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AssRAcr A theorem is presented which permits a determination of the amplitude
of the signal generated by the passage of a particle of arbitrary shape through a
Coulter counter. The theorem is applied to particles of two shapes, a sphere and a
prolate spheroid. For the sphere the signal is directly proportional to the volume of
the particle. For the spheroid the result is a complicated function of the shape. Two
spheroids of the same volume but different shapes will give different signals.

INTRODUCTION

A convenient method for counting and sizing particles in suspension relies on the
difference in conductivity between the particles and the suspending fluid. We have
idealized in Fig. 1 a device manufactured by Coulter Electronics, Inc., Hialeah, Fla.

FIGURE 1

The conducting fluid is being pumped from left to right. As a particle enters the
narrow tube the resistance between the electrodes is changed and a deflection is ob-
served on the meter. So long as the number density of the particles in suspension
multiplied by the volume of the tube is much less than one, the ability of the device
to act as a counter is reliable and straightforward.

It would also be convenient if one could infer the size of the particle from the
magnitude of the deflection (1). It is this question to which we address ourselves.
We first derive a general theorem (valid to first order in the ratio of the size of the
particle to the size of the tube) for the change in resistance due to a particle of arbi-
trary shape in the tube. As an application of the theorem we will consider two
particle shapes, a sphere and a prolate spheroid.

ANALYSIS

As an approximate boundary value problem we seek a potential function +(x, y, z)
such that

V24 = inside the tube and outside the particle
cl/cn = 0 on the side of the tube and on the surface of the particle. (We

have assumed for simplicity that the particle is nonconducting.)
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FiouRE 1 Idealization of the Coulter counter.

And

= V on the surface z = -1/2

V = - V on the surface z = 1/2.

V represents the potential drop across the tube, I the length of the tube, and a04/On
the normal derivative of 4. The geometry is illustrated in Fig. 2.

FIGURE 2

We now employ a device used by Rayleigh (2) to solve an equivalent problem.
For any functions 4 and iV we have from Green's theorem that

t (+v2 0- 72,0) dr = -(+ an dSnJ 7 J ~~~~~~~~Ocn Oln '
where the surface integral is over the closed surface bounding the volume r. The
normal is the outward normal to this surface. We choose 4 to be our electrostatic
potential function and 4 to be the z coordinate. Both are solutions of Laplace's
equation so that

f (%nz )_ Z Tn dS=O. (1)

Now cz/ln = 0 on the sides of the tube, -1 on the left end, and + 1 on the right
end of the tube. 04/On is zero on the sides of the tube, on the particle surface, -E
on the left end of the tube, and +E on the right end. Observing that the current
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z
FIGURE 2 Geometry of the boundary
value problem.

y

density J = aE (a is the conductivity of the fluid) and that the total current I =
f J . dS = ao f E .dS where the integral is performed over either end of the tube, we
have from equation 1

- YA + I + a+zbdS=O, (2)

where the integral is performed over the particle surface only. The normal is directed
toward the interior of the particle. If we set Ro = I/aA (the resistance of the fluid
in the tube in the absence of the particle), we have

(R-Ro)IAo = a dS, (3).'an
where we have used Ohm's law V = IR. We now assume that the particle is small
so that R - Ro is small (say of order e). The difference between I and Io (Io
V/RY) will also be small so that we have

(R - Ro)I = (R - Ro)Io + O(e0)
where Q(e2) means: of order i2.
On the right-hand side of equation 3, we approximate 4 by to where oo is the

solution of the boundary value problem

V2ko = 0,

aclo/an = 0 on the surface of the particle,
and

0--Eoz as r -*o.

Eo is the uniform field that would exist inside the tube in the absence of the particle.
Eo and I0 are related by the following equation:

Io = fJo*dS = JoA = oEoA.
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We may write equation 3, correct to first order in c,

R - Ro cE n (4)
Ro rEo

where r = Al is the volume of the tube. From equation 4 we can determine the
change in resistance for a particle of arbitrary shape in the tube, provided we can
calculate 4)0, the potential field about the particle in a uniform field, Eo.

APPLICATIONS

We shall illustrate equation 4 with two examples. Consider first a sphere of radius a.
Then

- -Eo(CosO +
a cos4)o~~~okrc~2r2/

and

az d r cosO@z -ar = -cosOAn ar
so that

wi a dS 3 Eoa cos2O 2ra2 sinO dO

Ro EoT EoT

27ra3 _ 3 %7ra3
T 2 IrJ

That is, the fractional change in resistance is M the ratio of the volumes. This result
was first derived by H. A. Lorentz (3) and later, more rigorously, by Rayleigh (2).
We next consider a prolate spheroid. We may construct o as follows. Two linearly

independent solutions of Laplace's equation are

art

and

where a, n, and t are defined in Morse and Feshbach's book (4). The surface of the
spheroid is defined by t = to. Now since z = 2(ant), the solution of Laplace's
equation for whicho --Eoz and r -X and cloo/an = (l/ht)(aoo/at) = 0 on

t = to is

0o = Eo
I
an [t- A(to)t In {t _ l + 2A(to)]
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where A(s) is defined by the equation

I -A (t) dJ n t + ]= o.

We have then

:Ro ) (°' hedt (2 10)hqbhd
a3ir 1

3T 2to Into + 1
to- 1

Employing the more customary parameterization of the ellipsoid in terms of its
semiminor axis b and semimajor axis c we have

a=2 (6)
and

C//Cc /,
so that equatiQns 5 and 6 determine the fractional change in resistance in terms of
the minor and major axes. Since the volume of a prolate spheroid (t = to) is

S
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FIGURE 3 Variation in the shape factor as a function of r holding the volume fixed.
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we see that the change in resistance is not proportional to the ratio of the volumes of
the particle and tube as was the case for the sphere but depends on the shape of the
particle.
The magnitude of this effect is best illustrated by expressing the fractional change

in resistance in terms of 'T, and to thus:

R-R o Tp 2
Ro Ir 2I2_ -l)lnt°+_l

=PS

where S is the "shape factor" and defined by the factor multiplying T,/r. If we set
r = b/c, the ratio of the semiminor to the semimajor axis, we have from equation 6

In Fig. 3 we have plotted S as a function of r holding r, constant.

FIGURE III

The curve is nearly linear near r = 1 (a sphere) with a slope of 0.6. To let r -O0
holding rT constant, c must approach infinity (and b -- 0). When c becomes com-
parable to the size of the tube the approximation employed breaks down.

We are greatly indebted to Professor Ellis Kempner for suggesting this problem and for many valu-
able discussions.
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