
A PSEUDO-MARKOV MODEL FOR SERIES

OF NEURONAL SPIKE EVENTS

ANDERS EKHOLM and JUHANI HYVXRINEN

From the Finnish Foundation for Alcohol Studies and the Institute of Physiology,
University ofHelsinki, Helsinki, Finland

ABsrRAcr Spike trains of spontaneous neuronal activity in the rabbit brain are
submitted to statistical analyses based on the following pseudo-Markov model. The
nerve cell is supposed to alternate between a bursting and a resting state. The num-
bers of consecutive spikes within each state are assumed to be independent integer-
valued random variables with discrete probability distributions. Given the state,
the interspike intervals are independent real-valued random variables. The two state
semi-Markov model is obtained as a special case when the discrete distributions are
geometrical. Statistical second-order properties of recorded spike trains are com-
pared with those predicted by the model on the basis of known first-order properties.
For that purpose, serial correlation coefficients and intensity functions for spike
trains produced by the model are computed. A comparison between observed and
predicted results for the spontaneous activity of 17 brain cells yields a good fit in
eight cells and discloses some salient features of the statistical structure in the ac-
tivity of six other cells. By making it feasible to compute theoretical correlograms,
the model may advance the understanding of empirical correlograms. The possibili-
ties for integrating this statistical model of spike trains with a model of the mecha-
nism of spike train production are discussed.

INTRODUCTION

The purpose of this paper is to display a statistical model of the single spike train.
Statistical models of spike trains are, of course, only a means to the neurophysiolog-
ical end of constructing and testing models of the mechanisms of spike production
(Perkel, Gerstein, and Moore, 1967 a and b). There seems, however, to be a need for
more complicated statistical models than the ones commonly used. The spontaneous
spike discharge activity of the neural cell has sometimes been considered to have the
statistical characteristics of a Poisson process. This may be the case in some peripheral
afferent nerves like the muscle spindle afferents (Buller, Nicholls, and Strom, 1953;
Hagiwara, 1954), carotid body afferents (Biscoe and Taylor, 1963), and auditory
primary afferents (Kiang, 1965). In most of the studies of the spontaneous unit
activity in the central nervous system, others than exponential interspike interval
distributions have been reported, particularly distributions resembling the gamma-
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type (Kuffler, Fitzhugh, and Barlow, 1957; Hyvarinen, 1966), normal distributions,
and multimodal distributions as well as many unclassified distributions (Rodieck,
Kiang, and Gerstein, 1962; Poggio and Viernstein, 1964; Pfeiffer and Kiang,
1965). Therefore, in the central nerve cells all spontaneous activity cannot be con-
sidered a simple Poisson process.

It is then natural to assume that the spike trains have the statistical characteristics
of a renewal process. Several of the recent models of the mechanisms of spike produc-
tion end up with this assumption (for example, Gerstein and Mandelbrot, 1964;
Stein 1967; for a summary see Moore, Perkel, and Segundo, 1966).

In some recent experimental works there has, however, been found spontaneous
spike activity which does not fulfill the criteria of a renewal process (Werner and
Mountcastle, 1963; Poggio and Viernstein, 1964). In a study of spontaneous spike
trains from 300 cells, Hyviirinen (1966) found that about 30% of the trains did not
fit the renewal hypothesis.
The outstanding characteristic of the renewal model is that the serial correlations

of all lags are supposed to be zero. We propose a model called the two state pseudo-
Markov (PM) model in which this assumption is relieved by assuming two alternat-
ing states of activity of the cell. The model makes it possible to compute theoretical
correlograms and compare these to empirically found correlograms. We believe
that there is a need for models from which the serial correlations of many lags
can be computed. Perkel, Gerstein, and Moore (1967 a, p. 402) show a considerable
interest in the interpretation of empirical correlograms, but their rules of interpreta-
tion are derived by simulation experiments (a very laborious way) or from empirical
experience (not always reliable and slowly learned). Among the generalizations of the
renewal model which Cox and Lewis (1966) survey, the two state semi-Markov
model is unique in that the serial correlations of the model for all lags can be easily
computed. In fact, we started out from an attempt to fit the two state semi-Markov
model to some spike trains but discovered that we needed a model allowing more
freedom for the behaviour of the serial correlations. The PM model was developed
from this impetus (Ekholm, 1967).

