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ABSTRACT A stochastic theory of cell kinetics has been developed based on a
realistic model of cell proliferation. A characteristic transit time, 7; , has been as-
signed to each of the four states (G, S, G2, M) of the cell cycle. The actual transit
time, ¢;, for any cell is represented by a distribution around I; with a variance
o 2. Analytic and computer formulations have been used to describe the time de-
velopment of such characteristics as age distribution, labeling experiments, and
response to perturbations of the system by, for example, irradiation and tempera-
ture. The decay of synchrony is analyzed in detail and is shown to proceed as a
damped wave. From the first few peaks of the synchrony decay one can obtain the
distribution function for the cell cycle time. The later peaks decay exponentially
with a characteristic decay constant, A\, which depends only on the average cell-
cycle time, 7, and the associated variance. It is shown that the system, upon any
sudden disturbance, approaches new ‘“equilibrium” proliferation characteristics
via damped periodic transients, the damping being characterized by N. Thus, the
response time of the system, T/\, is as basic a parameter of the system as the cell-
cycle time.

I. INTRODUCTION

The experiments in which Howard and Pelc (1) studied the schedule of DNA syn-
thesis in plant cells initiated a series of investigations into the manner in which the
cell cycle is divided into functional periods. The development of labeling methods
(2, 3) stimulated the use of mathematical models. Quastler in particular emphasized
the importance of models (4, 5) in understanding the cell kinetics of renewal systems.

Since changes in parameters characterizing the various parts of the cycle produce
complex effects in experimental observations, it is not surprising that the use of
mathematical models has become necessary for the interpretation of results. What
at first is surprising, in view of the extensive literature in the area, is the fact that
many of the more recent investigators have not made use of earlier theoretical
work. This work pertains to populations, with application both in genetics and
actuarial problems, and investigations of problems in industrial replacement. The
exponential age distribution for example, which has been used to obtain the per-
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centages of a cell population in a given state (6), dates back at least to the first
decade of this century (7-10). The decaying wave phenomena observed in various
experiments involving synchronized populations of cells was anticipated by the
work of Lotka on the time development of birthrate of a human population starting
with ancestors born on the same date. (See reference 11 for a good review summa-
rizing many early results.)

A large part of the development of the mathematical theory of populations seems
to have been due to Lotka. The central tool used in these investigations is the re-
newal equation. This is an integral equation giving the average number of indi-
viduals, or alternatively their birthrate at a given time, in terms of a nonlinear in-
tegral equation involving a convolution of the same quantity at earlier times with
the probability density of generation times. Lotka (12) credits Herbelot (13) with
the first use of this equation within the context of the subject of “selfrenewing
aggregates.” The earliest reference Lotka gives to the integral equation is reference
14. Feller’s (15) clear and rigorous mathematical paper, in which he investigates
conditions of validity of the important methods and statements about solutions of
the renewal equation, is very valuable as a guide to the literature written before 1941.

More recently, some underlying probabilistic models which lead to the renewal
equation have been investigated (16-18). From the stochastic point of view one
might for example attempt to calculate the probability of a given cell having n
descendants at time ¢ after it is born. This approach contains more information
than just the average at time ¢, and may be of biological importance when a small
number of cells is considered.

A concept important in the understanding of the cell cycle is the idea that the
physiological age of a given cell is not equivalent to the amount of time since the
cell was born. This idea has been incorporated into a probabilistic theory by Ken-
dall (19), who generalized the birth-and-death process introduced by Feller (20).
Kendall’s approach is to break the life cycle into k independent sequential states
with the probability of a cell which is in a given state at time 7 entering the next
state by time ¢ + dt given by e dt, where X is a constant. The physiological age
of the cell corresponds to the particular one of the k states which it occupies. When
the cell leaves the kth state, it divides into two cells in the first state.

We incorporate the idea of physiological age in our model (defined in section II)
by the use of four states, each with a different and independent probability function
which determines the lifetime in that state. This model is similar to the one used by
Williams (21) to discuss the age distributions of insects. Our ith state of cell growth
corresponds in Williams’ model to the ith instar or immature stage of an insects
life. The age within a state is identified in the present model with the time a cell has
spent in a state.

Another approach taking into consideration the difference between the physio-
logical and chronological age of cells was put forward by Von Foerster (24). In
this method a differential equation is written which expresses the assumption that
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the density of cells of a given physiological age is a function of that age and the
time with respect to some known initial conditions. If a small change in physio-
logical age is equal or proportional to a small change in time, the differential equa-
tion used simply sets the total derivative of the number of cells with respect to time
equal to a biologically determined loss function times the density at the same age
and time (25). The stochastic nature of cell proliferation does not appear as com-
patible with this approach as with others, but many of the asymptotic results are
similar.

In addition to the analytical approaches discussed above, modern computers
allow the numerical investigation of theoretical models of cell kinetics. The strength
of the numerical approach is its capability in handling complicated interactions
without the use of drastic simplifying assumptions. The earliest application (known
to us) of these methods of cell proliferation is a Monte Carlo study by Hoffman,
Metropolis, and Gardiner (26). Others have made use of some of the analytical
models discussed above combined with numerical methods to produce solutions in
cases of experimental interest (28-32).

In the present paper we use both analytical and numerical methods to extend
the theory in a manner suitable for comparison with experiments. For our numerical
work we have developed computer programs utilizing both the Monte Carlo method
and an averaging technique which is more convenient for the study of large popula-
tions. Most of the analytical results are derived using renewal theory. We have
considered in detail useful quantitative formulations for effects such as decay of
synchrony, kinetic behavior of labeled cells, time development of age-in-state and
of waiting time-in-state distributions, asymptotic time dependent characteristics,
and disturbances of the proliferating system.

The computer methods are used to test the domain of validity of various approxi-
mations, and to obtain graphs which display the characteristics of interest for par-
ticular values of the parameters. These methods should be particularly useful for
comparison with experiments where the complexity of the experimental situation
renders an analytic description too cumbersome.

The computer techniques have been particularly useful in enabling us to examine
the response of the system to disturbances. An example of this is the description of
the response of cell proliferation to the sudden change in the characteristic lifetime
of one of the phases. Another example is the behavior of a system during and after
exposure to radiation. We have already used the Monte Carlo technique for a quan-
titative description of cell response to radiation and subsequent recovery. These
results, discussed elsewhere (35), are in agreement with two-dose radiation recovery
experiments.

II. MODEL OF THE PROLIFERATION CYCLE

Before describing the details and the results of our calculations we shall discuss the
general features of the model for the proliferation cycle. This model is designed to
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provide for the fact that the cell cycle can be subdivided into a number, N, of ex-
perimentally distinguishable states. At the present time, the states of interest are
determined by the condition of the cell with respect to DNA synthesis, and mitosis.
In this case, N is four, and the states are G,, S, G;, and M.

Actually the time spent in consecutive states may or may not be independent.
That is, a short-lived parent cell may tend to have long-lived daughters. Indications
of such behavior have been observed (36). In the present investigation, all such cor-
relations are neglected. The transit time of a cell through a given state is considered
to be independent of its history before entering that state.

We are mainly concerned with freely growing cell cultures in generally constant
environment although some sudden disturbances expressed by instantaneous
changes in the parameters were also investigated. The influence of spatially neighbor-
ing cells! is neglected and cell death is not included in the treatment in this paper.
Some interesting biological effects have clearly been neglected and the present in-
vestigation is to be regarded as a theoretical framework with which to sort out the
various complicating effects to be investigated later. The algorithms used for nu-
merical computation will be easy to modify for the purpose of relaxing such re-
strictions as mother-daughter independence. Analytical investigation of such cases
will be guided by numerical work. Geometrical effects will be more novel, and prob-
ably a great deal more difficult to analyze.

With the above restrictions, the mathematical specification of the model is rather
simple. We assign an index i to each of the four states in chronological order. The
index i = 2, for example, indicates the state S. We assume that a density function
Ji(t) can be assigned to each state such that the probability of the transit time for
the ith state having a value in the interval around ¢ is given by fi(?) dt. The prob-
ability density function, f(¢), for the whole cycle is then given by the 4-fold con-
volution of the density functions for the individual states.

Most of the results obtained apply to any regular density function. For some
examples, and particularly for a comparison of numerical and analytical results,
we will often find it convenient to have in mind functions approximating Gaussians?
for our fi(t). We assume that a transit time, 7, , and a variance (o)?, which are iden-
tified with the mean and second moment about the mean respectively for fi(f), can
be assigned to each state. The generation time, or time spent in traversing the com-
plete cycle, then has a mean and variance given by

1_'=_zl:;a 62’—'20:‘2 (1)

1

where equation 1 is independent of the functional form of the f;(¢). If f.(¢) is Gauss-
ian, then f(¢) is also of this form, by the convolution property of Gaussians.

1 The existence of such effects in irradiated cells, for example, has been indicated by Froese (37).
2 Experimental generation times are reasonably well fitted by Gaussian distributions, at least for
some cell lines. See, for example, references 22 and 23.
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The Gaussian approximation for f;(t) cannot be strictly true, since the time spent
in a state must be greater than or equal to zero. Therefore, we require

fi{)=0 t <0 (2)

On most occasions, we use density functions with a coefficient of variation, C. V.,
less than one-third, where

(C V.);E 0'.'/2;'. (3)

In this case condition equation 2 has negligible effect. If fi(#) were a Gaussian for
example, the fraction of the cells not within 3¢ of ¢, , and thus affected by equation 2
is only 0.0026 of the total number traversing the state. When occasionally we make
a numerical computation involving a larger C. V., we use a tailless density, satis-
fying equation 2, but with the parameters ¢ and T actually used for computation
modified according to Appendix I, to give the specified C. V.

