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ABSTRACT The properties of the steady states of a system composed of two
solutions separated by a quite general type of ion exchange membrane having
fixed sites are derived as functions of the compositions of the solutions and of
the difference of electric potential between the two solutions. These properties
are evaluated with the restraints that the membrane is solely permeable to cations
or anions, no flow of solvent occurs, and the solutions contain no more than
two permeant ionic species, which are monovalent. Under the assumptions that
the difference of standard chemical potentials of the permeant species and the
ratio of their mobilities are constant throughout the membrane, even when the
spacing of sites is variable, explicit expressions are derived for the electric cur-
rent, individual fluxes, and concentration profiles. An unexpectedly simple
dependence of these expressions upon distribution of sites is found.

In a preceding paper (Conti and Eisenman, 1965) the expression was derived for
the difference of electric potential between two solutions separated by a quite gen-
eral type of ion exchange membrane in the non-steady state for zero current. The
present paper is concerned with all the properties of such a system in the steady
state. It continues our attempt to arrive at general formulations about membrane
phenomena, hopefully some of which may be applicable to biological membranes.

DESCRIPTION OF THE SYSTEM AND ASSUMPTIONS

The system with which we deal is an ion exchange membrane of thickness d having
fixed sites of valence zo = ± 1. The membrane is interposed between two solutions
which may contain different solvents. We assume that neither of the two solvents can
flow through the membrane.' The membrane is furthermore assumed to be permeable
only to cations or to anions, depending on whether zo is -1 or + 1 respectively; and

I Temperature and pressure have been assumed to be constant throughout the membrane. The
absence of a pressure gradient is compatible with zero solvent flow in a fixed site membrane only
if the membrane is impermeable to the solvent or if the mobility of the solvent in the mem-
brane is very low.

511



we consider the case of only two permeant monovalent species, 1 and 2, present in
solutions (') and ("). In a frame of reference with the x axis normal to the mem-
brane surfaces and the origin at the boundary between solution (') and the mem-
brane, the membrane properties are assumed to vary only with x. The properties
of the membrane are assumed to be completely determined by the properties of the
sites and their concentration. We will assume that the properties of the sites do not
depend on their spacing. This allows us to conceive a situation in which the concen-
tration of sites varies along x, but the site properties are constant. In such a case it
might be incorrect to assume either the standard chemical potentials of the individual
species or their mobilities to be constant, as is usually done for systems having uni-
form spacing of sites. Therefore we assume, more generally, the following equations
to be valid regarding the dependence of mobilities, ul and u2, and standard chemical
potentials, IU10 and 1120, on x:

d
(U

d,pl° d,02(
dx dx (2)

Note that assumptions (1) and (2) are of course true for a uniform distribution of
sites where ul, U2, Aj-1 and /120 are constant.

With respect to the equilibrium properties of the ions in the membrane, we assume
that the following empirical relation, which has been found to apply to the equilib-
rium between a solution and a wide variety of ion exchangers (see Karreman and
Eisenman (1962) for references), is valid:

n2 a
(sol)C2n a,(b) = K, (3)

C1 aa

where C1 and C2 are the concentrations of ions 1 and 2 in the membrane, al(sol)
and a2(8ol), their activities in solution, n depends only on membrane properties, and
K is the thermodynamic equilibrium constant, otherwise defined by:

a2 (aol)
(ol) = K, (4)a, a2 s)

where a, and a2 are the activities of ions 1 and 2 in the membrane. Equations (3)
and (4) yield the following relationships between activities and concentrations at
any point in the membrane phase:

al =pC,, (5)
and

a2 = pC2", (6)

where p is a proportionality factor which depends on the properties of the membrane
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and n is the parameter characteristic of this type of non-ideal behavior, being 1 in
the case of ideal systems.
We make the further assumption here that n depends only on the properties of

sites; so that in the present case in which site properties are assumed to be constant:

dn 0. (7)dx

METHOD OF PROCEEDING

Under the assumption that the only driving force acting on an ion of a certain species is
due to the gradient of its electrochemical potential, which we assume can be written as
the sum of the chemical potential and the electric energy per mole, we have at any point
in the interior of the membrane phase, taking account of equations (5) and (6):

