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AssTRAcT A maturity-time representation for the study of cell populations is in-
troduced, which differs from the age-time representation suggested by von Foerster.
A significant feature of the theory is the concept of maturation velocity. A solution
to the fundamental equations of the theory is presented in terms of the individual
generations which make up the population at any time. The problem of variability
of generation time is considered from the differing viewpoints of the two representa-
tions, as well as that of an alternate theory due to Stuart and Merkle. The experimen-
tal observations of Prescott concerning the generation time distribution and popu-
lation growth of Tetrahymena geleii HS cells appear to support best the theoretical
formulation of the maturity-time representation. In particular, they suggest that
memory of the maturation velocity or generation time ofa given cell tends to persist
from parent to daughter for several generations at least.

I. INTRODUCTION

An equation for the cell density function is presented that describes a population of
cells in terms of the variables maturity and time. This is in contrast with the equation
for the cell density function introduced by Scherbaum and Rasch (1) and studied by
many authors (2-5) which describes cells in terms of the variables chronological age
and time. The new equation is also different from that suggested by Stuart and
Merkle (6), who, however, also utilized the variables maturity (called "physiological
age" by them) and time. It has certain formal similarities to the modification of the
Scherbaum-Rasch equation introduced by von Foerster (2). Nevertheless, there are
basic differences both in the mathematical nature of the equation and the underlying
biological implications of the different descriptions.
The new theory is formulated in section II. An important feature of it is the con-

cept of "maturation velocity" which may or may not be variable, and in any case
needs to be specified. An attempt is made to point out the major differences in the
two representations for the cell density function, which we shall call the maturity-
time representation and the age-time representation. Of particular significance is the
different causes of variability in the observed cell generation times that is offered by
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the various theories discussed. Thus, in the age-time representation, it is natural to
specify the age at which mitosis occurs probabilistically. Then cells have no memory
of the generation time of their parents. In the maturity-time representation, mitosis
always occurs at the same maturity level. A possible reason that cells have variable
generation times is that the population is heterogeneous with respect to cell matura-
tion velocities. In that case the cells may remember the maturation velocity of their
parents. A third point of view is that cells have different effective maturation veloci-
ties which are randomly determined as in the theory of Stuart and Merkle. In that
theory, cells have no precise memory of the maturation velocity of their parents,
but the mean maturation velocity of the population remains always the same.
Probably none of these theories is exactly right, and ideally one would like to have
a more fundamental theory in terms of the biochemical variables which make up
the life process. In the absence of such a theory, however, one or another of the
representations in terms of age or maturation may be more useful in describing
kinetic aspects of cell populations.

In section III, a solution of the equations is presented for the case when the
maturation velocity and the cell loss due to death or disappearance are functions of
maturation level only. This solution is "physically" appealing in that the contribu-
tion of different generations is readily identifiable.

In order to illustrate the application of the two alternate representations to data
obtained by Prescott (7) concerning the variable generation times of a population
of Tetrahymena geleii HS cells, this same problem is solved explicitly in section IV,
firstly with the age-time formalism, and secondly with the maturity-time formalism.
The maturity-time formulation in the simplified version presented could be adapted
so as to be presented completely within the framework of the age-time formalism.
Even so, it would represent a different conceptual approach to the understanding of
the experiments of Prescott. This problem was already treated by Stuart and Merkle
(6). The different predictions made by each theory concerning the population growth
are indicated. Such differences may serve as a test as to which formulation is more
applicable for a given experimental situation.

In section V, comparison is made between the observed population growth of a
number of Tetrahymena geleii HS cells under uniform conditions, and the predic-
tions of the theories of the age-time representation, the maturity-time representa-
tion, and of Stuart and Merkle. In the maturity-time representation, the observed
generation time distribution determines the theoretically postulated distribution
directly. In the age-time formalism it determines the probability per unit time of
mitosis. The prediction of the maturity-time representation is most closely in accord
with Prescott's observations, and therefore the concept of memory of the generation
time persisting from parent to offspring for several generations is supported. The
predictions of the age-time representation and the Stuart-Merkle theory indicate a
population growth that retains its synchrony to a greater degree than indicated by
the data.
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II. FORMULATION