III. RENEWAL EQUATIONS

Once f(?) is specified, it has been demonstrated (reference 17) that P(¢), the average
number of cells present at time ¢, given that exactly one cell was present (just born)
at time ¢ = 0, is uniquely determined by the renewal equation,

PO =2 PG — Of@) dr' + (1 = F0), (4)
where
F(t) = ff(t') dr'. (5)
0

If P, cells of age zero were present at ¢ = 0, then the average number present at
time 7 is given by the product P,- P(f). Taking the derivative with respect to time
of equation 4 we obtain the equation for P, the derivative with respect to time of the
average number of cells,

P(t) = f(t) + 2 j; t P(t — t)f(t") dr'. (6)

If we change variables we can write equation 6 in a more convenient form

P(1) = f(O) + 2 fo t P()f(t — t') dt'. (7)

Substitution of the right-hand side of equation 7 for P(t’) inside the integral in 7
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gives
P(t) = f(1) + 2 f fOf =) df

vz [ f PO = O al |5 = Dy ai. (®)

By repeated iteration of this substitution, we obtain

©

P(1) = 2 27 @(1), (9)

n=1

where f® is given by
rom = | P = Oy dr, (1 =2, )
0

Jo = f). (10)

f®™(r) dt is the probability that the sum of the lifetimes of all the ancestors of a cell
in the nth generation® has a value between ¢ and ¢ + dr. Hence, according to the
central limit theorem of probability, f™(f) approaches a Gaussian distribution for
large n, regardless of the form of f(¢), that is

() = g.(t) = Rena®T™ exp [— (¢ — nT)*/2n0"]. (11)

Since we require that f be identically zero for negative argument, the limits of in-
tegration in equation 10 may be extended to minus and plus infinity.

We will interpret P(f) as the rate of increase at time ¢ of the number of cells
present. This interpretation is valid* when the number of cells present in an experi-
ment can be represented closely by a smoothly varying function, P(f). In general,
the requirement for validity is that the number of cells present be large. (A brief
discussion of fluctuations is given in Appendix II.) It is conceptually useful to de-
fine the birthrate, B(?),

B(t) = 2B(%). (12)
Since every time two daughter cells are born exactly one cell is lost, B(t) dt gives

the number of cells in the population born during the interval of time around ¢,
per initial cell, and equation 7 becomes

B(t) =2 ft B(X') + () ft —1)df, >0

B(0) = 1. (13)

? The nth generation is counted starting from the zeroth generation which consists of the cells just
bornats = 0.

*+ The reason for qualifying our remarks is that the actual number (as opposed to the average number)
of cells present changes discontinuously.
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The integrand in equation 13 gives the number of divisions on the average occurring
at time #, due to the cells born at an earlier time #’. The Dirac delta function in the
integrand accounts for the single cell just born at the initial epoch. This formulation
is particularly useful for the discussion of the age distribution.

We can obtain useful quantitative information from equation 9 if we assume, for
example, our Gaussian form for f(¢). Then

f(0) = g(1) = Qmo?) 2 exp [~ - T)*/25%] for t> 0
fr)y =0fort =0. (14)

In analytical approximations it is convenient to replace this truncated Gaussian
by a Gaussian defined for all values of z. The error then incurred in equation 10 is
given by the integral

em(r) = f foo(t)g(t — ¢) dt’, (15)
t
where g,(¢) is defined as a Gaussian over its entire domain. This error is small

provided o/T < 3. Using the convolution property of Gaussians we then have
approximately

PO = 3 218,00, (16)

where g,(?) is given by the right-hand side of equation 11 for all . Integrating equa-
tion 16 we find for the average number of cells per unit cell initially present

PO = 1+ 3 2716,(0), (17)
where
Ga(t) = fo ga(t') dt'. (18)

These are the basic results of the renewal theory which will be used and from which
various approximations will be obtained for comparison with the computer cal-
culations.

IV. NUMERICAL METHODS OF CALCULATION

We have employed two different methods for calculating the time development of
various cell populations within the framework of our model. The first is a Monte
Carlo method in which the life history of each individual cell and its progeny is
followed. The second is a statistical method in which the numbers of cells trans-
ferred from one state to another at a given time is taken as directly proportional to
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the probability of the transfer for cells of the appropriate age. According to the law
of large numbers (38), the average of the fraction of the number transferred should
approach the probability of transfer when the number of cells considered is large.
We are, therefore, considering an average behavior by this method. These methods
are very briefly described below.®

A. Monte Carlo Method

The Monte Carlo method is probably the most direct numerical method of simulat-
ing experiments with proliferating cells. The essential feature of the method is that
we follow a probable or Monte Carlo history of each cell from birth through mitosis.
The method requires a table of appropriately distributed “random’ numbers and a
tabulation scheme which is best described as a vertical list. Each cell is assigned a
line on the list which contains two numbers. The first number gives the time (the
waiting time, see section V-D) at which the cell will enter the state specified by the
second number. A clock time, T,, which is initially zero, is advanced by a time
increment after each cycle of the following operation. Each line on the list is checked
consecutively to determine if the time listed passes the criterion of being less than
or equal to the clock time. If it does not, we proceed to the next line. If the criterion
is met, then a new time is selected for the mth line according to

Tw' = Tm+ tis1 + oinz.

T, is the time we find on the mth line, and z is a random number selected from a
Gaussian distribution of zero mean and unit variance. If it turns out that

(tiy1+ 0ir12) <0

then, in accordance with equation 14, that particular value for z is discarded, and
another selected. If i = 1, 2, 3, we proceed to line (m + 1). If i = 4, before proceed-
ing to the next line, in addition to the previous operation, we create a new line at
the bottom of the list with the same time (7,’) and state (i = 1) as we have just
put on the mth line.

The Monte Carlo method is easy to use and simple to modify. It has a serious
limitation, however, in that deviations from average behavior are large unless the
number of cells considered, and hence the amount of computer memory used, is
large.

B. Age Transfer Method

An iterative procedure which enables one to calculate averages directly and requires
a great deal less storage than the Monte Carlo method was suggested and designed
for us by our colleague, Peter Kemmey. In this method »n locations are assigned to

5 Details may be obtained from BNL Report 12383 (1968).
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each state. The number assigned to the mth location of a given state represents the
number of cells of age mAt, where At is a unit of time short compared to the smallest
t: . If we define

_fit + 1)

T,‘(t, T) = 1—_—m
as the transfer probability density, then T ;67 is the probability that a cell which is of
age ¢ in state i will leave that state in about r additional hours. During a given cycle
the number for each of the n nonzero index locations for each state is multiplied
by T'; evaluated at the appropriate argument for that location. The number which is
in the mth age location of state i is multiplied by T; (mAt, §7/2)ér. During the in-
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FiGUure 1 Comparison of Monte Carlo and age transfer programs in terms of labeled
mitosis, (M*/M, + M*), data for CV. = 0.1. (Initial Monte Carlo population is approxi-
mately 400 cells in log-phase.)
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terval of time 67, P,,; = (T-87): Ny, cells are transferred from the mth age
group of state i to the zeroth age group of state m. N, ; is the average number of
cells of age m in state i before the transfer. Therefore, P, ; is added to the number
which is in the zeroth location of state (i 4 1) and subtracted from N,,;. The re-
sultant of the subtraction is the new N, ;. If i equals four, two times P,,,; is added
to the zeroth location of the first state.

Although ér and Az are conceptually different quantities it is convenient to set
them equal. In our calculation we set 6 = At = 0.05 hr. After the above operation

6
10 I I I I I

o=1 T=10
R,=300, ALL OF AGE
ZERO IN G, AT t=0 -

FTTTH
L LIl

103

102

o] 2 4 6 8 10 I2 14
t/T
FIGURE 2 Cell population, P, and its time derivative, P, vs. /T starting with a synchro-
nous population of agezero in G at t = 0. T = 10, ¢ = 1 (0, : 50, o2 : 0.624, o, : 0.50,
a4 : 0.333).
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is completed for each location, and any desired information is recorded, the number
in every location is advanced into the next older location. The number of locations
is chosen such that the number of cells in the nth location is negligibly small and
may be discarded. The clock time is advanced by At after each of the above cycles.

The accuracy of the numerical methods was checked by allowing a fully syn-
chronized population to desynchronize to log phase and computing the doubling
time. The theoretical doubling times given in equation 37 were reproduced to better
than three significant figures. The asymptotic percentages in the various states given
in equation 61 were also checked and reproduced. A rough comparison was made
of transient phenomena, as calculated by this method, against the Monte Carlo
results. Satisfactory agreement between the methods was obtained as shown in
Fig. 1 for per cent labeled mitosis curves.

V. APPLICATIONS OF THE MODEL

In this section a variety of applications of the model is discussed with the aid of the
results of computer experiments and mathematical analysis using the renewal equa-
tions. The numerical results are checked in many cases against approximate formu-
lae which are also developed in this section. For most of the computer experiments
we have chosen parameters that simulate the behavior of a well-studied line of
Chinese hamster cells (39). For this system we have taken the following transit
times (in hours): #4:1.5, %:6.0, #5:1.5, #:1.0, T = 10. The values of o; were varied
and their values will be indicated for the various computer experiments.