Ji=- -Cluix(Al +nRTlnCi+RTlnp+zFP) (8)
and

J2 -C2u2d (A2 + nRT n C2+ RTln p + zFt), (9)

where J, and Ja are the fluxes per unit area of the two ionic species in moles cm' sec.',
C1 and C. their concentrations in moles cm', Iul' and ,u2 their standard chemical potentials
in joules per mole, u1 and us their mobilities in moles cm! sec.-' joules'1, z their valence, &
the electric potential in volts, F the Faraday constant in coulombs per gram equivalent,
R the gas constant in joules moles'1 degree'1, and T the absolute temperature.

Equations (8) and (9), together with equations ( 10), (11), and (12):

(C1 + C2) = Co, (10)
ax OdCt (11)

dJ2 _ dC2 (12)
Ox O9t'(2

constitute the set of equations describing the behavior of the system. Equation (10), in
which C. is the concentration of sites, expresses the condition of macroscopic elec-
troneutrality; and equations (11) and (12) express the conservation of counter-ions.

In the stationary state of the system, no variables depend on time so that:

a J O_C1 0 (13)
Olx Olt

OxJ2 aC2 0 (14)

Taking account of equations (7) and (10) and substituting total derivatives, equations
(8) and (9) become:

11 = -C1u1-d (p10 + RT In p + zF) - nRTu1 dXC (15)J, C,U,dx uldx
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-(C0-C1)u2d 0(dCo dCl\J2 = (Co-CjU2 dx (A2 + RT In p + zF#)-nRTu2 d °- dl)* (16)
dx dxi

Since from equations (13) and (14) we deduce that J. and J, are constant, and
since C,(x), ul°(x), j,u2(x), p(x), ul(x), u2(x) are to be considered as known functions,
determined by the properties of the membrane, equations (15) and (16) constitute a
system of two differential equations of the first order in the unknowns C1 and & in which
J1 and Ja can be regarded as parameters. Such a system of differential equations has one
and only one solution for each pair of values of J1 and J. when the values f(0) and
Cl(O) are assigned. We can arbitrarily fix the value of &(O) because only differences of
potential are meaningful; and the condition of continuity of the electrochemical potentials
of the two species at the boundary between solution (') and the membrane fixes the value
of C1(0) through equation (3),

C2"(0) (a,') (17)
C1n(O) (aK'2(17

where (as') and (as') are the activities of ions 1 and 2 in solution (') and K' is the
thermodynamic equilibrium constant at this interface.2 Equation (17) together with
equation (10) gives:

C,(0) = co(o) (18)

1 + K'-7-a2IL(all)Imposing the other boundary condition, which sets the value of Cl(d):

= d)Co(d)1 + [K" (a21') ]/n (19)
+ (a1"l

where (a,') and (a,") are the activities of ions 1 and 2 in solution (") and K" is the
thermodynamic equilibrium constant at the interface between solution (") and the
membrane, we obtain an equation which has to be satisfied by J, and J2.

If we indicate by V the difference of electric potential between solution (') and (")
then, following Teorell (1953):

y(d)- y6(0) = V- Vb, (20)
where Vb is the sum of the boundary potentials across the membrane solution interfaces,
and is determined by the continuity conditions at these interfaces. Equation (20) fixes the
value of +(d) for any given V and is therefore an equation which has to be satisfied by
A and J,. This equation, together with equation (19), sets the values of A and J.