Consider a population of living organisms which we shall take to be cells. The cells
have a definite degree of maturation which increases with time but is variable from
cell to cell.' At the point of maximum maturation they are generally assumed to
undergo mitosis when p (usually 2) new daughter cells are produced from the old
cell. The time is denoted by the variable t, and the degree of maturation is denoted
by the variable Is. The population is to be described by the cell density function n(,u,
t) where n(,u, t) dM represents the number of cells in the maturity interval ,i to Iu + d,
at time t. We assume that

n(,u + Ati, t + At) [A + av A/t] = nG,t)(l-XAt)A . (1)

This equation expresses the assumption that the number of cells of maturity ,u + Ais
at time t + At equals the number of cells that have matured from an earlier level ,u
at time t less the number of cells that have been lost. The latter number is assumed to
be proportional to n and the time interval At, with proportionality factor X, i.e. the
fractional loss is XAt. The bracketed expression on the left of equation 1 expresses the
dilatation of the maturation element As which takes place during the time interval
At. Here v = d,/dt is the time rate of change of maturity for cells of maturity ,u at
time t. If we divide equation 1 by AtAA. and take the limit as At and Au approach
zero, there results the following equation for n(,u, t):

an + a (vn) = -Xn. (2)at a,.A
This equation must be supplemented by an equation which specifies v which we shall
call the "velocity of maturation." Thus, let

v = v(,u, t,,j) (3)

This expresses the explicit functional dependence of v. Here ,3 is a vector which
represents the totality of parameters which can affect the velocity such as tempera-
ture, light, environmental nutrients, pH, etc. In usual biological circumstances, such
quantities may be expected to depend on the time and perhaps on ,u. It is also possible
that v depends on n. If v were subject to stochastic variation, then this property could
likewise be introduced into equation 3.

Equations 2 and 3 can be expected to possess a unique solution when supple-
mented by a boundary condition which specifies n(O, t), or the manner in which cells
are born, and an initial condition which specifies n(,u, 0) the initial maturation dis-
tribution.

1 The possibility of utilizing a maturity-time description of a cell population was first pointed out to
the author by Joseph B. Keller in private conversation.

S. I. RUBINOW Maturity-Time Representation for Cell Populations 1057



By level of maturity is meant the various stages in the growth of the cell such
as birth, onset of DNA synthesis, onset of mitosis, etc. These may or may not be
readily observable. In fact it is difficult to say in what manner the maturity level of a
cell should be determined. For bacterial cells such as E. coli in which DNA syn-
thesis continues from the moment of birth, the amount of DNA in the cell could be
utilized as a measure of cell maturity. Or , could simply be considered to represent
the amount of DNA in the cell. However, for many cells in which DNA synthesis is
only a portion of the life cycle, such a measure is not completely satisfactory. Thus,
at the present time even the dimensions of , must be left unspecified. Another possi-
bility is to let ,u represent cell volume. In fact, the possibility of describing cell popu-
lations in terms of their volume distribution initially stimulated the work of Scher-
baum and Rasch. More recently, Bell and Anderson (8) have proposed a cell density
function which depends on volume, age, and time. The utilization of additional in-
ternal variables to describe the state of a cell population has also been suggested by
Oldfield (9) and others (10).

If v is a constant, then ,u is a linear function of the time. In that case, the time may
sensibly be used as an indicator of maturity level for a given cell. Then , would be
measured in units of the time and could be called the "age" of the cell.
More formally, we could change variables by setting u = va, where a is the age vari-
able, and v is a constant. This is equivalent to setting v = 1 in equation 2. However,
if v is not a constant, or if the cell population is not homogeneous, so that v varies
among the different members of the population even though it is constant for any
given member, then age and maturation are not equivalent variables. In such a case,
only observation of intrinsic cellular properties is a true measure of maturation
level. The variable ,u then represents "cytological age," and is quite distinct from
"chronological age" which is duration of time measured from the moment of birth.
Scherbaum and Rasch (1) originally introduced the equation for the cell density

function which depends on age and time. Formally, their equation is the same as
equation 2 with the age variable a replacing the maturity variable ,Z, v = 1, and X =
0. This idea was developed further by von Foerster (2), who also pointed out the
necessity of including a loss term -Xn on the right-hand side of the equation. The
solution and properties of von Foerster's equation have been discussed extensively
by Trucco (3, 4) and Nooney (5).