A. Proliferation and Rates of Proliferation Curves

An important feature that a proliferation model must describe is the decay of syn-
chrony for an initially synchronous population. Such results are shown in Fig. 2
(for ¢ = 1) starting with a population of 300 cells synchronized to be of age zero
in G, (just born) at ¢ = 0. In these graphs, P is the number of cells and P = dP/dt
is its time derivative plotted against the reduced proliferation time ¢/T. The well
known “carpeted staircase’” behavior is reproduced with slow approach to log-
phase behavior for ¢ = 1 (and a much faster approach to the asymptotic behavior
as ¢ is increased). Many peaks are seen in the derivatives for o = 1 but only three
true maxima in P exist at ¢ = 2. The final logarithmic slopes are given by

mP__ In2 (lnz)aﬁ]
’d—t‘“"i‘[“’ 7 | (19)

(This relation is derived later in section B.)

We can obtain a convenient approximation for the early maxima in P directly
from the renewal equations of section III. Let us suppose that the C. V. is suffi-
ciently small that «™ given by equation 15 is negligible in comparison to the nth
term of equation 15. For small n there is not much overlap between the terms of
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equation 16. Hence when

\/ﬁa &« nT

and ¢ is contained in the interval
nT — 24/ne £ t £ nT + 2+/no,
which places P(f) near a maximum, then we have the approximations
P(1) = Pq2"g.(1) (20)
and
P() & P21 + Ga(1)] (21)

where P, is the number of cells of age zero present at ¢t = 0. One can also approxi-
mate P and P between the peaks (for similar conditions on ¢, T and ) by placing
t in the interval between #nT and (n + 1)7. Then

P(t) = Po[2+'ga(2) + 27gni?] (22)
and when there is little overlap
P(t) = Py2~. (23)

For direct comparison with the maxima obtained in the computer calculations one
notes that the value of g.(f) at t = nT is 1//27n¢>. Pmax is then given by

. 2n—l
max — —_’ = y 2yt " 24
P Po \/ 27na? " 1,2 (24)

and the ratio, R, of adjacent peaks by

R=2 (’T”Jw (25)

which is independent of the coefficient of variation. In this same region, P itself
increases as

P = P,342n1 (26)
since at ¢+ = nT the value of G,(f) = 14. Thus,

1
V4 2ane?

Prex

=2
P 3

(27)
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These relations are confirmed by the computer results for both ¢ = 1 (about the
first 10 peaks) and ¢ = 2 (first three peaks) as shown in Fig. 3 where Ppax/P is
plotted against 1/4/n. The slopes are in excellent agreement with the theoretical
slopes. For any nonzero C. V., additional terms of equation 16 (representing several
generations) contribute to P after a sufficiently long time and the above approxi-
mations are then no longer appropriate.

The shapes of the curves of P vs. t/T, Fig. 4, can also be interpreted by renewal

107 -n

128654 3 2 |

TTITT 1T 1T 1 T T

0.3
SLOPE=.268
2 _|
= =.268
3 ov2nm
2 0.z .
«af
o=2
LAST
0.1+ PEAK -
SLOPE =.134
T 21 .34
//, z”’/ 3 O'N/ET :
/’/ -
0 =7 1 1 1 1 1 | 1 | 1 1 )
0] 0.5 1.0
I/y/m

2.5x10%

20x10%|-

e |.5x10% N (a-D)=="—

1 0x10?

50 -

0]

t/T
FIGURE 4 The early behavior of P forc = 1and ¢ = 2 (T = 10).

B. V. BroNK, G. J. DIENES, AND A. PaSKIN Stochastic Theory of Cell Proliferation 1365



theory in this early regime. According to equation 20 the curve giving rise to the
first maximum is f(¢) itself. This is a very useful explicit result of the theory showing
that the distribution function can be accurately determined from the shape of the
first peak starting with a synchronous population. The higher the initial degree of
synchrony the more accurately f(¢) will be obtained, as already pointed out by
Engelberg and Hirsch (43). As illustrated in Fig. 4, the ratios of the peaks and the
half width at half maximum (1.18¢) are in excellent agreement with the Gaussian
used in calculation for o = 1. There is much more overlap for ¢ = 2 and only the
width of the first curve can be interpreted in this manner. As shown in Fig. 5,
however, the overlap for ¢ = 2 can be taken into account as the distributions for

0.8x102|— x P FROM MACHINE
CALCULATION
L FOR o2 R)=300

0.5x10°

0.2x10%}- /

0 1 {
0 0.5 1.0 1.5 2.0

t/T
FiGure 5 Comparison of the Gaussians used in the calculations with the shapes of the
first two peaks in P (¢ = 2, T = 10).

\

T
-
—
-
~
’.\‘
X

£+ 40t)

the first and second peaks. The approximations used in the calculations represent
the results accurately.

B. General Decay of Synchrony

In the previous section the early decay of synchrony in the proliferation rate was
discussed. As overlap develops the peaks broaden and change into inflection points
before they become unobservable in log-phase growth (Fig. 2). If the data are
analyzed as the maxima in the quantity (?/P), these maxima persist for a larger
number of cycles. The significant quantity is the maximum in (P/P) relative to the
average, or longtime value, of (P/ P). Thedata are presented as (P/ P)max — ( P/P)ave
vs. /T in Fig. 6 for two values of ¢. Past the first few peaks, where the analysis of
the previous section is valid, the decay of synchrony becomes exponential (there is
clearly some overlap between the two regimes) with a characteristic slope which
increases rapidly with increasing o.
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This behavior was found to be generally valid for all the quantities one may use
for studying the decay of synchrony. For example, the .S phase of a log-phase popu-
lation may be labeled with tritiated thymidine and the fraction of labeled mitotic
cells scored. If M* is the number of labeled cells in mitosis this fraction is
M*/(M, + M¥*), where M, is the number of unlabeled cells in mitosis. This fraction,
as a function of time after labeling, comes through as a wave and the wave spreads
out in subsequent cycles with M*/(M, + M*) approaching a constant value in
log-phase growth. An investigation of the shapes of these waves is presented later.
It is the decay of maxima that is of interest here. The maxima minus the longtime
average are plotted against the reduced time after labeling in Fig. 7. Exponential
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FIGURE 6 Decay of synchrony in proliferation rate, presented as (P/P)max — (P/P)ave

vs. the reduced proliferation time, /T (T = 10).
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behavior is approached after a few cycles with the slopes increasing rapidly with
increasing o. The early curvature is in the opposite sense to that observed
for (P/P)max in Fig. 6. The assignment of the individual o, are listed in Table I.

Similar data are shown in Fig. 8 for the decay of synchrony in the fraction of S
in a population which was perfectly synchronized in G, at ¢t = 0. Detailed assign-
ments of the parameters are listed in Table I. Note in Table I that the sense of the
early curvature depends on the fractional phase composition of the cycle, as dis-
cussed in section V-D.

The most significant quantity characterizing the decay of synchrony is the ex-
ponential decay rate constant, A. That is, all the decay processes are described by

1.0 ,

o

0.0l

(M%/MgrM*) max— (M*/Mg M) qyq

0.00I | | | | | !
(e}
/T

FiGUrRe 7 Decay of synchrony in the fraction of labeled cells in mitosis as a function of
time after labeling. (T = 10).
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the expression
Xoax — Xovg = AT (28)

where a typical X would be the fraction in a state. Values of A\ for a variety of
computer experiments are collected in Table I. In these runs not only was the
decay of synchrony in various phases of the cell cycle investigated but also ¢; and
1; were varied. All the data obey the relation

A = A(o/T)? (29)

O e I =

S a=.5 -

A=, -

0.l = —

o — ]

S — p—

= - —
?

~ 00l —

lé E E

E — —

a - ]
S

@ = _

0.001 = T —

0.000! l | | | | ! | | |
0 2 4 6 8 10 12 14 16 18 20

t/T

FiGure 8 Decay of synchrony in S in a population synchronized at age zero in G, at
t = 0 as a function of the reduced proliferation time. (T = 10).

with A = 20. This relation is illustrated in Fig. 9, with the points taken from several
experiments. All the points from Table I would fall on this line. From the computer
calculations, therefore, we can come to the conclusion that the above relations are
of general validity and that A is a very important characteristic parameter of the
proliferation process since it controls the rate at which disturbances (such as syn-
chrony) are damped out. The value of A will be obtained below from renewal
theory.

In order to investigate the behavior of P(f) for large ¢, we can, by the argument
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leading to equation 11, choose any regular function for f(¢) for which asymptotic
solutions can be obtained. The family of functions

tm—l :
= ™ 1
f(t)—'ri(m_l)!e t>0
=0 t<0 (30)
2.0 I I I
(:]
1.5
1
< |
f
=2
<
}_
2 SLOPE =20
o l.O— —
(&)
Z
O
i
(=]
0.5 -
| | s 1 1 | ; [
0 | 2 3 - 5 6 T 8 9

(o/ —'IT)Z
Ficure 9 The characteristic decay rate constant, A, as a function of (s/7)? for a large
variety of computer calculations. (See Table I).

leads to exact solutions for equation 7. (See, for example, reference 40, also Ap-
pendix III). This function is particularly convenient for several reasons: It gives an
exact solution valid for all times and it approximates a Gaussian for large m and
thus can be directly compared with the computer results which are based on a
Gaussian form of f(). For the functions of equation 30 the mean and the variance
are given by

T = m/y
o? = m/q’
CV. = ¢/T = (m)™, (31)
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Equation 30 gives the exact distribution for the sum of m random times, each of
which is distributed independently, and with a probability equal to ne—"¢ dt of being
of a magnitude in the neighborhood of 7. Hence, if m is sufficiently large, we know
by the central limit theorem that equation 30 will give a good approximation to a
Gaussian over the contributing part of its domain. We will be interested in cases
with a coefficient of variation ranging from one-twentieth to one-third. Therefore,
m ranges from nine to four hundred and we are justified in comparing analytic
results with numerical results obtained using a Gaussian.’