PROCEDURE

Multiplying both sides of equation (15) by (CO - Cl)u2 and both sides of equa-

2 We have implicitly assumed that the fluxes of species 1 and 2 are "membrane-controlled" (cf.
Helfferich, 1962).
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tion (16) by Cluj and subtracting the resulting equations term by term, we obtain,
taking account of equation (2):

(CO- CJ)u2Jl - ClujJ2 = -nRTulu2 CO dWI -Cl dC (21)dx dxJ

Dividing both sides of equation (21) by ul and CO (both assumed to be non-
zero) and rearranging we get:

rJ1 - (rJ1 + J2)X1 = -nRTru1Co dX' (22)

where we have defined the mobility ratio, r, by:

12 = r (23)
U'

and the mole fractions X1 and X2 by:

C, - XC;-X2= (24)
CO CO

r is a constant by assumption 1, and from equation (10):

Xi + X2 = 1- (25)

For any pair of values of J1 and J2 for which:

rJ, + J2, ° (26)
the integration of equation (22) gives:

IT __r__ (rJ, + J2)Xi(x) -rJ, S.
rJ, + J2 (rJ, + J)X1' rJ =St , (27)

where we have defined S,, as:

Sz=f Co(x)u,(x)' (28)
and where:

XI I = Xi (0) CO(O) (29a)

From equation (18):

1 + 1
la n (29b)

Equation (27) can be rearranged to give the explicit expression of Xl(x):

) r J IrX-+ ( J J2 SXI(x) = rJ+ 2
X

rjir4 exp r+ n (30)
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Equation (30) constitutes the general solution of equation (22) under the condi-
tions of equation (26).

For any pair of values of J1 and J2 such that:

rJi+ J2 0 (31)

the integration of equation (22) gives:

Xl(x)- X --J1 nRT (32)

It can be shown that equation (30) reduces to equation (32) in the limit for (rJl +
J2) -O 0. Therefore, equation (30) is the general solution of equation (22) for any
set of the parameters J, and J2, provided the proper limits are taken whenever equa-
tion (30) loses its meaning.

Equation (30) for x = d gives:

it r J, r11, (Ji + J2 S
XI = rJi ++J2] ri + A] exp r nRT (33)

where we have defined S as:

= Co(x)ul(x)' (34)

and where:

xi//' = XIL(d) -1 1n(5
I+["a2ftl/ (35)1 + [K"II

by equation (19). Equation (33) sets a condition to be satisfied by J1 and J2,
X1" and X1' being determined through equations (29) and (35). It should be
emphasized that X1" and X1' are completely determined by the ratio of the activities
in solution of species 1 and 2, by the ion-exchange equilibrium constants K" and K',
and by the parameter n.

Let us return to equations (15) and (16) in order to solve for +(x). Multiplying
both sides of equation (15) by J2 and both sides of equation (16) by J1 and sub-
tracting the resulting equations term by term we get, taking account of equations
(2) and (23):

[(rJA + J2)C - rJlCo] du1[ + RT In p + zFy]

-nRTf (rJ + J2) dC -ridrJ ] (36)

The integration of equation (36) is immediate, giving as result:

[,l°(x) + RT In p(x) + zF%P(x)] - [1°o(0) + RT In p(O) + zF#(O)]
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nTIn(rJ1 + J2)CI(x) - rJiCo(x) (7
- -nRT In (rJi + J2)C1(O) - rJCo(O)'

provided that equation (38) is never satisfied for any x:

(rJ1 + J2)X1- rJ1 = 0. (38)

From equation (30) one can see that the only case in which equation (38) is
satisfied corresponds to:

Xl(x) - r +'1 = const. (39)rJ1 + J2

In this particular case equation ( 15 ) gives directly, taking account of equation (24):

J= X1COu f (Ml0 + RT In p + zF4t) - nRTX1Coul d In CO, (40)

which can be integrated, giving as a result:

[uA0(x) + RT In p(x) + nRT In CO(x) + zF#J(x)]
-[il (O) + RT In p(O) + nRT In CO(O) + zF4I(O)] rrJ1 + '2 SI (41)r

Equations (37) and (41) give the electrical potential profile +(x) for the respec-
tive cases of X1' #7 X1" and Xl' = X1". In order to know the function +(x) we can
see from equations (37) and (41) that we need to know the functions /L?W(x),
p(x), Co(x), and ul(x) which determine the properties of the membrane. For the
particular case in which the distribution of sites is uniform Mi°(x) = u1°0(0) = const.,
p(x) = p(0) = const., Co(x) = CO(0) = const., ul(x) = ul = const., S. = x/Coul,
so that equation (37) gives:

(rJi + J2)XI(x) - rJ1zF[%(x) - 0(0)] = -nRT In (rJ + J2)x1'-rJ1 (42)
and equation (41) gives:

zF[t(x) - (0)] = + J2 x (43)

From equation (43) we deduce that, when X1' = X1", the electric field is constant
throughout the membrane since the potential is a linear function of x. For the case
of 1' # X1", we can draw the same conclusion by inserting the expression of
Xl(x) given by equation (30) into equation (42). A constant electric field is thus
a very general property of solely cation or anion permeable ion exchange mem-
branes having uniformly distributed sites,3 but it is not a property of such ion ex-
change membranes when their sites are not uniformly spaced.

8 This conclusion has been reached previously by Karreman and Eisenman (unpublished re-
sults).

FRANco CoNTi AND GEORGE EISENMAN Ion Exchange Membranes 517



Rewriting equations (37) and (41) for x = d we obtain:

zF[O(d) - 0(0)] = gul'(0) -,Al(d) + RT In P(O)
p(d)

RT (rJ1 + J2)X11 - rJ1 C0(0)
- nRT In (( J ++ J))X ' _ 'nRT In (44)(rJi + J2)Xi" rrJ1 C(d)

and:

zF[P(d) - iP(0)] = 0ul(O) - Al(d) + RT In + nRT In Cr(d) = J + J2 S.p(d) C0(d) - r

(45)
At the boundary between the membrane and each solution, the conditions of the

continuity of the electrochemical potential of species 1 give:

A10' + RT In al' + zF#' = s°o(O) + nRT in Cl(O) + RT In p(O) + zFi&(O) (46)
and

ji'(d) + nRT In Cl(d) + RT In p(d) + zFO(d) = Ih,"1 + RT In al" + zF#". (47)
In equations (46) and (47), ,1Aj' and gu1" and &' and &" denote the standard chemi-
cal potentials and the electric potentials in solutions (') and ("). We assume the
solutions to be completely homogeneous, and will henceforth abbreviate 1°"-u°'
as Aju°-
Adding term by term equations (44), (46), and (47) we get the expression for

electric potential difference between solution (") and solution ('), V = &"- ', in
the case X1' #& X1":

V -1l RT a1,' nRTn[T Xl' (rJ1 + J2)Xl' - rJu (48)

zF +zFEI ail +zF Ln A'i' (rJ1 + J2)Xi"' - rJ1J
48

Addition term by term of equations (45), (46), and (47) gives the expression of V
in the case X1' = X1'":

V A/° + RT In aa' rJ1+ J2 S (49)
zF zF a1"l r zF (9

Membrane potential. It will be useful for the following to introduce the
quantity VO, the difference of electric potential between solution (") and solution
(') for zero electric current. The electric current for unit area, I, is related to the
fluxes JA and JA through:

zF(J1 + J2) = I (50)
For I = 0 and X1' = X1'", from equation (33), after replacing J2 by -J, we can
see that JA =& 0; so that from equation (50):

J2 -1 (51)
J1
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For I = 0 and X1' = X1", equation (33) requires in the same way that J1 = 0; and
therefore J2 = 0.

Equation (48) gives, taking account of equation (51), the following expression
for VO, when X1' #e X1":

APIOR+TnTinX11'[X1' ± rX2t]
zF zF aill zF XI [XI" + rX2"] (52)

whereX2' = X2(0) and X2" = X2(d).
Equation (49) gives the following expression for VO, when Xl' = XI":

VO =-zF +
zF

In a1'l (53)

For X1' = X1i', which from equation (25) implies X2' = X2", equation (52) re-
duces to equation (53). Therefore equation (52) is the general expression for Vo.
Taking account of equations (25), (29b), and (35), equation (52) can be written:

VO=_AZ1 +nRT 1allI+ u- [Kla2'flI/%
vo +~__ U I (54)

zF zF U2 [
U1

which is identical to equation (40) of Conti and Eisenman (1965).

