,/V.

If one tries to solve Equations (19) or (21) in a Neumann series (Courant and
Hilbert, 1962), then it is clear that a term in the series represents the contribution
due to dividing cells of a particular generation. If, in particular, we try a solution of
Equation (21) of the form

Ni(2,0,V) = I(¢, V) (22 a)
v dr\ dv,

Nn+1(t, 0, V) = 2 _ P (—d—V;) dl/? N (t T, 0, Vo) dVo (22 b)

N =)_N,. (22 ¢)

n=1
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Then N, is the volume spectrum of cells which are born in the nth division after the
population was started at z = 0.

In addition, if all cells divide, then it is easy to see that successive generations will
differ in the number of dividing cells by exactly a factor two. This means

f:f: Nowa(2,0, V) dt dv = 2 f:fon Na(t,0, Vo) dt Vs

which is most easily shown by starting from Equation (19), interchanging the #
and 7 orders of integration, and then using Equation (20).

THE EIGENVALUE PROBLEM

At first glance, Equations (19) or (21) resemble Volterra integral equations which are
well-known not to possess eigenvalues (Courant and Hilbert, 1962). However, in
Equation (19), the arguments of N involve r in a complicated manner, whereas in
Equation (21) the upper limit on ¥, is 2V instead of V as in the usual Volterra equa-
tion. This makes all the difference.

Let us consider the possibility of solutions of Equations (19) or (21) which at late
times behave as

N, 0, V) = eatm(V) (23)

If at late times (¢, V) becomes negligible we may investigate solutions of Equation
(19)

m®) =8 [ Kir, 20)m(a(2¥, 7)) dr (24)
where
Ki(r,2V) = 2P(x, 2V)e_°"%£:7" (25)
or of Equation (21)
m(v) =8 [ Ko, VIm(Ve) o (26)
where
_ AP —ar(vo,2v) [ dr éK(_)
K.(Vo,V) = 2P(+(V,,2V), 2V)e ( d—Vo> (dV). (27)

In both Equations (25) and (27) we have introduced an auxiliary eigenvalue 8. The
reason is that the actual eigenvalue of interest, «, occurs in a complicated way in K,
or K, . We hope that, for fixed «, it may be possible to show the existence of 8. Then
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by varying a one may find the actual « as that which gives 8 = 1.0. This method has
been successfully used, for example, in neutron transport theory (Wing, 1962).

The kernels, K; and K, , may presumably be taken to be nonnegative. Further, we
are seeking solutions for which m(0) = m(») = 0.

It has been shown® that for certain kernels, K»(Vo, V), Equation (26) does have
eigenvalues. Indeed, if one increases the upper limit of integration in a Volterra in-
tegral equation from ¥ to (1 4 ¢)V, eigenvalues become a possibility. The kernels
considered to date do not, however, include any of obvious biological interest.

We will see, by considering a simple case, that the range of possibilities for Equa-
tions (25) and (27) must be quite rich. Thus for certain choices of F and P eigenval-
ues and eigenfunctions will exist while for other choices they will not. Moreover, it
may not be possible to reach an eigenfunction from the initial condition.

A SIMPLE EXAMPLE

From measurements of the lifetimes of mammalian cells (Puck and Steffen, 1963;
Anderson and Petersen, 1965; Dawson, Madoc-Jones, and Field, 1965) one knows
that most cells in a population divide at roughly the same age. It is, therefore,
tempting to try out the hypothesis that all cells divide at exactly the same age which
we denote by 7, . This means that

P(r,2V) = 8(r — 7o) (28)

with § the Dirac delta function. With this assumption, the integral in (24) can im-
mediately be found and we have, for 8 = 1,

m(V) = 2¢ (%)r_f m(Vo(2V, 70)) (29)

First of all, by integrating Equation (29) over all volumes ([7 dV) we see that if
a exists, then @ = In 2/7, and hence we may rewrite Equation (29),

m(V) = (Z"II;’),-,O m(Vo(2V, 10)) . (30)

If there exist values of ¥ = V* such that
V* = Vo(2V*, 70) (31)
then a possible solution is to have m(¥) entirely concentrated at V*, that is

m(V) = Ms(V — V*) (32)