It is worthwhile to note that to the extent that equation 30 approximates the
functions of interest, the present model gives the same probabilistic description of
the total number of cells alive at a given time as does Kendall’s model (19). Some
later papers (27-34) take several of the m microstates to represent one of the four
states we consider. For example, the last two microstates may represent mitosis.
Our model gives somewhat different results for the average behavior of the fraction
of cells in a given state. Our model also gives a description of the age distribution
within a state which is completely different from these other models.

The exact solution of equation 7 obtained (see Appendix III) by using equation
30 is

(m—1)

m—1
P(1) = [nm_IZ _T] {,Z-o exp [h(p, m)ntl/exp [2xip(m — l)/m]} (32)
where

h(p, m) = [2Y/™exp (2xip/m) — 1].

For large times, those terms for which the real part of 4 is largest will contribute
most. By making an Argand diagram (vector diagram in the complex plane) of 4,
it is easy to see that the real part of # decreases algebraically as the angle (2xip/m)
moves away from zero either counterclockwise (p = 1, 2, ---) or clockwise (p =
m-—1,m-—2,.--). If we write

P(t) = [P(O]: + [P()], (33)

for large ¢, then [P(?)], is the p = O term, and [P(f)]; is the p = 1 plus the p =
m — 1 term (these two terms are equal). Taking ((m — 1)/m) as approximately one,
and using equation 31 we obtain

[P(OL = (1/2T) exp {[2/™ — 1}mt/T} (34)

¢ For the same reason, a standard way of generating a table of numbers distributed according to a
Gaussian, is to sum several numbers chosen from a uniform distribution. In our Monte Carlo proce-
dure, we found that results obtained by summing ten such numbers to obtain our “Gaussian” were
quite similar to those obtained from the statistical method with direct use of a Gaussian.
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writing

[2Um — 1] = [exp (1/m) In2) — 1] (35)

and expanding the right-hand side of equation 35 we obtain approximately
[Pl = (1/2T) exp (o) (36)
a=Imn2/Tp; Tp = T[1 + (In 2)e?/2T7? (37)

A similar expansion in the exponent of the p = 1 terms gives for large ¢,
[P): = 2[ Py exp {(2xi/To)t} exp (—t/T) (38)
2 —1

T, = T[l + ‘7’72 (In 2)] (39)
A = a2/ T). (40)

Equation 37 gives the exponential population growth which we have already used
in section V-A, in discussing the approach to asymptotic exponential behavior.
Equation 38 gives an additional term which multiplies the growth term by an ex-
ponentially damped oscillating function (this general behavior was obtained by
Hirsch and Engelberg (33)). The period of the oscillating function is slightly less
than the generation time. One can estimate the error involved in these approxima-

tions by comparing the neglected cubic term in the expansion of the exponent rela-
ag

tive to quadratic term. The ratio of these two terms for A is In 2(7)2 which is small
for small C. V. (and is small for the cases treated by the computer technique).
Equation 32 is valid for all m and can be used as a guide to determine when the
C. V. = (m)~'2is large enough to lead to a nonoscillatory solution of equation 7.
One obtains oscillations for m = 3, but only an exponentially growing plus an
exponentially decaying term for m = 2. One therefore concludes that

C. V. = (0.707) (41)

will give nonoscillatory behavior of P(f).

Although the foregoing discussion pertains to a population initially synchronized
at age zero, an arbitrary initial condition can be specified by a linear combination
of such populations with different initial times. One, therefore, expects that the
constants 7T, and A\ will characterize many different experiments as demonstrated
numerically for labeling curves and sudden disturbances (sections V-C and V-E).

C. Shapes of Labeling Curves

An example of a labeling curve was shown in Fig. 1 and the decay of the labeling
curve maxima was discussed in the previous section. In this section the shapes of

B. V. BRONK, G. J. DieNes, AND A. PASKIN Stochastic Theory of Cell Proliferation 1373



labeling curves, that is M*/(M, + M*) as a function of time after labeling, are
discussed. As mentioned before, in a typical labeling experiment the cells in the S
state of a log-phase population are labeled, in a time short compared to the genera-
tion time (flash labeling), and the fraction of labeled cells in mitosis, M*/(M, + M*),
is subsequently scored as a function of time after labeling. In the following, instanta-
neous labeling in S will be assumed. The labeled S cells are assumed to move
through the proliferation cycle exactly like normal cells. That is, they move through

I I I I I I I I I
UNIFORM DISTRIBUTION IN

CELL CYCLE o=0

=
U,l T
~l—
Cadl

| | | | | | | | 1
8 10 12 14 16 I8 20 22
TIME AFTER LABELING, HR

FiGURe 10 Labeling curve for a uniform distribution in S and & = 0.

o
N
D
(o))

G, and then are observed in M as a function of time after labeling. The shape of
the graph of the labeled fraction observed in M is influenced by the time distribu-
tion of cells in S and by the spread in the distribution of the residence times, and
later by the spread in the total generation time. In the following we shall try to
understand the influence of each of these factors.

If the cells in S are uniformly distributed with respect to time spent in S and if
there is no spread in the generation time (¢ = 0), then the labeling curve of Fig. 10
would result. This curve of trapezoidal shape, of course, represents a highly idealized
situation which is not achievable experimentally because it is unlikely thata ¢ = 0
population exists experimentally. (If a ¢ = 0 population did exist one could ar-
range the initial conditions such that the population is uniformly distributed in the
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cycle.) Nevertheless, this curve is useful as a starting point for discussing the distor-
tions introduced by various factors. The transit times in the various phases of the
cell cycle are indicated on the diagram of Fig. 10. This curve results from the fact
that at ¢ = O the cells keep their order in “marching through” the cell cycle and,

I I T I I I I I
LOG PHASE ESTABLISHED WITH o =2
— o SET EQUAL TO ZERO AFTER LABELING
TAIL OF Ga —-—o:2 THROUGHOUT

DISTRIBUTION

M /Mgm*

0.3

0.2~ 1

0.1

]
8 10 12 14 16 18 20 22
TIME AFTER LABELING, HR

[¢]
[0]

N =
D
[}

Ficure 11 Labeling curve for a log-phase population with ¢ = 2, 7 = 10 (C.V. = 0.1)
Solid line: ¢ set equal to zero at time of labeling. Dashed line: ¢ = 2 throughout experi-

ment.

since there are just as many “young” as ‘“old” cells (uniform distribution), the rise
and decay processes are completely symmetrical. The slope of the rise and decay
parts of the curve depends only on the transit time in M (i.e., vertical rise if 7, = 0).

In order to illustrate the influence of the cell distribution in S, and in the other
phases, the following computer experiment was carried out using the Monte Carlo
method. A log-phase population was established with a given o (spread of genera-
tion time) and generation time, 7. In this way, waiting-time-in-state distributions
characteristic of these 7’s and ¢’s were established. The S phase was flash labeled
and for the subsequent motion around the cell cycle ¢ was artificially set equal to
zero. More precisely, each cell entered the very next state according to an asymp-
totic waiting time distribution. The times spent in all subsequent states are exactly
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given by the #;, however. The resultant distortion of the labeling from the trape-
zoidal form is, therefore, characteristic of the distribution existing at the time of
labeling and is not complicated by the generation time distribution. The results of
these calculations are shown by the solid line of Fig. 11 for ¢ = 2 (C.V. = 0.2).
Two distortions of the ideal trapezoidal shape are observable. There is a rounding
off of the top of the rising curve and a larger rounding off of the bottom of the
descending part of the curve. Since ¢ is now zero, the curve will repeat identically in
the second cycle. The leading edge of the waiting-time distribution in S is quite
sharp (see section V-D) and, therefore, the first rounding off is caused by stragglers
which were in G, at the time of labeling (i.e., the long time tail of the waiting-time
distribution in G;). The rounding off at the bottom is caused by the stragglers in S
(i.e., by the tail of the waiting-time distribution in S).

The same computation has been carried out without changing « at the time of
labeling (i.e., ¢ = 2 throughout). This calculation illustrates the combined effects
of the distribution discussed above and the subsequent spreading due to the o as-
signed to T. This is, of course, the actual experimental situation. The results are
shown by the dashed line in Fig. 11. The influence of ¢ is clearly very strong; it
produces an asymmetry in the curves and a decay in the peaks. The analytic ex-
pressions for these curves, which are developed elsewhere (42), exhibit the decaying
oscillatory behavior discussed in section V-B.

D. Age-in-State and Fractions-in-State

The various age distributions are interesting both from a theoretical and experi-
mental (43) point of view. The straightforward application of familiar probabilistic
principles to our model leads to useful results concerning the time development of
age-in-state or time-in-state distributions. Because of possible confusion between
the general concept of age-in-state and other uses of the word age, a careful, opera-
tional definition is given of age-in-state as it will be used subsequently. We first
define the age in the cycle as the time since the previous cell division that a given
cell spends in its cell-cycle. Similarly, the age-in-state (e.g. age-in-mitosis, age-in-
synthesis, etc.) is the time since entering the state that a given cell spends in the
particular state.