In the latter part of this paper, we perform a statistical analysis based on the PM
model of 17 spike trains drawn from the nonrenewal trains of Hyviirinen (1966).
Finally, we discuss some possibilities of deriving models of spike production in the
mathematical framework given by the PM model.

THE TWO STATE PSEUDO-MARKOV MODEL

Basic Mathematical Concepts
The basis for our mathematical and statistical work is the excellent textbook by
Cox and Lewis (1966) with which the reader is supposed to be familiar. The basic
concepts are also presented from the neurophysiological point of view in Perkel,
Gerstein, and Moore (1967 a). We are concerned only with single unit spontaneous
activity, a stationary process being assumed.
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For the times between successive spikes we write Xi, X2, *-. . These are random
variables, and for the observations we use the corresponding small letters xi, x2,
* - - . A spike train can be described formally in two different ways. One can study
the sequence of intervals {Xk ; k = 1, 2, -*- -I or the process of counts {N (t); t > 01,
where N(t) denotes the number of impulses up to and including the time point t.
It is shown by Cox and Lewis (1966, p. 66) that the second-order properties of each
aspect afford genuinely new information about the spike train not readily derived
from the other aspect.
To depict the sequence of intervals, we shall use the probability density function

(pdf), denoted f(x), of the marginal distribution of the X,'s with mean (,u) and
variance (a2) and the serial correlation coefficients p (k), k = 1, 2, .- , where k
denotes the order of the lag.
The second-order properties of the process of counts {N(t); t > 0} will be de-

scribed by the intensity function h (t) defined as

h(t) =lim Prob I{event in (t, t + At) I event at 01
At-O At

Perkel, Gerstein, and Moore (1967 a, p. 404) call this function in the general case
the renewal density, which is a most unfortunate use of names. We shall compare
the estimated intensity function with the intensity functions computed under the hy-
pothesis advanced here and under the renewal hypothesis. We shall call only the
latter of these two the renewal density.
The Poisson process is characterized by the fact that the Xi's are independent and

identically distributed with f(x) = 0 exp (-Ox). The serial correlations are zero for
all lags and the intensity function is constantly equal toO. If the Poisson process is an
adequate statistical model of a spike train, the information of the data is aptly
summarized by the estimate of the parameter 0.

In a renewal process the Xi's are still independent and identically distributed but
with any pdff(x). The serial correlations are all zero and the intensity function is not
constant but uniquely determined by the pdf. If the renewal model is adequate, the
data are summarized by the estimate of the pdff(x). The estimate of the continuous
function f(x) can either be in the form of a histogram or in the form of estimates of
the parameters of an analytically defined distribution.

In the PM model the Xi's are still substantially independent, but are not formally
independent. This is so because we assume that the cell alternates between a "burst-
ing" and a "resting" state. In the bursting state the times between the spikes follow
a distribution with pdff1 (x) (mean it,, and variance O2) and in the resting state they
follow another distribution with pdff2 (x), (M2, o2 ). The common marginal distribu-
tion of the Xi's is then a mixture of these two distributions. The fundamental assump-
tion is that the number of consecutive spikes in one state before the cell shifts to the
opposite state is an integer-valued random variable, independent of the number of
spikes in the other state. The number of consecutive spikes in the bursting state fol-
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lows the discrete probability distributuion {P (k); k = 1, 2, * * *- and the number of
consecutive spikes in the resting state follows the distribution {P2 (k); k = 1, 2, *. .
Conditional upon the state of the cell, the times between spikes are independent.
Under these assumptions the serial correlations are not zero and they can be com-
puted from a knowledge of the discrete distributions {p, (k)}, and the means and
variances I a, I v = 1, 2. The intensity function can be obtained from a knowledge
of the distributions {p, (k)} and the pdfs,fi (x), v = 1, 2. If the PM model is adequate,
the data are summarized by the estimates of the two discrete distributions {p, (k)},
v = 1, 2 and the two pdfs, f, (x). Again, the estimates can be either in the form of
histograms or in the form of estimated parameters of analytically defined distribu-
tions.
The PM model is reduced to the two state semi-Markov model with two types of

intervals (Cox and Lewis, 1966, p. 194) if the distributions {p, (k)}, v = 1, 2 are
geometrical, that is for k = 1, 2, *. *,

p,(k) = (1 - av)a', V-= 1, 2, (2)

where 0 < a, < 1. It is thus clear that the PM model also includes, as a special case,
the renewal model.