Because of the formal similarity between von Foerster's equation and equations 2
and 3, it is important to understand some of the basic differences between the age-
time description (von Foerster's equation) and the maturity-time description pre-
sented here. For example, in the von Foerster equation, the function X takes into
account loss of cells due to mitosis as well as cell death. Only in the case of a so-called
"equivivant" population for which all cells undergo mitosis at the same age can the
loss due to mitosis be removed from X and accounted for by means of a boundary
condition. In the maturity-time description, by contrast, the term X represents cell
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loss due to death or disappearance only. Since mitosis is assumed to always take
place at the maximum value of the maturity variable, its effect is always represented
by means of a boundary condition. This difference in mathematical structure leads
to different formal solutions to the same problem. Of course these become equivalent
when v is constant for all cells.

In addition, in attempting to comprehend a cell population which has a variable
generation time by means of the alternate representations for the cell density func-
tion, one is led in a natural way to making different assumptions regarding the
underlying biological mechanism of cell variability. Thus, to account for the ob-
served variability of cell generation times in a population which is maintained under
constant environmental conditions, the age-time representation introduces a mitotic
loss factor which is age dependent. Since each generation is subject to the same
probabilistic rule govening mitosis, such a description asserts that each new cell has
no memory of the generation time of its parent. In the maturity-time representation,
mitosis occurs at a fixed value of the maturity variable. Variability in cell generation
times may be introduced by assuming that the population is heterogeneous, con-
sisting of cells with different generation times. This is equivalent to assigning different
maturation velocities to different cells. Furthermore, if we assume there is no varia-
tion in v following cell division, stochastic or otherwise, then the offspring of each
cell has the same maturation velocity as its parent, i.e. each cell has perfect memory
of the generation time of its parent. Thus, the two representations would make
different predictions about the time evolution of a cell population.
Yet a third point of view is presented by Stuart and Merkle (6). These authors,

too, utilize a cell density function which depends on maturity and time rather than
age and time. They also assume that the cells have variable maturation velocities in
order to account for variations in the observed generation times of a cell population.
The variability about some mean velocity vo is likened to a random walk in the vari-
able jA, whatever the underlying cause. They consequently arrive at a diffusion-trans-
lation equation which in our notation is written as

aln an a2n
dn + vo = D .(4)

Here D is a "diffusion constant" which, together with vo, are parameters which
characterize a given cell population. Of course, a loss term -Xn could also be added
to the right-hand side of equation 4 just as in equation 2, although Stuart and Merkle
did not do so.

This representation is somewhat between that of the two previously discussed
representations: cells have a variable maturation velocity probabilistically deter-
mined about the mean value vo. This means that the effective generation time is
different from one cell to another, even though mitosis always takes place at a fixed
value of ,u. However, there is no memory from one generation to the next of the

S. I. RUBINOW Maturity-Time Representation for Cell Populations 1059



parental generation time. An assumption of this model that is perhaps unattractive
is that variability in the distribution of "effective" velocities is perforce symmetric
about the mean value vo. An additional unsatisfactory feature of the model, recog-
nized by the authors, is that some cells become less and less mature as time pro-
gresses. The differences in the various representations will be discussed further in
section V.

III. A PARTICULAR SOLUTION

It is useful to give the solution to equations 2 and 3 in the special case when v and
X are functions of, only. Let

n(,, 0) = g(,u) (5)

where g(,u) is a prescribed function, and assume that at the maximum maturation
level which we choose to be the value ,u = 1, all cells complete mitosis and give birth
to p new daughter cells. Therefore

n(O, t)v(O) = pn(l, t)v(l). (6)