RESULTS

We shall introduce some definitions in order to express our results in more concise
form. We define the quantity V* by:

V*= V - Vo (55)
and I through:

t-exp zFT V* (56)

The ratio of the two fluxes will be indicated by f:

J2 (57)

and we shall indicate by a the ratio:

X1" + rX2' = a. (58)

The meaning of the latter quantity will be discussed later.
Fluxes. Because of definitions (55), (56), (57), and (58) and of equa-

tion (52), equations (33) and (48) can be rewritten as:
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- r _ I rl( +ifr++ LI r+,exp\rn T 1 (59)X,"= +f + X'r + f] x r nRT '
and

(r +f)XI' r 1

(r + f)X I -a (60)

Rearrangement of equations (59) and (60) gives:
nRT r (r + f)Xi" -r (61)
S r +If(r+If)XI' -r

and

f = r ~X - {X" (62)

Substitution of f from equation (62) in equation (61) gives for Jl:
s=_nRT Xl'-Zxl" ln at. (63)

S 1 -as

Recalling the definition (57) of f and multiplying equation (63) term by term by
equation (62), we get the expression for J2:

J2 = -nRTX2'--1 -aX, Ince. (64)

Equations (62), (63), and (64) are valid for X1'#7& X1'".
On the other hand equation (49), valid for X1' = X1", can be written, because of

definitions (55), (56), and (57), as:

J1= - r- f In (65)S r+ f

and equation (59), valid generally, requires for X1' = X1" that:

I - ,. 4 ) =0 (66a)
or:

X2'
f XI I2 (66b)X1

Substitution of f from equation (66b) in equation (65) gives for Jf:

J, nRT-SX1' 1n . (67)

Multiplying equation (67) term by term by equation (66b), we get the expression
of J2:

12 = -r- X2' Ins. (68)
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For X1' = X1", it follows from definition (58) that a = 1. Equations (62), (63),
and (64), for X1' = X1'", then reduce respectively to equations (66b), (67), and
(68). Therefore, equations (62), (63), and (64) are completely general. Some
implications of these equations will be examined in the discussion.

Concentration Profiles. By inserting the expressions of J1 and J2 given by
equations (63) and (64) in equation (30) we obtain after simplification:

xl(x) = las + I (a) . (69)

Equation (69) together with equation (25) gives:

X2(X) = X2' X2 + X2- X2 ()8Ss)/S (70)

The concentration profiles will be considered further in the discussion.
Electric Current. The electric current per unit area, I, is related to the

fluxes through equation (50). Substitution of the expressions of JA and J2, given by
equations (63) and (64), in equation (50) gives, after simplifications and re-
calling definition (58):

-I= zF (XA'1' + rX2') 1 I a. (71)

Equation (71) is an analytical expression for the current-voltage relationship
whose properties will be examined in the discussion.

Electric Conductivity. The dynamic conductivity, G&, [see Teorell, 1953,
equation (31)] is given by:

Gd = Vd (72)
Since VO is independent of V:

dI
Gd - dI (73)

Differentiation of I given by equation (71) with respect to V*, recalling equation
(56), gives:

Gd = S (X1' + rX2') (11-
-

at)-(1-
In (74)

since Z2 = 1.
In the present case, as we know the concentration profiles of the ions in the

membrane, we are also able to calculate the theoretical conductivity, Gt, [see Teorell,
1953, equation (30)]:

C3d dx (75)
JOCIUI + C2U2
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Recalling equation (24), we can rewrite equation (75) as:

F2
fd dx (76)
JO Co(x)ui(x)[Xi(x) + rX2(x)]

Substitution of the expressions of Xl(x) and X2(x), given by equations (69) and
(70), in equation (76) and a lengthy integration give as a result:

F2 I Ina
GI =- (X1' + rX2') 1 _ in (77)

Comparison of equation (77) with equation (71) gives, recalling equation (56):

Gt = -V*. (78)

Thus, on a plot of -1 as a function of V*, the slope of the straight line from the
origin to any point on the curve gives the value of Gt in that point, while the slope of
the tangent to the curve in that point gives the value of Gd.