Description of the PM Process

To make quite clear how the PM process is built up, we shall indicate how a realiza-
tion could be constructed by simulation. We shall use the expression "spike of state
1" (or 2). Actually, of course, all spikes are indistinguishable and a spike of state 1
means that the interval following this spike is sampled from the distribution fi (x).
A sequence of spikes of like kind will be called a run.
Throughout this paper we will assume that the origin of the time axis coincides

with a spike. Let us start the realization in state 1, that is, the spike at the origin is of
state 1. The serial number of that spike is 0. We fix the length of the first run of spikes
of state 1 (denoted by Yll) by choosing a positive integer in accordance with the
discrete probability distribution {p, (k) }. Let the result be Y11 = k. We then sample,
independently of each other, k observations from the interval distribution fi (x).
The spike numbers 0, 1, ... , k - 1 are accordingly of state 1 and the spike number
k is of state 2. At the time point t = xi + - * * + xk, we consult the distribution
{p2 (k)} for information on the length of the first run of state 2 spikes (denoted by
Yu). Let the result be Y21 =j. Next we sample j independent observations from the
interval distribution f2 (x). At the time point t = xi + - - * + xk+j, we fix Y12 from
{pi (k)) and so on. The runs thus form an alternating sequence Y11, Y21, Y12, Y22,
Y13, Y23, *-. . Note that all samplings from the distributions fi (x), f2 (x), fpl (k) I,
and {P2 (k) are independent. The part of a realization we have just simulated is
illustrated in Fig. 1, with k = 3,j = 2.
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XI X2 X3 X4 X5

t=O t=x,+ x3 t=Xi*.+X5
* spike of state 1; X1,X2,X3 are sampled from f 1(x)
o I 2; X4,iX5 t It f2(x)

FIGURE 1 The realization described in the Description of the PM Process.

In contrasting the PM model with the semi-Markov and the renewal models, let
it be pointed out that in simulating the two state semi-Markov model we would
choose the type of each interval separately at the preceding spike. The probability
would depend only upon the type of the preceding interval in accordance with the
following matrix of transition probabilities

Type of the
(k + l)th interval

1 2

Type of the 1 al 1 - ai
kth interval 2 1 - a2 a2

From the mathematical point of view, this is equivalent to specifying that both
distributions of runs {p, (k)}, where v = 1, 2, are geometrical (cf. equation 2). This
is to say that formally the two state semi-Markov model is specified by the geo-
metrical form of the distribution of runs. But from the point of view of interpreta-
tion, the semi-Markov model is distinguished by the absence of a "memory"; the
choice of the type of interval to follow is made anew for each separate interval.

In simulating a renewal process there would be no choice of type of intervals since
all intervals are drawn from the same distribution independently of each other.

The Imbedded and the Full Process

The analytical treatment of the process will be built on the observation that mapping
the time points of spikes in the full process on the nonnegative integer of their serial
number gives us an alternating renewal process (cf. Cox, 1962, p. 80) on a discrete
axis. The dimension of this axis is the ordinal number of the spikes, and we shall
accordingly refer to it as the ordinal axis. The relationship between the full process
and the discrete alternating renewal (DAR) process is shown in Fig. 2.
The DAR is composed of the alternating sequence Yll, Y21, Y12, * - - . For a run

of spikes of state v = 1, 2, irrespective of the serial number we write Y., and we then
have for k = 1,2,2..,

Prob{Y,= k} =pt(k), v= 1,2, (3)
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x x2 xa XI x5 x6 x