Then the solution to equations 2, 5, and 6 may be readily obtained in the following
"physical" manner. The method of solution is akin to the "summation method"
(reference 11) in the theory of optics by means of which a ray (incident on a plate,
say) is traced through its multiple reflections and its amplitude determined at each
reflection. Similarly, here we follow the initial cell distribution through succeeding
generations, and correct for the effect of the new births as we go along.
We observe firstly that if we change variables from uA to iq = fo'v-1(p')dj,u, then

equation 2 becomes the von Foerster equation in the variables X and t with an addi-
tional effective loss term (- (Ov/Oa)n) appearing on the right-hand side. Since v is
given explicitly in terms of u, introduce ,u = h(q), the inverse function to q = q(,u). It
follows directly (reference 3) that a formal solution to equation 2 without regard to
either boundary or initial conditions is given by the expression

v(h(b)) P[ In=f t) V
exp -J V'(.')1 ' dpj (7)V(6) L (b)

wheref and b are arbitrary functions of (n - t). The initial generation, which satis-
fies equations 2 and 5 without regard to the boundary condition (equation 6), is
designated as nl(,g, t) and is obtained from equation 7 by settingf(n) = g(h(n)) and
b = -t:

-h t)) I

nA(z, t) = g(h(n-t) ) exp -vGL')X(') d,] . (8)
Thecells reVpent) Ly I Vbd

The cells represented by ni give birth to the second generation n2GiA, t) in accordance
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with equation 6. Thus,

v((i- t) If
1
'XG'(m~ln2(0, t) = pg(h(ri - t)) v(0) Lexp - I v (.A )X ) dl]. (9)

where ni = f1v-'(,A')dii'. To obtain n2(IA, t), we apply to equation 9 the translation
operation t -* t - X and multiply the result by v(O)v-'(,u) exp [- fo'v-P1(')X(,'\) d,u']
which takes account of the presence of the terms (cv/01A)n and Xn in equation 2 with-
out altering the birth condition equation 9. There results

n(u. t) = pg(h(ni + , - t)) v( (rn + - t))

*exp [-f v-1(')/X(,') d;'A- f v (')A\O/) d,IA]. (10)

If we continue in this manner for succeeding generations, the complete solution is
obtained as

00

n(,, t) = E nj(,u, t)
j=l

= g(h(n - t)) v( v(M t) ) exp [- v-'(.u')X(l) d

+ p 'g(h((j - l)Xi + 7-1t)) v(h(( - )rn + -t))
j=2 v(MA)

*exp -J v (u')X(u ) d,u
-(1-2) f1 v1(~')Xi(') ds,' -fdA)XV-'('A() dy]( (1)

Note that g(x) is defined only in the interval (0, 1) and is to be taken to be zero out-
side this interval. Therefore, at any given , and t, only one term is nonzero in the
series in equation 11. That is to say, at any time and for a given maturation level,
only one generation can be observed; at any time and for all values of,u, two genera-
tions at most are observable. In the particular case when v is a constant, equation 2
becomes essentially the same as von Foerster's equation and the solution equation
11 simplifies to

n(u, t) = nj(3u, t) = g(u- Vt) exp [v-1 f ( ') dA

4 E pj-lg ( -1 + vt ) exp v-l X ( ) d,A
j=2 -j-i+p- t

-(j- 2)v'1 XO(s') d/L'- v-f X( ') di'] (12)
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Equation 12 is an obvious generalization of Trucco's solution (reference 4) of the
von Foerster equation for the problem of an equivivant population with X = 0, and
is also implicitly contained in his general solution (reference 3).

IV. APPLICATION TO A CELL POPULATION WITH
VARIABLE GENERATION TIME

Prescott (7) has measured the generation times of a population of Tetrahymena
geleii HS cells under uniform conditions. The observed generation times of 766 cells
is shown in Fig. 1. The total observed population as a function of time of 50 cells
which at t = 0 are newborn is shown in Fig. 2. It should be noted in Fig. 1 that the
generation times appear to be skewed to the right so that they are not symmetric
about the mean value as required by the Stuart-Merkle theory.

40

Ntu 1 - (-r- 1)'exp [a(T-)to F, Ci + 1)

III min
t/to

30 (Vi-I)to

r ~~~ ~ ~ ~ ~~~~ ~N 7766v = 5.318
c 0 ~~~~~~~~~~~~~*Dotaof Prescott

E

20

E

loLt0~~~~~~~~~

80 t 90 100 110 120 130 140 150
to Generation time, min

FIGURE 1 The data of Prescott (7) for the flux of cells of the HS strain of Tetrahymena
geleii entering mitosis, as a function of time. The cells were grown under uniform conditions.
All the cells are of age zero at time zero. The mean generation time is =I 111 min. The
gamma-distribution was constrained to have the mean generation time t while the value of
to was arbitrarily chosen to be 85 min. The value of v was determined by the method of least
squares to fit the data.
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Stuart and Merkle treated this problem theoretically according to equation 4.
They presented graphically the total population as a function of time and this is
shown in Fig. 5b. The quantities vo and D were determined by least-square fitting to
Prescott's data as given in Fig. 1. In order to demonstrate in a concrete manner the
differences in the various theories, we shall solve this same problem first in the age-
time representation and next in the maturity-time representation of section II.