A contrasting concept which is sometimes confused with the above is maturity-
in-state. The maturity-in-state is a measure of how far the cell has progressed
towards completing the requirements for leaving that state and entering the next
state. For example, the amount of DNA synthesized in a given cell could be used
to measure the maturity-in-S. Another illustration of our use of maturity is given
in terms of our model. The index of the state of the cell (i.e. i = 1, 2, 3, 4 desig-
nating G,, S, G., and M, respectively) is an integer-valued measure of the cells
maturity in the cycle. It is emphasized that because individual cells mature in a
state with randomly distributed velocities, an individual cell’s age-in-state may be
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different from its maturity-in-state. It should also be noted that our definition of
age is quite distinct from the aging of an organism which is a measure of degenera-
tive processes which occur as the organism gets older. The idea of age-in-state may
be clarified by an operational definition. If a cell were marked at the instant of time
that it entered a state, the age-in-state is the length of time between the instant of
marking and the time of observation provided that the cell has not left the state.

Having defined age-in-state let us describe it in terms of our model. We define
Ai(z, t) as the mean number of cells in state i at time ¢ with ages between z and
z + dz. For i equal one, the cells with age z are those born at time (¢ — z) which
have not left the state. This may be expressed as

Ax(z, 1) = B(t — 2)[1 — F:(2)], (42)

where B(t — z) as defined in equation 13 is the mean number of cells born into the
cycle, and hence into state one, z hours before the observation time 7. The second
factor gives the probability of a cell spending a time longer than z hours in state one.

To obtain A; for j greater than one, we need a general expression for the proba-
bility of a cell spending a time between ¢ and ¢ + dt in the states preceding j. This
is defined as f(1, 2, ---, j — 1; ¢) dt and is given by the convolution of the indi-
vidual densities for the transit times of the states preceding j. For example, for
J = 3 we have

t
£, 250 = [ A(0fite = ) dr, (43)
0
which for our Gaussian densities gives to good approximation

f,2;0) = 2a(o? + a2 exp {— [t — (11 + 1) 1/2(0s* + o D). (44)

Thus, we may write for j > 1
Ai(z, 1) = fo B(t —z—)f(1,2,---j— 1;)d'[l — Fi(z)].  (45)
The integral in equation 45 averages the time spent during the various sojourns
in the states preceding j to give the mean number of cells entering j at z hours
before the time of measurement. The factor [1 — F;(z)] is the probability of a cell

remaining in state j a time longer than z.
The total number of cells in state j at time ¢ is given by

B = [ 40 de (46)

for all values of j. Using this expression we arrive at the fraction of cells with age z
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in the jth state as
ai(z, 1) = Aj(z, 1)/ P1). (47)

A distribution related to the above which is of some interest may be obtained by
dividing an » state system into two parts relative to a state j, where j is less than
or equal to n. The two parts are the states preceding j, and the states with index
greater than or equal to j. Then the mean number of cells which entered state j,
between z and z + dz hours before #, and are in state j or one of the states following
J» is defined to be 45 ;(z, t), and is given by

Ao ) = [ BU— 2= 0,2, j = LAl = FG, -+, mi D] (48)

FG, - ym D) = [ fG o m (49)

The second factor in equation 48 gives the probability of a cell spending a time
longer than z in state j and the states following j. To obtain A; from equation 48,
we would multiply 4 ; by the probability that a cell is still in state j, after entering
that state z hours ago, given that it still has not completed the cycle.

This probability is

1 = F@)0 — FQ, -, n; 2)]. (50)

Therefore we see that the age distributions for an » state system are related in a
simple way to those for a two state system.

We will next derive some explicit expressions for 4;(z, ) for the situation where
one starts with a population synchronized at the beginning of G,, at time ¢z = 0.
During the early part of the first cycle, very few new cells are born. We may there-
fore approximately represent the function B(#) by a delta function (a spike) cen-
tered at 1 = 0. Using this in equations 42 and 45, we obtain

Az, ) = [1 — Fi(2)]6(z — 1)
and

4z, ) = f(1,2,---,j— Lt =2l — F(2]j>1 for tS( —o). (51)

For a time ¢ large enough so that several cycles have passed since initial syn-
chronization, we can calculate the approach to the asymptotic age distribution. We
will use the following equations: 12, 33, 37, 38, 42, 45, and 47. The following ap-
proximation will also be used. Consider the integral

I= f " 0 di, (52)
0
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where f(f) is a Gaussian with mean T and variance ¢2. Then when the mean T of
the Gaussian is large compared with the magnitude’ of (26 + %), one can extend
the lower limit to minus infinity and evaluate the integral in the usual way by
completing the square in the exponent, giving

I~ e—'i'b+a2b’/2 (53 )
for T = Rels?h + 20].

Using this approximation together with the definitions 42 and 45 and the asymp-
totic birth rate, we obtain

Ai(z, 1) = [e*“/TIIl — Fi(2){by + 2Re(bs; exp [(iwo — M/T) (t — 2)]} (54)
where wo = [(27)/T,] (see equations 39 and 40).

by; = exp [— kb + 03;0%/2]

by = exp [— b2 + 01,02/2]

e = [a+ ivwe — \/T)] (55)
=1 j—1
b = ;fx ob; = zl:axz i>1

=0 =0 j=1 (56)
If we integrate equation 54 over z, we obtain
Pi(t) ~ [e=t/aTf(1 — e Ho¥ "' py;
+ 2Re(bs;(1 — e %77 exp [(iwo — N/ D)t}}.  (57)

The average fraction of the population in the jth state at time ¢ is given by
[P;(£)/ P(1)], where

P(1) = ; Pi(?)

= [e=t/aT]Ci[l + Re{Csexp (iwo — (A/T))1}] (58)
C = gcl‘f Cy = by(1 — e—ija.'.,jzaz/z)
C: = 2; C»;/Cy Csi = 2by(1 — e_i"g‘*"’:"s’/z). (59)

7 When b is imaginary one observes that the integral is approximately equal to an integral over a
nearby contour on which the integrand is a real Gaussian. In this case the additional error is less in
magnitude than | e~*-5%* Im(bo?) |.
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Then for large ¢ we have
[Pi(t)/ P(1)] = [1/Cil{Cy + Re{[Cs — CyCs]exp (iwo — (A/T))8}. (60)

If we use the fact that o? is small we can neglect the various terms of the form
o%? in the exponent. (This is not justified for s?a? because of the nonnegligible
imaginary part of .) Then taking « = In 2/T we obtain for # sufficiently large that
the second term in equation 60 can be neglected.

Pi/P |~ 267 [1 — 717, (61)

This is exactly the expression obtained (6) in the less detailed model where one
simply assumes that cells of age z have proliferated exponentially a time (¢ — z),
giving a density at that age proportional to e¢™. The assumption is then made
(incorrectly unless all o; = 0) that cells of age in the cycle between z = #;, and
z = By; + t; are in state j. Then the density is integrated between those two ages
giving the above expression, the value of which is within a couple percent of the
correct expression for realistic ¢’s.

The second term in equation 60 gives the decaying wave form of the fraction in
state. If one makes a plot of the log of the maxima of D; = [P;(t)/P(f) — P;/P |«]
vs. time, the graph approaches a straight line after a number of cycles depending
on X\ which is a function of the C.V. The graph will be convex up or concave up
depending on whether the intercept of the tangent to the linear portion at ¢ = 0
is greater than or less than log [l — P;/P |»] which gives the first maximum of
D; . The maxima always equal [l — P;/P |»] when ¢ = 0. In terms of expression
59 we have

J => convex up (62)

RI(Csj — Ci; G3)/Cil 2 [1 — Py/P |u] concave up.

Because of the complexity of equation 62, it is easier to demonstrate this property
numerically as shown in Fig. 8 for states for which the maxima decay in a convex
manner (see also Table I).

Now returning to the age distribution, if we take the ratio of equations 54 and
57, we get for the asymptotic age density

ai(z, 1) = a;(2)[1 + €z, 1) — §;(D]. (63)
The first term of equation 63 is the time-independent asymptotic expression given by

aj(z) = cje [l — Fi(z)] (64)

where we have suppressed the time dependence of the normalization, ¢;, and
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¢~ { l " el — Fi(2)] dz}—l

= ae’|(e" — 1) (65)

where v; = [tja — 0;%2/2].

The third term of the second factor in equation 63 is given by the oscillation times
the decaying exponential, and merely means that the exact normalization has a
slight oscillation perturbing it. The second term is more interesting. It is the prod-
uct of a constant times an expression given with approximate phase by

€i(z, 1) = cos (wo(f — fo; — z))e" NP4, (66)

Now the peak of the wave is given by the point of constant phase,

wo(t — ;bj — z) = 27n (67)
or t—ibj—2=nTo.

This implies that the exponential factor at the peak is constant during a given cycle,
so that on a given cycle we would see a wave moving across our age-in-state density
toward increasing values of z.

The waiting-time-in-state is defined as the additional time a cell will spend in the
state in which it resides at the time of measurement, before transfer to the next state.
The waiting time could be measured if a cell could be marked at some time and the
later time when it left the state, in which it was marked, noted. The numerical dis-
tribution of waiting times is directly available from our Monte Carlo calculation.

If the density of waiting times at time ¢ is given by W;(r, t) we have

Wir,0) = [ alz0 {ff%;’—(’z;} dz. (68)

The first factor in the integrand is the fractional age density derived above.

The second factor is the probability that a cell will transfer to state (j + 1) after
a sojourn in state j of length about (z 4+ 7), given that it stays in state j a time at
least equal to z. The product gives the mean fraction of cells of age z which enter
the (j + 1)st state in 7 additional hours. For ¢ large, we obtain the asymptotic
solution

Wir) = c; fo " ez + 1) dz (69)

where ¢; is the normalization constant given in equation 65. We can write an ex-
plicit expression for W;(r) for f;, a Gaussian.
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Wi(r) = c;e™ " (1/2)[1 + erf [(—7 + v'i/@)/oiN/2]
v'i = [tia — o7, (70)
where erf (x) = \%—r j: edt x>0
and erf (— | x|) = —erf (| x|).