3 Pimbley, G. H. 1967. Private communication.
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Vo (2V,75)

v v

Ficure 1 The relation between cell birth volumes in successive divisions, when all cells
divide at age 70. Vo(2V, 7o) is the birth volume of a cell which will divide upon reaching
volume 2V. The possible solutions for balanced exponential growth will find all cells born

at volumes V1*, or V2*, as explained in the text. When they are born at ¥V;*, the solution
is stable and when born at V:* it is unstable as is indicated by the arrows.

where M is an arbitrary constant. In this case all cells divide at the same volume
V*, and the same age, 7o. (The factor d¥V./dV is just what is needed to
satisfy [¢ 8(V — V*) dV = [ 8(Vo — V*) dV,.) Moreover, this will in general be
the only kind of acceptable solution, as may be seen as follows. We suppose that
the curve V4(2V, 7o) is continuous and monotonic as sketched in Fig. 1.

Suppose that m(V) were finite in a region of ¥ and ¥, somewhat greater than
V1*, where dV,/dV > 1. Then in this region, from Equation (30), m(V) > m(V,)
while ¥V < V, . Indeed, one can use Equation (30) to find values of m(¥) for ¥ close
to Vi*. Let dVo/dV)y=y,» = v > 1. Then near Vi* if Vo = Vi* + AV, V =

V* + é‘YZ and from Equation (30)
m (Vl* + AT:—/> = ’Ym(Vl* + AV)g

Repeating this equation we have

m (Vl* + i—V) = y"'m(V* + AV)

n
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so that m must increase without limit as ¥ approaches V;*. Indeed if we let x =
V — Vi* and m(V) = g(x), we see that near x = 0, x = AV/y" or v" = AV/x so
that g(x) ~ 1/x. Thus m(V) not only diverges near ¥ = V¥, but it is not integrable.
By extending this argument to other regions of V it is clear that m(V) cannot be
finite except where V' = V*, ‘

By considering how the cells are developing, it is easy to see that a solution such
as V1* in Fig. 1, for which dV,/dV > 1, is a stable solution while a solution such as
V2* for which dV,/dV < 1 is unstable. To see this, consider some cells born with
Vo in the region V1* < ¥, < V,* in Fig. 1. These will divide with values of ¥ which
can be read from the curve and which will have ¥ < ¥, . Hence as generations pass
the volumes will shrink; approaching V,*. More generally cells born with volumes
near to V* will divide leaving daughters closer to ¥*. The opposite is true for cells
born with volumes near V,*. Upon division their volumes will be farther from V3*.
Roughly speaking the cells are trying to seek out either a larger or a smaller birth
volume so that in time 7, they can exactly double in volume.

It is perhaps worth summarizing our conclusions for this simple case in the form
of a theorem.

Theorem. When all cells divide at age o, then « = In 2/7, and possible
eigensolutions are m(V) = M§(V — V*) with V* a solution of V* = V,(2V*, 7).
IfdVo/dV) yevr % 1, the solutions are respectively stable, neutral, or unstable.

Of course, merely because we have an eigensolution does not mean that we can
get there from the initial conditions. If, for example, in Fig. 1 all the first generation
cells were born with ¥ > V,* then as generations passed the cell volumes would
simply increase without limit (assuming no values of V* > V,*). In addition, it is
clear that to get an exponentially increasing population, one would have to start
with very special initial conditions. Any trace of synchrony in the initial population
would persist forever.