16-

8-

N (t) 4
No

2 -

to= 85 min

1 2 3 4 5 6
tIto

FIGuRE 2 The data of Prescott (7) for the growth in population of an initially synchronized
group of 50 cells of Tetrahymena geleii HS. The cells were grown under uniform conditions.
A state of asynchronous growth appears to be rapidly reached within a few generations. The
solid curve is the theoretically predicted growth curve for such a population in the age-time
representation.

To represent Prescott's results from the standpoint of the age-time representation,
we solve the von Foerster equation

an + an =-Xn (13)

subject to the intial condition

n(a, 0) = NoS(a), (14)

where b(a) is the Dirac delta function, and No is the total number of cells which
constitute the initial population. This initial condition expresses the fact that there
are No cells of age zero at t = 0, in accordance with the manner in which the data
were obtained. The age variable a is assumed to vary from 0 to X . The loss function
X is assumed to consist of two parts: one part m due to mitosis, and a remainder due
to other causes. The inclusion of mitosis as a cause of cell loss accounts for the vari-
ability in observed generation times. In Prescott's experiment, mitosis is the only
cause of cell loss so that X = m.

Cell birth is described by the boundary condition
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n(O,t) = 2f m(a)n(a,t)da, (15)

in which it is assumed that each cell in mitosis produces two daughters. The solution
to equations 13-15 is readily obtained by the scheme described in the previous sec-
tion. The result is

00A

n(a, t) = Z ni(a, t),

ni(a, t) = No6(a - t) exp[-f m(t) d#], (16)

n,(a, t) = 2 f y(G)nj_i(a, t - t) dn, j = 2, 3, 4, ...

where

y(t) = m(t) exp [-I m(t) d]. (17)

In equation 16, the first term ni(a, t) represents the contribution of the initial genera-
tion, the second term represents the contribution of the second generation, and so
forth.
The number of cells which enter mitosis per unit time at any time t will be desig-

nated by Nm(t) and is given by the expression

Nm(t) = f m(a)n(a, t) da. (18)

The number of cells of the initial generation entering mitosis per unit time is Nmi(t)
and is obtained by substituting n (a, t) as given by equation 16 into equation 18, viz.,

Nmi(t) = Noy(t). (19)

If Nmi(t) is considered as experimentally determined by Fig. 1, we may utilize equa-
tions 17 and 19 to infer the function m(t). Thus, by integrating equation
19, exp [-fotm(Q) dt] and therefore m(t) is easily found. The result is

Nml(t)
No- Nml(t') dt' (20)

By integrating n(a, t) for all ages, we find from equation 16 the total population at
any time t:
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N(t) = f n(a, t) da = ZNj(t),o ~~~~j=1

N1(t) = No exp [-t m(t) d (21)

Nj(t) = 2] Nj_l(t - q)y(r)dr, j = 2,3,4, .

We shall now solve this same problem by assuming that the observed variability
in generation times is caused by an entirely different mechanism: the population con-
sists of cells with variable maturation velocities. This concept has been utilized (12,
13) to explain curves of labeled mitoses that have been observed. As previously
emphasized, the calculation that follows is equivalent to a calculation that utilizes
the age-time formalism with X = 0, a distribution of equivivant subpopulations,
and a boundary condition to represent mitosis for each subpopulation. However, we
shall not present it within the framework of the von Foerster equation partly be-
cause we wish to illustrate the maturity-time formalism and partly because we be-
lieve that it is useful conceptually and suggestive of an underlying biological mecha-
nism to consider cells with variable generation times as having variable maturation
velocities. Furthermore, a calculation based on the age-time formalism, unlike the
following presentation, would preclude a possible extended treatment in which v
is a variable function of maturation level for a given cell.
We shall utilize the theory presented in section II and assume that

n(,u, t) = n,,(M, t) dv, (22)

where n,(IA, t) dv is that portion of the population density that is to be found with
maturation velocities between v and v + dv. The function n, is assumed to satisfy
equation 2 with v constant and X zero. The completion of mitosis occurs at the maxi-
mum maturity level Iu = 1. The result of mitosis is represented by the boundary con-
dition

n,(O, t) = 2n(1, t). (23)