Full

process * ai
=0 ~~~~~~~~~time

axis

YP, res Y( 2y1 Y

DAR
01234567 ~~~~~~~~ordinalO 1 2 3 4 5 6 7or,aaxis

V- 1 2 2 2 1 1 2

FiGuRE 2 The mapping of the full process on the integers.

where
00

0. pv(k) _ 1, Zp,(k) = 1. (4)
k-l

We assume that the expectations of the runs are finite and we denote them

EY,=x,, v= 1,2. (5)

For the probability-generating functions of the distributions {p, (k)}, we write
P,, (s), v = 1, 2, where -1 < s < 1. The tails of the distributions are

qv(k) = p, (k r+ 1 + pv (k + 2) + ***,(6)

and we note (Feller, 1957, p. 249) that their generating functions are

Q,(s) = (1- s) (l - Pv(s)). (7)

We shall say that the DAR is in state v = 1, 2 at point i if the ongoing run is of type
v. We include by convention the left, but not the right, end point of each interval
with the interval (cf. Fig. 2). We indicate the state of the DAR by defining a sequence
of two-valued random variables

V, = flif the DAR is in state 1 at point i (8)
12 if the DAR is in state 2 at point i

where i =, 1,
The sequence {Xi; i = 1, 2, * of times between events in the full process is

constructed by letting the value of Vi determine from which distribution Xi+, is
sampled. The full process is thus a set of random functions defined on a DAR. The
theory of semi-Markov processes could be similarly based on a Markov chain (cf.
Cox and Miller, 1965, p. 352).
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We want the sequence {Xi; i = 1, 2, * - } to be stationary (cf. Cox and Lewis,
p. 60), and this is reduced to the requirement that the sequence { Vi; i = 0, 1, .* . .

is stationary. In the simulation example the DAR was started deterministically in
state 1, and all the runs of the same type had the same distributions. We shall refer
to that model as the ordinary DAR. For the ordinary DAR the sequence { Vi;
i = 0, 1, - * * I is not stationary and we shall be forced to modify the start of the DAR
to construct an equilibrium DAR (cf. Cox, 1962, p. 85).

The Marginal and the Transition Probabilities

It is obvious from the specification of the sequence {Xi ; i = 1, 2, * that the mar-
ginal pdf of the Xi's is a mixture of the pdfsf, (x), v = 1, 2, with the weights depend-
ent upon the marginal probabilities, Prob I Vi = v}, of the equilibrium DAR.
The serial correlations of the Xi's will depend upon the "transition probabilities,"

Prob { V+ = w Vi = v, of the equilibrium DAR in a rather straightforward way.
This can be seen by the following argument. Write XiXi+k (v, w) as a shorthand for
XiXi+k under the condition that Vi-1 = v and that Vj+k_j = w, v, w = 1, 2. It fol-
lows from the independence assumption in the construction of the sequence {Xi;
i = 1, *...,thatfork = 1,2, *--,

E(XXi+k I (v, w)) = v, w = 1, 2. (9)

This reduces the problem of finding the serial correlations to that of finding the mar-
ginal and the transition probabilities of the equilibrium DAR.
We first define for the ordinary DAR with k = 0, 1,

lrVw(k) = Prob {Vk = wlVo= v}, v,w= 1,2, (10)

and denote the corresponding generating functions, flI (s). We shall find it con-
venient to first calculate r11 (k). The DAR is in state 1 at k either because it did not
leave state 1 until after k or because a full cycle of two runs is completed at j < k,
and the DAR is in state 1 at k, having started afresh at j. Formally this gives for
k = O, 1,**I

k

iril(k) = Prob {Y11 > k} + ,ProbIY11 + Y21 = jwrnl(k - j). (11)
jo

It follows immediately from Feller's (1957, p. 290) renewal theorem that

][I,,(s) Qi(s)12lli(5) - 1 - P1(S)P2(s)' (12)

and further that

lim 7rl1(k) = l ( 13)
klc-0 Xl + X2
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From the fact that 7r,2(k) = 1 - ir, (k), v = 1, 2 and the symmetry, it follows that
the matrix of the limiting values is for v, w = 1, 2