The criterion that a population must satisfy in this model to be in log phase is
that it have the correct asymptotic percentages in the various states as given by
equation 61 and that its waiting times-in-state be given by equation 69. Since the
expression 70 is very smooth as a function of r, we observe that the waiting time
distribution is not too far off from that given by a uniform distribution, (although
an exponential distribution is a better approximation). We found that if one starts
the Monte Carlo program with 100 cells distributed with the correct asymptotic
percentages for a C.V. of 0.2, and distributes them uniformly in each state, that
within one cycle run at the same C.V. the waiting time distributions resemble
closely the asymptotic distribution, and in three cycles the fractions in phase settle
down to their asymptotic values.

We now consider briefly the corresponding numerical results. The age distribution
in any given state is directly obtainable from the age transfer program at any state
of proliferation history. Thus, one can follow directly the change in age distribution
as the system changes, for example, from complete synchrony in G, at t = 0 to
log-phase growth at long times. An example of such a development is shown in
Fig. 12 for the age distribution in S. The fraction of cells per unit age interval is
plotted as a function of age (in hours). At clock time ¢ = 0 the age distribution
was a delta function in G, centered around age zero. The various curves in Fig. 12
were taken at different clock times i.e., as a function of proliferation time (for a
system with 7 = 10). At 2 hr the distribution is very sharp. There is a significant
build-up of young cells at 8 hr changing over to a double peak distribution at 10 hr.
As the old cells move out (double) the age distribution at 14 hr results. As the
proliferation progresses the curves become gradually smoothed out approaching a
steady-state distribution (60 and 100 hr) characteristic of log-phase growth and
independent of proliferation time.

The analytic approximation of equation 51 shows that the age distribution in
S(j = 2) during most of the first cycle is a wave described by (from equations 46,
47, and 51)

filt — 2)[1 = Fu2))/ f filt — 21 — Fu(2)] &,

where the shape is determined by the numerator, i.e., by fi for the first few peaks.
The peaks of Fig. 12 are easily calculated from this formula by evaluating the
maxima. The integral in the denominator is trivial as long as 1 — Fy(z) = 1, i.e.,
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for the first two to three peaks. A numerical check for the first three peaks showed
that the computer results and the analytical expression are in agreement both as to
location and magnitude of the peaks.

The corresponding waiting-time distributions in S are shown in Fig. 13. The

1.0 | — T T T T T T T T T

2 AGE DISTRIBUTIONS IN S

- NUMBERS ARE CLOCK TIMES IN 1
HOURS WITH FULL SYNCHRONY IN

6 Gl AT t=9 =
cz2 T=10

0.8

8
0.6

a[N

AR RN}

~N

— |a
0.4

0.2F

(¢} 2 4 6 8 10 12
AGE, HR

FiGure 12 The change in the age distribution in S starting with complete synchrony of
age zero in G; at t = 0. The proliferation times (clock times) are shown for each curve;
100 hr corresponds to age distribution in log-phase growth. T = 10, ¢ = 2. (See Table I
for i; and 0; .)

T T T T | | T T T [ 1]

WAITING TIME DISTRIBUTIONS IN S

0.3+ NUMBERS ARE CLOCK TIMES IN HOURS -

WITH FULL SYNCHRON_Y IN G, AT t=0
oc=2 T=I0

I AP,
P, Av

WAITING TIME, HR

FIGURE 13 The change in the waiting-time distribution in S starting with complete syn-
chrony in G, at ¢ = 0. The proliferation times (clock times) are shown for each curve with
the distribution corresponding to log-phase indicated. 7 = 10, ¢ = 2. (See Table I for
t;and 0:.)
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waiting time is defined as the time a cell will spend in a state before leaving it. The
waiting-time distribution is complementary to, but different from, the age distribu-
tion and is presented analogously, i.e., as the fraction of cells in the waiting-time
interval At, per At, plotted as a function of waiting time (in hours). The waiting-
time distribution data are directly obtained from the Monte Carlo program. Be-
cause of the limitation on the number of cells in this program there is considerable
statistical scatter in the data so obtained. The general features are, however, clear.

The progression of the distribution in S and its approach to log phase is shown
in Fig. 13. The earliest distributions are not too far from Gaussians corresponding
to the sharp age distributions. A double peak structure develops at 10 hr corre-
sponding to a similar structure in the age distribution.

Other phases behave very similar with some special features noted for G;. The
age distribution in G, starts out as a delta function since perfect synchrony at ¢z = 0
was assumed. The corresponding waiting-time distribution is a Gaussian centered
around 7 . These distributions then progress similarly to the ones in S. -

E. Sudden Disturbances of the Proliferation Cycle

We will now consider those changes in the conditions of proliferation which can be
simulated during a computer experiment by an instantaneous alteration of pa-
rameters. Such changes of conditions may occur for a variety of experimental
reasons such as sudden temperature change, change in chemical environment,
selective removal, or damage of cells (35). We can easily handle with our present
program sudden disturbances of the following three types: sudden changes in state
of cells already in the cycle or the removal (addition) of cells from (to) states of
the cycle; changes in the parameters #; and ¢, ; alteration of the age distribution
existing at a given time.

A change of the first type is the easiest to consider. Several items already dis-
cussed are of this type. One example is the synchronization of a population at the
beginning of G;. Another example would be the death of all but one state of a
log-phase population, for example the S state (Chinese hamster cells respond essen-
tially this way to radiation since the S state is highly radiation resistant (35)). In
these cases, the full or partial synchronization produced leads to damped oscillations
in the birth rate and fraction in state. Similarly, one expects that changes of the
latter two types will produce partial synchronization since cells are now in a non-
asynchronous distribution with respect to the new conditions. Hence, one again
expects damped periodic transients.

We consider several sudden changes in connection with two typical biological
situations: (a) The transit time in mitosis, %, is suddenly lengthened. (b) The
transit time in G,, %, is suddenly shortened.

In situation (a) we simulate a condition in which the time for each cell to complete
mitosis is greatly lengthened, but the cells are not blocked in the cycle. Such a situa-
tion might be achieved experimentally by a change of the temperature which seems
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to affect division to a greater extent than synthesis.® We show the results of a sudden
lengthening of 7, in Figs. 14 and 15. In these computer experiments we used the
age-transfer method. A log-phase population with 7 = 10 and ¢ = 2 was estab-
lished prior to the sudden change which takes place at time ¢ = 0. At this time,
14 is increased from 1 to 6 hr, and o, is also increased. The subsequent development

I T T I I I I | [ |
LOG PHASE ESTABLISHED WITH AT t=0 PARAMETERS CHANGED
;s @ .50 INSTANTANEOUSLY TO
1, 6.0 o,1.84 1, L5 e, .50
0.7 1, 1.5 a5 .50 1, 6.0 o 1.84 -]
14 1.0 7, 333 T3 1.5 o3 .50
T10 o 2.00 i, 6.0 oq 1O
g T 15.0 o 2.210
6 _—(S/ P)o=.613
0. ¢-AGE DISTRIBUTION EXPANDED 7]
o -
o 0.5\ -
~
)
p
0.4 -
p
0.3 p -
0.2 L L L L 1 L L L L L
(0] 20 40 60 80 100

TIME, HR

FiIGUuRe 14 The approach of S/P to the new equilibrium fraction-in-state upon sudden
lengthening (at # = O in the figure) of mitotic transit time, Z, .

of S/P and M/ P toward a new equilibrium (asynchronous) distribution is shown.
The approach to equilibrium is via a series of damped waves as expected from our
experience with decay of synchrony. During this period the new logarithmic growth
rate is established via the usual carpeted staircase. The peaks of Figs. 14 and 15
decay with the rate constant, A, determined by the ¢ and T after the disturbance,
just as in the synchrony experiments.

The question arises as to whether the age-in-state distribution should also be

8 The experiments of Rao and Engelberg on HeLa cells (44) indicate that the mitotic transit time is
preferentially increased by a change in temperature, i.e., apparently all the parameters change but the
increase in 7 is larger than that in the other transit times.
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FiGURe 15 The approach of M/P to the new equilibrium fraction-in-state upon sudden
lengthening (at ¢ = 0 in the figure) of mitotic transit time, i, .

instantaneously altered for the state which has its parameters changed. When the
sudden change amounts to an increase by a large factor of one of the transit times,
the fraction of cells in the altered state immediately following the sudden change is
very much smaller than the new log-phase value for that fraction. The essential
feature of the experiment therefore is a gap or shortage of cells in the altered state.
Hence, one expects that the age-in-state distribution of those few cells remaining in
the state will not appreciably affect the experiment.

This idea was tested in the following way. A trial was run in which the age dis-
tribution was unaltered. Thus, the cells initially in M (about 7% of the total) are
bunched up in the beginning of the new, 6 hr M state, with the oldest cells having
the same probability of dividing that they would have after about an hour in the
new M state. The results are shown by the solid lines in Figs. 14 and 15. In a second
run, the time scale of the existing age distribution in M was expanded by the same
factor as was the transit time. In this case the cells are now spread throughout the
new M state according to the asymptotic-age-in-state distribution. The cells which
were y hours old before the disturbance are 6y hours old after the disturbance. The
results for the fraction-in-state are shown by the solid circles in Figs. 14 and 15. As
expected, the two results are very similar. The first and subsequent maxima for the
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spread-out run come about 0.6 hr later, and they are slightly less in magnitude than
in the bunched up case.