The initial condition is given by

n,(,, 0) = Now(v)8(A) (24)

where w(v) is the fractional density of the total initial population No which have
velocities between v and v + dv. Obviously, w(v) satisfied the normalization condi-
tion

f w(v) dv = 1. (25)
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It follows from equations 22, 24, and 25 that

n(,, 0) = No6(#) (26)

which is similar to equation 14, the analogous condition for the solution via the von
Foerster equation. However, it is to be noted that both the equation to be solved
and the boundary condition are different and simpler than in the von Foerster case.
The solution to equations 2, 23, and 24 is given by equation 12 with X = 0, p = 2,
and g(,A) = Now(v)5(A), or,

00

nv(,u, t) = Now(v) E 2'-'5(j -1 + JA - Vt). (27)
j=1

The number of cells dividing in the time interval t to t + dt is Nm(t) dt where
Nm(t) is defined by

Nm(t) = f vn,(1,t) dv. (28)

In particular, the number of cells of the first generation observed dividing per unit
time is obtained from equations 27 and 28 as

Nml(t) = N w 1 (29)

Again, if we think of Nmi(t) as experimentally determined, then equation 29 de-
termines the weighting function w directly. Comparison with equation 19 makes
clear the difference in interpretation of the experimental results which is presented
by the two points of view.
By substituting equation 27 into 22 we obtain the complete solution

co 00 2j-1

n(u, t) = >nj(,., t) = No Z w (
I +J (30)

=1t \t /

A further integration over A yields the following expression for the total population
as a function of time,

co 00 rilt
N(t) = , Nj(t) = No E 2j-1 w(t) di. (31)

j-1 j=1 (j-1)/t

The jth term in the sum is identifiable as the contribution to the total population at
time t of the jth generation, Nj(t). For early times, it can be seen from the integra-
tion limits that the contribution made by later generations arises from cells with
very large maturation velocities.
An alternative and perhaps intuitively clearer point of view is to think of the total
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population as being made up of cells with different generation times rather than
different maturation velocities. Thus if we set T = l/v, then T may be called the
generation time of a cell population whose velocity of maturation is v. The cell
population as a function of generation times is represented by the distribution func-
tion u(T) in place of w(v). Instead of equation 22 we write

co

n(yI, t) = f nT(iu, t) dT. (32)

The function nTT(M, t) satisfies equation 2 with v constant and X = 0, and the bound-
ary condition (equation 23 with the subscript v replaced by T). The initial condi-
tion becomes

nfT(I., 0) = Nou(T)5(M), (33)

where fJ u(T) dT = 1. Then, as in equation 27,

nT( IA t) = Nou(T) ,2- ( 1+,uT) (34)

The number of cells dividing per unit time becomes

Nm(t) = f nT((l,t) dT. (35)

Substituting equation 34 into 35 and utilizing the relation 6[1- t/T)]= TS(T -t)
there is obtained the following expression for the number of first generation cells
completing mitosis per unit time.

Nmi(t) = Nou(t). (36)

This shows that the distribution function u is directly measured by Nmj(t)/No. The
above relation is easier to comprehend than the less transparent relation for the dis-
tribution function w given by equation 29. By comparing these two expressions it is
seen that u(T) = v2w(v).
From equations 32 and 34 we obtain

n(,u, t) = Znj(s, t) = No E 2j-1 (j t+ 2U j I (37)
3=1

and

Xccc ptl(j-l)
N(t) = Z Nj(t) = NoE 2'' J u(s) di. (38)

j=1 t/j

It should be emphasized that the results which arise from utilizing a generation
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time distribution are completely equivalent to those which arise from utilizing a
maturation velocity distribution. The generation time distribution has been intro-
duced merely to facilitate the comprehension of the latter.
An important consequence of equation 38 is that the greatest contribution to

N(t) arises from, ceteris paribus, those cells with the shortest generation time. Such
cells ultimately dominate the population. For example, imagine that initially the
population consists of one cell with generation time To/2 and 103 cells with genera-
tion time To. This means that Nou(T) = (T -To/2) + 1036(T - To) where No =
1001. From equation 38 it may be seen that ten generations later (t = lOT0 +), the
two types of cell have approximately the same number, and in another ten genera-
tions the fast growing cells outnumber the slow growing cells by a factor of 103.
Simultaneously the mean generation time decreases monotonically, approaching
the value T0/2.