[lim7rr,w (k)] = (Xl+X2)-1 X2 (14)
b-0-00~ ~ LI X2J

Once the starting state does not influence the limiting values of the transition prob-
abilities, we call them equilibrium probabilities and denote them simply 7,, v = 1, 2,
so that

7r, = X,(XI + X2) . (15)

The equilibrium DAR is constructed by choosing the starting state in accordance
with the probability vector (Xi, 7r2). Given that the first run is of state v = 1, 2, we
denote its length Z,,, that is, Z. takes on the values 1, 2, -.. . The distribution of 2,
is denoted g,(k) and defined for k = 1, 2, ... as

g,(k) = X;qv(k - 1), v = 1,2. (16)
That this construction really makes I Vi; i = 0, 1, ..I a stationary sequence is
proved at some length in Ekholm (1968) but is fairly evident when one notes that
{g,(k)} can be derived from {p,(k)} as the distribution of a "forward recurrence
run," (cf. Cox and Lewis, 1966, p. 62).
For the transition probabilities of the equilibrium DAR, we shall write irT,V(k)

with generating functions II,,w (s). The same kind of logic as was used for equation
I Ishows that for k = 0, 1, ,

7rill(k) = Prob {Z1 > k) + E Prob {Z1 + Y21 = j}7ril(k-j). (17)
j0

Note that at the right-hand side we have a transition probability of the ordinary
DAR. Turning to generating functions gives, upon using equations 12 and 16,

1I(s) 1 I_1 SQ1(s)Q2(s)Hli(s)=1- s Xl 1 - PI(S)P2(S) (8

For the second term on the right-hand side we shall need a special notation. Let

T(s) = SQI(S)Q2(S)191 - Pl(s)P2(s)' (19)

and let the sequence with generating function equation 19 be I t (k) }. Since (1 - s)-1
is the generating function of the sequence 1, 1, *--, it is clear from

7r'n (k) + 7r'12 (k) = 1
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that

7ri2(s) = XTYT(s). (20)

From reasons of symmetry it follows that II'21 (s) and U'22 (s) are acquired from
IT12(s) and WI'u (s) on substituting X2 for X1. This argument gives us the matrix of
the transition probabilities in terms of the t(k)'s as

l-1t(k) - t(k)
[ - XLt(k) 1 -t(k)J

k = 0,1,---, v,w = 1,2. (21)

Note that from equation 19, on putting s = 0, we have t(0) = 0.
For the unconditional probabilities of the equilibrium DAR we can write

Prob { Vi = v, Vi+k = w) = Prob { Vi = v} Prob {Vi+k = wI Vi = vI
= 7.7r',w (k), (22)

where the last equation is justified by the stationarity of the sequence I V, ; i = 0, 1,
** }. The matrix of the unconditional probabilities is then, by equation 15 and 21,
for k = 1, 2,

[Prob IVi = v, Vi+ = w}] = (XI + X2) [[ (k)
t

(k)] (23)

Marginal Distribution and Serial Correlations

The definition of the equilibrium DAR implies that the pdf of the marginal distribu-
tion of the X,'s is

f(X) = rfij (x) + 7r2f2 (X), (24)

and the mean and variance of the marginal distribution are then

JA = 7rliJA + T212 (25)

2 2 2 W17r7r2\ 1 _A 2 )2.a = WOal + 7r2ff2 + "-

The product moments E(XiX*+k) are obtained by weighting the product moments of
equation 9 by the probabilities of equation 23. When we further subtract the square
of the marginal mean and divide by the marginal variance, the serial correlations
are found to be, for k = 1, 2, *...,

p(k) = (Mi -/1)271r2a 2(1 - [A1 + X2][X1X2]-1t(k)) (26)
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In principle, equation 19 gives a full account of the relationship between the se-
quence t (k)} and the run distributions {Pv (k)}, v = 1, 2. To expand T(s) in a power
series is, however, difficult in most cases of practical interest, and we shall therefore
derive a more direct way of computing t t (k)} from {p, (k)}, v = 1, 2. Let, for k = 0,
1, ..