In situation b we simulate what is currently thought by some to be a mechanism
for triggering conditional renewal systems.® The idea is that a certain increase in
cell volume is the signal for the cell to enter DNA synthesis which in turn leads
inexorably to division. The G, period is ordinarily extremely long but a demand
situation signals cell growth which in turn sends the cell into S and a shortened
G, on the next cycle. In this case the number of cells in G, following the disturbance
is in excess of the final asymptotic fraction, and these excess cells constitute the
perturbation.

Let us first consider the case in which the ages of the cells scale in proportion to
the change in the transit time. Then the excess in G, simply amounts to a partially
synchronized portion superposed onto an asynchronous population. Consider the
case when the transit time for G, is a large fraction of T prior to the disturbance
and a small fraction of the new T after the disturbance. The development of the
population after the disturbance should approximate that of the limiting case where
#, (before) — T (before), and #; (after) — 0, leading to a population synchronized
at the beginning of the cycle.

We tested this idea by starting a run with all cells in G, taken out of a log-phase
population and distributed according to the asymptotic age-in-state distribution
for o1/t = 0.33 (equation 64). Let us call this our pseudo-synchronous population.
We then simulate the proliferation cycle with our Chinese hamster cell parameters
(#; = 1.5; 6.; 1.5; 1.; ¢; = 0.5; 1.84; 0.5; 0.33.). The resulting graphs were then
compared with a desynchronization of our synchronized population (all cells
initially less than 0.05 hr old in G,) and found to be almost identical. For the
pseudo-synchronous population we had a first maximum of 98.6 % for S/P at 2.5 hr
and 14.1% for M/ P at 8.2 hr. A slight decrease in the time prior to the maxima oc-
curs because in the pseudo-synchronous case many cells leave G, immediately rather
than wait the average 1.5 hr in G,. A slight decrease in the maxima is due to the
initial spread of the pseudo-synchronous population through G; .

The effect of altering the age distribution was explored next. The values of #, and
o1 prior to the disturbance were varied, but all the other parameters were kept
identical prior to and after the disturbance. The age distribution for G, is scaled
so that a cell which was y hours old in G, before the disturbance has an
age [/i(after)/#(before)]- y in G, after the disturbance. The ratio of o, to 7, is kept
about the same after the disturbance as before. The results are summarized in
Table II. It is seen that the first maxima for S/ P and M/ P are gradually reduced
as the initial #; is decreased but the location of these maxima remains essentially

¢ This idea was brought to our attention by H. Johnson of the Brookhaven Medical Department. A
possible example is the kidney in which cell division in the adult animal is ordinarily rather rare.
However, following unilateral nephrectomy, a period of cell growth is followed by a burst of mitotic
activity.

B. V. BroNK, G. J. DIENES, AND A. PASKIN Srochastic Theory of Cell Proliferation 1387



TABLE II

CHANGE IN THE FIRST MAXIMA OF S/P AND M/P AS A FUNCTION
OF 1, (BEFORE)/# (AFTER)

i, (before)/% (after) First maxima Location of  First maxima  Location of
! 1 (alte in S/P maxima in M/P maxima
% hr % hr
Pseudosynchronous 98.6 2.5 14.1 8.2
18/1.5 82.8 2.5 11.3 8.5
9/1.5 77.2 2.5 10.1 8.5
0.80 T I T T I | 1 T T
0.72 -
0.64— —
0.56 -
0.481— —
¢ 0.40F -
%)
0.32 - AT t=42 PARAMETERS INSTANTANEOUSLY CHANGED ]
FROM: TO:
0.24 - i, 50 0,20 1, 1.0 o, .33 —
1, 6.0 o, 1.84 i, 60 o, 1.84
_ 1, 1.5 oy .50 I, 1.5 oy .50
0.16 - 14 1.0 oq.33 14 1.0 o4 .33 -]
T35 c2.78 T 9.5 o 1.96
8 WAITING TIME DISTRIBUTION SHRUNK PROPORTIONATELY
0.08 - FOR CELLS PRESENT IN G, AT t=42
0 | L | ! 1 | I L1
(o] 16 32 48 64 80

TIME, HR

Ficure 16 The approach of S/P to the new equilibrium fraction-in-state upon sudden
shortening (at # = 42 in the figure) of the transit time in G;. Age distribution of cells
present in G, at the time of the change compressed as discussed in the text.

unchanged. The graph of S/P for a similar run is shown in Fig. 16 for the initial
# = 5.0 hr.

In the event that the age distribution is not scaled down as described above some
problems arise. First we have a biological choice. Do the cells which are overage
according to the new parameters enter the next state instantaneously, or is there an
initial delay until the cells “realize” that they are behind schedule?

A computational question arises as to how to handle these overage cells in the
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age-transfer method, since additional provision would have to be made somehow
for the first cycle following the change. Also, since the age distribution is discrete
(a histogram) in the age-transfer computation, the new average transfer time must
be an integral divisor (convenient multiple) of the old for a shrinkage (expansion).
The computational difficulties are easily solved by switching to the Monte Carlo
method. Here, any scaling in the existing age distribution is easily handled by
multiplying the stored waiting time for each cell by the scale factor.
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0.72} -

064
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FiGURE 17 The approach of S/P and G,/P to the new equilibrium fraction-in-state upon
sudden shortening (at # = 42 in the figure) of the transit time in G, . Age distribution of
cells present in G, at the time of the change unaltered.

Consider, for example, a case where following the disturbance each cell waits,
before moving to the next state, a time interval appropriate to the waiting-time dis-
tribution before the disturbance. For each subsequent move, its transit time is
chosen by the new parameters (i.e., the scale factor is 1.0). In Fig. 17, the results
for S/P and G,/ P are shown for this case. The change in parameters is exactly the
same as that for Fig. 16, but the waiting time for the first postdisturbance transfer
from G, was chosen according to the predisturbance distribution. We see that the
first maximum is reduced from 76.4 to 71.2% and is delayed 3.4 hr with respect
to the case when the age and waiting times are scaled at the time of the disturbance.
The shape of the first peak is also affected.
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VI. DISCUSSION

A stochastic theory of cell kinetics has been developed in the previous sections based
on a model in which the over-all cycle is composed of several phases. The charac-
teristic parameters of the model are the average transit times, #;, through each
phase and the associated variance o¢,2. Analytic and computer techniques have been
used to investigate the properties of this model. When appropriate analytic approxi-
mations could be carried out, the results were in excellent agreement with those
derived from computer experiments. The experimentally well-known cyclic be-
havior of cell proliferation is reproduced by the theory. A detailed analysis of
synchrony decay and of labeling experiments has been carried out. The time de-
velopment of age and waiting-time distributions were obtained directly from the
computer experiments. The analysis of synchrony decay showed that the exponential
decay is controlled by a characteristic constant, A, which depends only on the cell
cycle time, T, and the over-all variance, ¢?, in the form A = 2x%(o/T)2

Once a quantitative description of cell kinetics is at hand, one can inquire how
the system responds to outside disturbances, such as changes in temperature, re-
sponse to radiation, etc. The “equilibrium” state of a proliferating cell system may
be defined as that corresponding to asynchronous log-phase growth. A corollary
of this state is the constancy of the fraction of cells in any given phase of the cell
cycle. If any of the cell parameters is altered the system will adjust to the new
“‘equilibrium” state. Our computer studies showed that, analogous to the decay of
synchrony, the system responds to a sudden disturbance by approaching the new
“‘equilibrium” state via damped periodic transients. The rate of damping (expo-
nential decay) is controlled by \. Thus, the response time of the system, T/}, is as
basic a parameter of the system as the cell cycle time since it determines the response
to perturbations.

In illustrating typical cell kinetic behavior, parameters appropriate to a line of
Chinese hamster cells were used. While it is apparent that the calculations reproduce
the general features of the relevant experiments, no attempt was made to use cell
parameters adjusted to any particular experiment. It would have been desirable to
demonstrate the agreement between the model calculations and experiment, but this
would have made the paper impractically long. Rather, the spirit of these calculations
is to present most of the information needed for analyzing cell kinetics, with the
hope that this will encourage experimenters to apply the results to their particular
cell systems and to suggest new experiments to explore cell responses to disturbances.

We are indebted to Miss E. Wolfson for invaluable help with our programming problems. We are
particularly grateful to Dr. P. Kemmey for suggesting and developing the age transfer method. We
are indebted to many in the Medical and Biology Departments at Brookhaven for encouragement,
support, and stimulating discussions, in particular to Drs. D. G. Baker, V. P. Bond, H. A. Johnson,
and J. Van’t Hof.
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APPENDIX I

Correction for Skewness

We have described the density function for the generation time as though it could be de-
scribed by a Gaussian. That is, we have used

1 _
f(t) = 5 €xp [(t — T)?*/24%. (L1)
Since the generation time can never be less than zero, we actually use for our density

J0) = f() t>0
=0 t=<0. (1.2)
Let us define the average generation time and variénce for f by 7 and 62. We also define
AT = (GF-1T) Ac? = (&2 — o?). (L3)
Th_&se are the quantities we must add to the nominal generation time and variance, o
and T, to obtain the true generation time and variance for 7. By inspection, one can see that

cutting off the negative tails of the density will move the average to the right, and decrease
the variance, since that quantity corresponds to a moment of inertia. Explicitly

AT = [ He) dt — [ (0 dt,
which gives after standard changes of variables and integration,

AT = (o//27) exp (—T2/26%) — T/2[1 — erf (T//20)] (I.4)

2 2
where erf (z) = 71;.[ exp (—7) dt.
0

Similarly,
Ad® = f: [t — (T + AT)If() dt

- [ [t — TTf(2) dr. (15)
Neglecting terms involving AT, since they are second order corrections, we obtain

—o?