DISCUSSION

Equation (62) for the ratio of the fluxes; equations (63) and (64) for the fluxes;
equation (71) for the electric current; and equations (74) and (77) for the electric
conductivities give the general expressions of these quantities in terms of the dif-
ference of electric potential between solution (") and solution ('), appearing
through e, and in terms of the activities in the solutions which fix the values of X1'
and X1i" through equations (29b) and (35). (X2' and X2" are just given by 1 -X1'
and 1 -X1".) The properties of the membrane and of the solvents appear in these
expressions only through the quantities r, n, K', K", Att,, and S, as apparent from
equations (29b), (35), (55), and (52). Equations (69) and (70) give the general
expressions for the concentration profiles in terms of the external parameters men-
tioned above. The properties of the membrane and of the solvents appear in these
expressions through the quantities r, n, K', K", and A&,u1 and through the function
S.,. All of the conclusions of our analysis are contained in the above equations, and
we will discuss below those which we consider more important. Plots showing the
general features of equations (71), (62), (63), (64), (69), and (70) are given in
Figs. 1, 2, 4, and 5.

Current: Voltage Relationship. Let us rewrite equation (71) in terms of
V* (recalling that V* = V- VO):

-I = zF S(XI + rX2u) X{ (nRTV* + ia). (79)-I=zFzF nRT0 .
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s I
nRT zF

40

20 - -ST z =(X; + rX;) [FVF +I*n20 nRT zF 2LnRT J

S (X' +rXi)F zF 1 ~]n-2nRT zF L nRT + -20

--40

-60

FIGuRE 1 Current:voltage relationship. - S/nRT - I/zF is plotted as a function of
zF/nRT V* for the values of the parameters: r = 30, X1' = 0.5, X1" = 0.98. [See
equation (79)].

A plot of -S/nRT -I/zF against zF/nRT * V* for the particular values of r = 30;
Xi = 0.5 and X1" = 0.98 is shown in Fig. 1. These values were chosen arbitrarily
to illustrate the general features of the current:voltage relationship and of the other
relationships examined below.

For high positive values of zV* the current:voltage relationship approaches
asymptotically the straight line:

-I = zF (-(XI" + rX2') V* + In a) (80)

For high negative values of zV* the current:voltage relationship approaches
asymptotically the straight line:

-I = zF nRT(X' + rX2') (ZRT V* + In (81)

The intersection of both limiting strength lines with the V* axis occurs in the
same point:

V* = -RT In o, (82)
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I :1>t.l ' t 4 4-3

FIGURE 2 Flux ratio: voltage relationship. fir is plotted as a function of zFInRT-V
for the values of the parameters: r = 30, X1' = 0.5, X1" = 0.98. [see equation (62)].

and the ratio of their slopes is:

lim Ga(V*) 1 + [K" a2] 1 + U2 K[ al ] . (3
a

V") = K":;;1R +-- .-41 (83)
lim Gi( V*) 1 + K"ff t 1 + Kff -2]

XV$-_+CG Ul a, a,

Equation (83) reduces to equation (38) of Teorell (1953) for K' K" = 1, n = 1,
al' + a2' = a," + a2", considering that in our case either VP and V2 or CT, and C2 of
Teorell are zero. Furthermore, equation (83) gives a simple physical meaning to the
quantity a.
The properties of the membrane appear in equation (79) through r, n, K', K",

and S. One can design in many ways a series of measurements by which, making use
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T r h %4 < t~~~~~~~~~~NO F

-.... .-o -o...
4-0'~~~~~~~~~~~'

FIG.URE 3 Flux ratio:current relationship. flr is plotted as a function of - S/nRT
I/zF for the values of the parameters: r = 30, Xi' = 0.5, Xi4" = 0.98. [see equations

(62) and (79)].