V. COMPARISON WITH THE DATA OF PRESCOTT

To compare the two theories with the observations of Tetrahymena geleii HS cells
under uniform conditions which were made by Prescott (7), we first determine a con-
tinuous mathematical representation of Prescott's data for the flux of cells per unit
time completing mitosis which we have called Nmi(t) (see Fig. 1). We assume that
this can be represented by a gamma-distribution:

v+I

Nmi(t) = No a (r - )' exp [a-a(r )] (39)

Such a choice is suggested theoretically by a particular stochastic birth process
postulated by Kendall (14) and empirically by a statistical study of the generation
times of various kinds of bacteria made by Powell (15). Here we have introduced the
nondimensional time r = t/to. The quantities to, a, v are parameters to be deter-
mined. We set to = 85 min more or less arbitrarily, but this value is not inconsistent
with the data. We require the mean generation time defined by

tNN.,Nm(t)t dt (40)

to have the value found by Prescott, t = 111 min. Substituting equation 39 into 40,
there results the expression

t =t(o + + ) (41)

which is a constraint on the parameters. Utilizing equation 41 to eliminate a from
equation 39, we are left with the single parameter v to determine. Its value as de-
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termined by the method of least squares applied to the data shown in Fig. I is v =
5.318. The resulting gamma-distribution is also shown in Fig. 1.

Equation 39 when combined with 20 determines m(t), the fractional probability
per unit time that a cell undergoes mitosis:

0
m(t) = y(t)r(v + 1)

{r[v + 1, a('r - 1)]

T < 1,

r > 1. (42)

Here y(t) is defined by equations 19 and 39, r as a function of one argument is the
complete gamma function, and r as a function of two arguments is the incomplete

Asymptote: to m(t) a

20

15-

to m (t)

10

5-

1 2 3 4
t/to

FIGURE 3 The function m(t), which is the nondimensional probability per unit time that a
cell undergoes mitosis, in the age-time representation. This function is determined by
Nm(t), the solid curve shown in Fig. 1. The asymptotic value of tom(t) is a = 20.545.

S. I. RuBINow Maturity-Time Representation for Cell Populations 1069



gamma function. The nondimensional form of m(t) is shown plotted in Fig. 3. The
time here is more properly thought of as age, i.e. time from moment of birth of a
particular cell. As indicated in the figure, when t -* x, m approaches the limiting
value a/to .

Actually, the function m(t) is not required for the subsequent calculation of N(t).
As is seen by equation 21, it is only necessary to know y(t) and the function N1(t)
which is given by the expression

S 1 T<l1,
N1(t) = No r[v + l,a(r - 1)] > 1. (43)

16 .,.

N(ft)
.4

2-

2 1 2 3 4 S 6

FiGuRE 4. The total population as a function of time that is theoretically predicted by the
maturity-time representation (shown as a solid line). The data of Prescott are repeated
from Fig. 2.

The total population as a function of time as determined by equation 21 is shown
as the solid line in Fig. 2. The agreement of this curve with the experimental data
of Prescott can not be said to be too good. Therefore, the concept that an individual
cell has no memory of the generation time of its parent but is subject to the same
probability of mitosis as a function of age as every other cell is not supported.
We shall now apply the theoretical results of the maturity-time model discussed in

the previous section to Prescott's data. In doing so we are naturally assuming that
the initial cell population consists of a set of subpopulations each with different
maturation velocities. These velocities are assumed to persist for a given cell line. If
these assumptions represent the true state of the cells, one could validly question
how such a population could arise, in view of the natural dominance that cells with
the shortest generation time have over all others. A possible answer to this question
is that the real cell population is a homogeneous one with a variety of maturation
velocities which are the result of random variation, but on a time scale which is large
compared to a generation time. Thus, over a few generations there would be per-
sistence of memory of parental generation time but this memory would gradually
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- Maturity-time theory
---Age-time theory

IX/
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,/D

1 2 3 4 5 6
t/to

FIGuRE 5a. The theoretical growth curves in the age-time and maturity-time representa-
tions are compared. Note the greater degree of synchrony that is retained by the cells accord-
ing to the age-time theory.