Ag® = ﬁ[gexp (=T%/2s%) + % (1 — erf (T/\/fa)):l. (L6)

The proper values of 7T and ¢ to obtain a given 7 and o can be determined numerically using
equations 15 and 16. For a coefficient of variation of one-third or less, we see by Table A-1
that the corrections may be neglected.
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TABLE A-I

C.V. 1/3 1/2
Ac? —0.0140? —0.1310?
AT 0.002T 0.004T
é 0.993¢ 0.932
i 1.002T 1.004T

APPENDIX II
Fluctuations

Graphs of the time development of various quantities during a given experiment with a finite
number of cells naturally will show fluctuations about the graph for the time development for
the expected values of such quantities. We will discuss this phenomenon for the fractions-in-
state in order to give an idea of how these fluctuations are exhibited within the framework of
our model. To illustrate the problem, graphs of the time development of the fraction in
synthesis for a Monte Carlo numerical experiment are displayed in Figs. 18 and 19 and com-
pared with the time development of the average of the same quantity computed by the statis-
tical method. In Fig. 18 the initial experimental population is taken to be six cells at the begin-
ning of G, . The C.V. of this population is 0.2. In Fig. 19 the initial experimental population
is again six cells, but with a C.V. of 0.1.

Such fluctuations will be of biological interest when attempts are made to apply statistical
kinematics to the development of a system such as an embryo, or the kinetics of a system
such as an intestinal crypt which maintains a small number of cells. Consider, for example,
the number of cells in a normal crypt. This is several hundred on the average. If a large per-
centage of these are damaged, as in radiation experiments, then fluctuations downward may
cause whole crypts to disappear, whereas a calculation of the average number of cells surviv-
ing in a crypt indicates that the average crypt survives.

We will define two functions which will be helpful in considering fluctuations and will
estimate their properties in a very rough way for the fraction in state. If the quantity of in-
terest is g(¢) and its average over an ensemble of systems with identical initial conditions is
4(?), then we define the time dependent variance to be

S¥([al; 1) = [g(r) — (O (IL1)

Here [a] indicates the various parameters of the ensemble and the state under consideration
such as C.V., and initial population and its distribution. The second function is the fluctua-
tion, F{(¢), which is the integral of the variance over time, and is comparable to the variation
in the analysis of nonrandom functions. We define

[Fi([a]; D]t = fo St([a]; 1) dt (I1.2)

and (F{*([a]; ?)) is the average of F{%(f) over an ensemble of an infinite number of identical
experiments.

Suppose the quantity g(#) is taken for the present discussion to indicate the fraction of the
population in state i. Let us illustrate the meaning of these functions by indicating for this
case how one would obtain an estimate of (F£2) from a numerical experiment. Starting with
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FiGure 18 Fluctuations from the average in the time development of the synthesis frac-
tion-in-state (S/P) for C.V. = 0.2.

an initial population numbering N, , we run the Monte Carlo simulation m times, using dif-
ferent “random numbers”’ to generate transit times each of the m times. For each run, if we
subtract the graph provided by the statistical method for P;(f)/P(f) from the graph of that
run, we can evaluate equation II.1, and do the integral in equation II.2 numerically. Taking
the arithmetic average of the m integrals gives us our estimate for { F£2). We can find also the
variance for our estimate, as in any other experimental estimate of an average.

According to the central limit theorem of probability theory 1 if S, is the sum of » mutually
independent random variables with a common distribution having expectation u and vari-
ance o2, then the probability that the average S,/n, deviates from the mean u by a number
less than (B) /v/n where B is a constant, equals ®(B), where

B
®B) = 1/4/2x [ e=*2 dx, (IL3)

60
We will use this decrease in the deviation by 1/4/7 to estimate orders of magnitude. (For
B equal 3, $(B) gives a 99.99, probability.) Consider for an initial population N, the quantity

S([P:, No, ---1;8) = [P«(0)/P() — [Pi()/ P(1)]]. (IL4)

10 See reference 38, p. 229.
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FiGuRre 19 As Fig. 18 for C.V. = 0.1.

Now consider an initial population identical to the above except that it is m times as large,
that is each one of the N, cells are replaced by m cells, all of which start with initial conditions
identical to the cell they replaced. Then both the numerator and denominator of the first
term in (II.4) are sums of m random variables and so, by the central limit theorem, should be
of order of magnitude m times their average for N, cells, plus a term of order A/m times
their average. The difference between the quotient of the averages and [P;/P] should be of the
same order of magnitude so that

S([P;, No, -+-1;2) = O[S([P:, No, ---);0)//ml]. (1L5)

By a similar argument,
FilmNo, -+ ;t] ~ Fi[No, -+ ; t)//m. (IL6)
Let us next look at the behavior of S2(¢) for large . First we assert that the variance of
P,(1) and P(z) are of the same order of magnitude. If we assume this, we can find the order

of magnitude of S by taking P;(¢) /P(f) = [P;/P()] and looking at the similar quantity

8%(1) = [(P«1) — P«1))/P(n)- (IL7)
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When the population of cells is large, we can take P;(¢)/(P?) as equal to the probability
that a randomly selected cell is in state P; at time ¢. Then [1 — P;(f) /P(¢)] is the probability
of the cell being in some other state. If we neglect correlations between cells implied by our
model then we can use the binomial distribution for the N cells present.

Then if p(f) = P,(t)/P(t) and q(¢t) = [1 — p()] (IL8)
we have
[Pi(t) — P«(t)F ~ Npq
and

82 ~ O(1/N). (1L9)

Since the number, N, of cells present increases exponentially with time, this implies that
F{(x) is finite.

Finally we note that when the coefficient of variation of the cycle is zero, S(¢) and F{(?)
are both identically zero. Qualitatively the graphs for P;/P(¢) are considerably smoother
for populations having C.V. = 0.1, than are the graphs for populations having C.V. = 0.2.
It may be of interest to see if the fluctuation approaches zero monotonically with decreasing
C.V. This is not at all obvious since the fluctuations for a smaller C.V. may last longer than
for a larger C.V.

In conclusion, we have outlined an approach to understanding the fluctuations in bio-
logical quantities arising from the randomness of the transit times. These fluctuations may
be quantitatively described in terms of a time-dependent variance, S%(f), and a fluctuation
function, F£(f). When we applied these quantities to the fraction-in-state, we found that S?
varies inversely with the initial population and F£() is finite. The graphs in Figs. 18 and 19
illustrate experimental effects of the fluctuations. These graphs and the suggested procedure
following equation II.2 show that our numerical methods are adequate to estimate the fluc-
tuations if they should be mathematically intractable in particular cases.

APPENDIX III

As we have noted in the text, the method of solution of the renewal equation,

(1) = f(t) + 2 f "B — () dt’ (1IL1)
0
with
Sy =l — et >0
=0 t<0 (IIL2)

is well known (40, 41). Since our complete derivation is quite brief, we feel that a summary will
be of value for reference. If we denote the Laplace transform of a function f(z) by L(f), then
we use the following theorem (45). Consider two functions f(¢) and g(#), both continuous
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for + > 0 and identically zero for ¢+ < 0, and both bounded above by an exponential of the
form e where b is a constant.
If the convolution, 4(z), is defined by

3

h(t) = fo g ft — t) ar’ (1IL3)
then
Lix] = LifLig]. (11L4)

The functions f®(¢) in the series solution, equations 9 and 10, are of this form, therefore
applying equation II1.4 successively to each term of equation 9 gives

L[P] = X 2~Y{L[f]}}»

n=]

= L[f)/[1 - 2L[f]].

Now using the explicit form equation II1.2, we have (45)

Lif)(2) = 7/(z + )™

Hence
L[P)(2) = 1/[(z + n)~/n™ — 2] (IIL5)
or factoring the mth order polynomial in the denominator

L[P)(z) = m/g (z—r) (11L6)
where r; is the jth root of the equation
+pP9r—29m =0

2Umy exp (2wi(j)/m) — n
=12 ---m (I1L.7)

rj

Expanding equation IIL.6 as a.sum of a partial fraction we obtain

L[P] = n"'ji_l Ai/(z — 1)) (I11.8)

where A4; is simply found by multiplying equation II1.6 by (z — r,) and allowing z to ap-
proach r; , giving

4; = {;‘[:I’ (r; — rk)}—l

= {n"‘_‘Z”"”"' exp (2#i(j)(m — 1)/m) f‘Ij [1 — exp (2i(k — j)/m)]}". (111.9)
k=1
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We can simplify the form of A4; by noticing that

l:I [1 — exp (2¢ik — j)/m)] = lim [(" = 1)/(z = 1)] = m. (IIL10)

k=1

Therefore

A; = grR2mlmm exp 2xi(j)(m — 1)/m)
=42 m
or j=01:--,m-—1 (IIL.11)
Using the fact that the inverse Laplace transform of 1/(z — r;) is e’/* we obtain finally from
equations I11.8 and II1.11,

_ m—1/m pm €xXp [21/"'8(2".)’./," - 1]’7"
PO = /2 3" xp (il = 1/m]

which is the derivative of the result obtained by Kendall (19) using a set of coupled differen-
tial equations for his model. Notice that P is real in form, since for every term with j # 0
or m/2 in the sum we also have the complex conjugate term.

(1L.12)
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