of equation (79),, the values of these quantities can be determined. One way of pro-
ceeding when only one solvent is present (in which case K' = K" =K) is outlined
below. When, of the two permeant species, only the species 1 is present in solution (')
and only the species 2 is present in solution (")., equation (83) gives (as we have in
this case a.' = .0, = 0):

lrn Gd(V*)
- *.. ;

liM G . ' (84)U2*

and the measurement of the ratio of the limiting slopes of the current:voltage rela-
tionship provides a direct measurement of the mobility ratio.
The intersection of thelimiting straight lines with theVd axis gives the value of n

through equation (82) since a = u/lu2 is known from the above measurement.
A direct measurement of I for a particular value V* gives, furthermore, the value
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FIGuRE 4 Flux: voltage relationship. - S/nRT Ji and - S/nRT-J, are plotted as a
function of zF/nRT-V* for the values of the parameters: r = 30, X;' = 0.5, X1" =
0.98. [see equations (63) and 64)].

FIGURE 5 Concentration profiles in a
membrane having uniformly distributed
sites. X1 is plotted as a function of x/d
for the values of the parameters: r = 30,
Xi' = 0.5, X1" = 0.98 and for the indi-
cated values of zF/nRT-V*. [see equa-
tions (96) and (97)]. Notice that V* =

x 0 corresponds to I = 0, and also that, for
, d zF/nRT.V* = -2.29, t = I/a.
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of S, once we know the values of n and r, through equation (79) which becomes in
this particular case:

nRT 1-exp{nRT V*}(F-I= zF V*- In)r (85)
r -exp {nRT V

Also, once we know n and r, an evaluation of a through equation (83), for any
particular set of solution conditions different from the ones considered above, can be
used to obtain the value of K. One convenient set of solution conditions could be:
a2' = 0; a1" = a2". In this case:

XIt = t; XItt -1 + (K)Y/n (86)
and

1 + Kl"' (87)

so that:

K=( ia§rY. (88)

Fluxes. The general features of the flux ratio:voltage relationship, equa-
tion (62), are illustrated by Fig. 2 which plots f/r against zF/nRT-V* for the
particular values of the parameters r = 30; X1' = 0.5; X1" = 0.98. Fig. 3 illustrates
the flux ratio-current relationship and is obtained by combining equations (62) and
(71) for the values of the parameters given above.

Fig. 4 illustrates the general features of the relationship between fluxes and
voltage [see equations (63) and (64)] and is a plot of -S/nRT-J1 and -S/nRTIJ2
against zF/nRT * V* for the same values of r, X1', and X1" used in Figs. 1, 2, and 3.

Figs. 2 and 4 show that for the particular value of V*:

V* =-zF[nIn '+ Ina (89)

the flux of species 1 reduces to zero and the flux ratio 12/J1 approaches infinity;
while for the particular value of V*:

zFn X2"

the flux of species 2 reduces to zero and the flux ratio of J2/J1 becomes zero. Equa-
tion (79) gives for the currents corresponding to these values of V*:

-I =zF r ln Xi (91)

and
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= zF nRTIn X21 (92)
S X2t

respectively.
The differences of electric potential between solution (") and solution ('), cor-

responding to the values of V* in equations (89) and (90) are given by equations
(93) and (94), respectively, which come directly from equations (55) and (52)
recalling equation (58):

AA0 RT a,
V = _ ^/s1 + RT In (93)zF zF all

AA2+ RT a,'
zF zF a,l

Equations (93) and (94) are consistent with the fact that for J1 or J2 to be zero,
species 1 or 2 have to be in thermodynamic equilibrium throughout the system,
which means, that, for example, for J1 = 0:

Al0' + RT In a,' + zFk' = ju°" + RT In a," + zF#", (95)
which reduces to (93). Therefore, equations (91) and (92) define the currents
for which the equilibrium potentials of species 1 and 2 are observed.

Fig. 3 has obvious implications for the behavior of ion specific electrodes under
applied electric currents. For example, for the currents given by equation (91) or
(92) an electrode becomes infinitely selective for species 1 or 2, respectively. More-
over, under these conditions, species 2 or 1, respectively, is the ionic species solely
carrying the electric current; and this has implications for the possible use of ion
exchange membranes for electrolytic purification processes.