32

16

8

N(t)

No
4

Maturity-time theory
Stuart-Merkle theory

1 2 3 4 5
t/to

FaGuRE 5b The theoretical growth curve according to the Stuart-Merkle theory (taken
from reference 6) as compared to the growth curve for the maturity-time representation. The
former curve is very similar to that of the age-time representation.

disappear on a longer time scale. Then the model may be considered to be an ap-
proximate treatment of such a homogeneous population which is only valid for a few
generations. Another possibility is that, in the real cell population, the offspring of
all cells with a given generation time have random generations which have a uni-
modal continuous distribution about a mean value which is the same as that of the
parent generation. In such a case, too, the model presented may be expected to be a
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simple yet more or less reasonable approximation to reality over a time span of a few
generations or more.

In the maturity-time representation, Nmi(t) as given phenomenologically by equa-
tion 39 determines the generation time distribution function u(t), according to equa-
tion 36. With u(t) known, the total population as a function of time N(t) is obtained
by means of equation 38. It is shown plotted as a function of time in Fig. 4. The data
of Prescott as given in Fig. 2 are repeated here. These data appear to agree very well
with the prediction of the theory. Note especially the rapid approach of the curve to
what is nearly a straight line, i.e. the rapid loss of synchrony of the total population.
Hence we conclude that these cells by and large do have memory of the generation

10 _

8 Maturity-time theory i 4
Age-time theory

6

Nj (t)

4

j-2

j21- ' ' - l' , , \\1

1
0 1 2 3 4 5 6

tIto

FIGURE 6 A comparison of the individual generation populations Nj(t) according to the
age-time representation, equation 20 and the maturity-time representation, equation 37.
The function N1(t) is exactly the same in both theories. Note that for the maturity-time
theory, the population for the casej = 4 shows more dispersion about the mean value than
does the population for the age-time theory.

time of their parents, fast (slow) growing cells arising from fast (slow) growing
parents.

This conclusion does not accord with that of Prescott, who considered the cells to
be genetically equivalent. He suggested that the variation in generation times repre-
sents inequalities in the initial configuration of sister cells at birth: differences in the
number of mitochondria, microsomes, etc., or perhaps cell weight. He supports this
conclusion by data (reference 7, Table I) which indicates that rarely do two sister
cells have the same generation time, although their generation times are highly cor-
related, according to Powell (15). Nevertheless, the agreement between theory and
experiment shown in Fig. 4 suggests that there is in fact a high degree of correlation
between the generation times of parent and offspring in these cells. This conclusion is
also supported by the investigation by Hughes (16) of the generation times of suc-
cessive generations of E. coli cells. He found that the growth rate of these bacteria is
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inherited, by selecting fast and slow growing cells and observing the growth rate of
their offspring. It should also be mentioned that Powell (17) found a positive asso-
ciation between the generation times of bacterial cells of various kinds which were
related by descent, although the association was surprisingly weak between parent
and daughter cells.
The two theoretical curves for N(t) are repeated for comparison purposes in Fig.

5a. It is perhaps a little surprising that N(t) in the age-time description is more "step-
like," and therefore the population is more synchronous, than in the maturity-time
description. The physical explanation for this is that the individual generations in the
age-time description maintain the same average generation time, while in the ma-
turity-time description, they do not. This point is also illustrated in Fig. 6, which
shows the time dependence of some of the individual generations in the two repre-
sentations.

Finally, we reproduce the theoretical curve for the total population as a function
of time according to the theory of Stuart and Merkle, as taken from reference 6. This
is shown in Fig. 5b, where we repeat for comparison the theoretical curve according
to the maturity-time representation. It is noteworthy that the result of the Stuart-
Merkle theory is virtually the same as that of the age-time description. Here, too,
the fact that all cells according to the theory have the same average generation time
produces a rather synchronized population in the early generations.
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progress.
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