Let us now see how some simple growth laws, F(r, V), fit these conclusions. Sup-
pose that the growth rate is a function of ¥V only, F(r, ¥) = f(¥). Then from Equa-
tion (14)

avy _ fo e
av )
But dV/dr = f(¥) so that the exponent is simply — [ df/f = —Inf. Thus

ave _ , f(Vs)
—_—= 2L 33
v = 2 v 33)
In addition an equation for V* may be found by integrating dr = dV/f(V),
2v* dV
- ].m = T0. (34)
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Thus in balanced exponential growth all cells will have birth volumes V* given by
Equation (34) and a solution will be stable if f(V*) > f(2V*)/2, neutral if f(V*) =
f(2V*)/2, and unstable if f(V*) < f(2V*)/2. This stability criterion could have been
anticipated by the following simple argument. Consider a cell born at vol-
ume V* + AV. This volume would have been reached by a cell born at V* after time
At = AV/f(V*). Hence our cell will be able to grow for this additional time, Az, after
reaching volume 27* and in this time it will grow by volume Atff(2V*). Upon di-
viding, the daughters will differ in volume from V* by

1 _ A f2r)
3 AtfQ2V*) = AVE](—V;S-
so that they are farther from V* if f(2V*)/2f(V*) > 1 which is the condition for in-
stability.
If, for example, the growth rate were constant, f(V) = f,, then V* = furo and the
solution is stable.
Iff(V) = f.V* with f, a constant and s not equal to 1, then

The solution will be stable for s < 1, and unstable for s > 1.

If f(V) = fiV, the situation is entirely different. There can exist an eigensolution
if and only if firo = In 2. If this condition is satisfied, V' = V,(2V, 7o) for all ¥ and
hence there is no special value V*, If it is not satisfied, then there is no value of V for
which V = V,(2V¥, r,). We thus see once more that the situation is quite anomalous
when growth is simply proportional to volume.

QUALITATIVE EXTENSIONS

For more general nonnegative kernels in the integral equations (24) and (26) it is
possible to draw some conclusions by suitable extensions of the theory of Krein and
Rutman (1948). Preliminary results have been obtained by Pimbley.’ Without under-
taking the detailed mathematical analysis, it would still seem that some qualitative
conclusions could be drawn by considering straightforward generalizations of the
preceding simple case.

Suppose that P(r, V) were a function of 7 only; not a delta function but a func-
tion peaked near r, . We believe that the results obtained in the previous section can
be qualitatively extended to cover this more general situation. Instead of a single
curve, V(2V, 7o), which relates the birth volumes of mother and daughter, we must
consider a family of such curves, identified by r as a parameter. The important mem-
bers of the family will be those for which P(r) is relatively large and we expect that
birth volumes will become concentrated around a value of V* given by the intersec-
tion of such a curve with the line ¥ = ¥, . The stability of such solutions will also be
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determined much as before by the sign of (dVo/dV)y-v+ — 1. The case of growth
proportional to volume (F(r, ¥) = fiV) will again be a special one inasmuch as it
leads to no favored value of ¥* and to no balanced exponential growth unless f; and
7o are appropriately related. Even when they are appropriately related, however, an
eigensolution is not possible within a bounded volume range inasmuch as cells can
keep drifting to larger and smaller volumes on each division. Thus if one started
with a sharp volume distribution, the spectrum of dividing cells would take on a
Gaussian shape with a half-width increasing as 4/7 at late times, and no eigensolu-
tion would be possible except a constant at all volumes. This result can be rigorously
proved by the central limit theorem of probability (Feller, 1957). We let x be the
ratio of the birth volume of a daughter cell to the birth volume of its mother. Then
y = In x may be considered as a random variable assumed to have zero mean and
finite variance. The probability distribution of the sum of » such random variables
will give the probability distribution of the logarithm of the birth volume after »
generations to initial birth volume. But the central limit theorem states that this sum
will, as n becomes large, approach a Gaussian shape with half-width ~ /7.

If P were a function of cell volume as well as of cell age, the situation could be
quite different. If, in particular, there were a critical volume range within which cells
preferred to divide (i.e. P(r, V) large in this volume range), then the dividing cells
would tend toward this volume range, more or less independently of F(r, V). The
possibility of stable populations in balanced exponential growth would then be ex-
pected, even for growth laws which lead only to unstable or neutral solutions if P
is a function of r only.

Indeed, if P(r, V) and F(r, V) were both functions of V only, the implied tight
coupling between growth and division cycles would appear to make for a rather
trivial attainment of balanced exponential growth. However, this mathematical
possibility does not appear reasonable from a biological viewpoint. Since mitosis is
apparently a final event in a more or less orderly sequence of biochemical reactions,
we expect that the division probability P(r, V) is a strong function of cell age.