Concentration Profiles. Fig. 5 is a plot of X1 against x for four different
values of V* (when r = 30; X1' = 0.5; and Xl' = 0.98) for a membrane having
uniformly distributed sites. For this particular distribution, SW/S = x/d; and Xl is an
exponential function of x, since equation (69) becomes:

XI() A, - axfX + A" -A (O)(1 /d) (96)

For the particular value of I= l/az equation (96) is meaningless. As already men-
tioned in relation to equation (30), in this case we have to substitute equation (96)
by its limit, giving a linear concentration profile:

Xl(x) = AT' + (X1"- AT') X. (97)

The Effects of Site Distribution. Equation (52) shows that, for the system
considered here, V., the difference of electric potential between solution (") and
solution (') for zero current, is independent of the distribution of sites. This con-
clusion applies not only to the steady state but also to the non-steady state once
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boundary conditions are applicable since VO is then independent of time (Conti
and Eisenman, 1965).

Equation (62) shows that for the present system the relationship between the
ratio of the fluxes, f, and the difference of electric potential between solutions (")
and (') is also independent of the distribution of sites.

Equations (63), (64), and (71) show that the relationships between V and the
individual fluxes and between V and the electric current contain the integral, S as
the only quantity determined by the distribution of the sites. Notice furthermore that
S appears in the above equations merely as a multiplicative factor; and as a con-
sequence, a variation of the site distribution does not alter the general features of
these relationships. Equations (69) and (70) show that the concentration profiles
depend on the details of the site distribution through C. (x) and S0.
The dependence of the properties of a fixed-site membrane on the distribution

of sites investigated in this paper provides a basis for the analysis of the properties
of ion exchange membranes having mobile sites. This analysis was carried out by
the authors under the assumptions that sites and counterions are completely disso-
ciated, that their activities are equal to their concentrations, and that their mobilities
are constant (Conti and Eisenman, in preparation).

Relevance to Biology. It is not easy, in the absence of a knowledge of the
pertinent structures involved in ion permeation through biological membranes, to
assess the direct relevance of the present treatment to bioelectric phenomena. Certain
aspects of this problem have been discussed elsewhere (cf. Eisenman and Conti,
1965); and it is worth noting here that if the steady state properties of biological
membranes were compared with the present theoretical conclusions, this would
test whether they are consistent or inconsistent with those arising from an ion
permeation mechanism utilizing fixed sites. Such a test would require, among other
things, recognition of the fact that biological membranes generally are not permeable
solely to either cations or anions. It may therefore be necessary to carry out the
experiments on biological membranes using special anions (or cations) to which
the membrane is not permeable.

Altematively, if anion and cation permeation through biological membranes take
place through a mosaic of separate "pathways", each of the type analyzed here, the
complexity can be dealt with by noticing that the potential difference between the
solutions on the two sides of the membrane is the same across each "pathway."
Under the assumption that the two pathways are electrically insulated from each
other within the membrane, the potential E0 for zero net membrane current can be
derived from the following equation:

(1X- exp F(+Vo," } F(V - °)
-( ++r n~1-.RTx-_o4 ViFRTEO + In aJ

- a e
. n- RT
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exp~ F(Eo - Vo +

n n-xp + RT r n- Vo+)= (Xl ' + r Xl+")- n RT LF(Eo- Vo ) + In a+]ST - + exp {F(Eo+-Vo+)} nR

(98)
where + and - superscripts refer to the values of the appropriate quantities for
the cation and anion pathways, respectively. For the case in which the solutions on
the two sides of the membrane contain the same 1 - 1 valent salt at activities d and
a", equation (98) reduces to the simple form:

E S+- S+ RT In a" (99)

from which it can be seen that the membrane potential will be a linear function of
the logarithm of salt concentration having a slope differing from that of the Nernst
equation by the constant factor (S- - S+)/(S+ + S-), whose absolute value is
always less than unity.
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