If one assumed that both F and P were functions of 7 only, then there would be
nothing in the model (except for initial conditions) to determine the volume scale.
The possibility of balanced exponential growth would require a relation between F
and P such that on the average cells doubled in volume before dividing.

COMPARISON WITH EXPERIMENTS

In I, we have determined average growth rates and division probabilities for a va-
riety of mammalian suspension cultures in exponential growth and these measure-
ments have been refined.? In this paper, the averages were denoted by f(V) and p(V)
and defined in Equation (16). It was found that to first approximation f(V) = fiV.
Thus the special case of neutral stability is of particular interest.

In addition it was found that the growth rate for large cells falls off precipitously.
One might think that this was a stabilizing influence which partly determined the
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volumes at which cells were dividing. However, it appears that the falloff occurs only
for volumes which are appreciably larger than those of most dividing cells. Only
around 10% of the cells get to such large volumes. Therefore, the stabilizing in-
fluence would not seem to be effective in determining division volume and it may be
that the large cells are simply abnormal. In addition for the large cells p(¥) is also
decreasing with ¥V, suggesting that these cells are too large to divide or otherwise ab-
normal.

If F(r, V) = fiV, then P(r, V) cannot, according to the previous section, be a
function of r only (except for a Dirac delta function which is hardly possible bio-
logically). Thus the existence and stability of the actual populations must be caused
by deviations of F(r, V) from f,¥ and/or by a volume dependence of P(r, V). Super-
ficially it would appear that the deviations of F(r, V) from f1V are so slight as not to
confer much stability (if any) on the population. It is, therefore, attractive to con-
jecture that P(r, V) depends on cell volume so as to favor the division of cells in a
critical volume range.

GENERALIZATIONS

Mathematically, our model can be generalized to admit a description of the state of
a cell by more than the two variables, 7 and V. Thus suppose that the state of a cell
is specified by  and by some variables X;, (i = 1, 2, ---, I) where, for example,
X1 might be the mass of DNA, X the total mass of ribosomes, X; the mitochondrial
mass, etc. The structure of our equations remains much the same, independent of I,
provided that the following assumptions are satisfied: (@) The division probability is
determined by the present state of the system (i.e. division is a Markov process
(Feller, 1957)). We may then let P(X;, X;, --+ X7, ) = P(X, 7) be the division
probability per unit time. (b) All state variables are divided equally between the two
daughter cells. Thus, on division 2X becomes X. (¢) The rate of increase of any
variable is determined by the state of the system. This might seem to be quite a re-
strictive condition, but if one postulated enough variables and then looked at only a
few variables, the presence of the unexamined hidden variables could make the
cell’s apparent behavior undetermined or statistical. At any rate, this assumption

means we can write
dX;

= = FX,n). (36)

With these assumptions, equations for the development of a population of cells are

W 10, %) + 2 4 32 0 (R V) = — (PX,7) + DX, N (30)
N(,0,X) = 2%[ ' POX, NG, 7, 2X) (38)
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One would then like to know for what sorts of F; and P will balanced exponential
growth be possible.

It is clear that these models include the possibility of the appearance of differen-
tiated cells. Even the two variable model which we have considered admits this possi-
bility. For example, one could postulate that if cells reached some large age without
division or if they were born with too small volume, they would then cease to grow
(F(r, V) = 0) or divide (P(r, V) = 0). These cells would then be quite different from
the bulk of the population but they would be present even in balanced exponential
growth.

Note Added in Proof. Reference should also be made to the closely related work
of Fredrickson, Tsuchiya, and collaborators, described in Fredrickson, A. G., D. Ram-
krishna, and H. M. Tsuchiya, 1967, Mathematical Biosciences, 1:327, and other references
given therein. I am indebted to Dr. E. Trucco for calling my attention to this work.

It is a pleasure to acknowledge my indebtedness to George Pimbley for advice concerning mathe-
matical aspects of this work and to Ernest Anderson for numerous stimulating discussions.
This work was performed under the auspices of the United States Atomic Energy Commission.

Received for publication 4 December 1967.
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