p (k) = pi (k) * p2 (k)

q(k) = qi(k) * q2(k) (27)

where the star denotes the convolution operation. Note that from pi (0) = p2(O) = 0
follows p (0) = p () = 0. The generating functions P(s) and Q (s) of fp (k)I and
q (k)}, respectively, are

P(s) = Pl(s)P2(s)

Q(s) = Ql(S)Q2(s). (28)

We then define a new sequence { r(k)} for k = 0, 1, - - - as

r(k) = q(k) + p(2)r(k - 2) + p(3)r(k - 3) + + p(k)r(0). (29)
Since p (0) = p (1 ) = 0, r (k) is uniquely defined and equation 29 is a recursive rela-
tion. Equation 29 is, further, of the form implied by Feller's (1957, p. 290) renewal
theorem, and writing R (s) for the generating function of {r (k) }, we thus have

R(s) = Ql(S)Q2(s) (30)1 - Pl(S)P2(S)
and

lim r(k) - X1X2 (31)
k-X X1+ X2

Comparing equation 30 with equation 19, which was obtained on probabilistic
grounds for T(s), and remembering that t(0) = 0, we find that

r(k) = t(k + 1). (32)

Equations 26, 27, 29, and 32 provide an easy and powerful way of computing the
serial correlations from numerically specified distributions {p, (k) }, v = 1, 2. From
equations 31 and 32 it follows that limk ,. p (k) = 0.
To sum up these results, we note that the marginal pdf is a mixture offi (x) and

f2 (x), with the weights proportional to the means of the respective runs. The serial
correlations depend upon the distributionsf1 (x) andf2 (x) only through their means
and variances, and the expression dependent upon these serves, in fact, as a scaling
factor. The nonconstant factor of the serial correlations depends in a rather com-
plicated way upon the distributions {p, (k) }, v = 1, 2. Only for the lag 1 is a simple
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result available. For all admissible choices of the distributions {p, (k)}, we will have
t(l ) = 1. Thus, p (I ) depends only on the meansX,, v = 1, 2 ofthe runs and p ( ) > 0
for X1X2- Xi - X2 > 0. Since, in any case, X1 , X2 _ 1, the serial correlation of
lag 1 is positive except for points in the (X1, X2) plane which fall on the hyperbola
X1X2 - X1- X2 = 0 in which case p (1) = 0, or between this hyperbola and its
asymptotes X1 = 1, X2 = 1 in which case p (l) < 0.
For higher lags more information about the {p, (k)} winl be involved but in no very
obvious way. Examples can, however, easily be constructed and computed according
to the method developed above. A few examples of correlograms for different dis-
tributions of runs are given in connection with the empirical results.
The second-order properties of the process of counts under the PM hypothesis are

derived in Ekholm (1968). The Laplace transform of the intensity function is ob-
tained but is difficult to invert. By numerical methods, however, the spectrum of
counts can be reached. The most important general result is that the second-order
properties of counts are more complex than those of the intervals. The former involve
the full information about the distributions fi (x) and f2(x) and the distributions
{Pv(k) }, v = 1, 2. We shall not penetrate into these questions since in the empirical
work we will compute the theoretical intensity function by a simple shuffling method.

EMPIRICAL RESULTS

Experimental Method and Data

The most important single decision to be made when applying the PM model to empirical
spike trains is whether to use an implicit or an explicit way of analysis. We call the analysis
explicit when each impulse interval is classified as either belonging to the distribution with pdf
fi(x) or to the distribution with pdff2(x). An implicit analysis would not try to discover the
type of the individual intervals, but would instead use mathematically specified hypotheses
about the forms of the distributions f (x) and {pv(k) }, v = 1, 2.
We have chosen the explicit way of analysis since in the recordings at our dis-

posal (Hyviirinen, 1966) a decent number of bimodal histograms could be found. Although it
would not be illogical to use the idea of two different states when the states are not physically
discernible, it seems more relevant to use this idea when the states are fairly differentiated. At
least, it seems sensible to start the application of the PM model with an explicit analysis to
find what kind of distributions there can occur for the runs.
We selected 17 spike trains with bimodal histograms which did not fit the renewal model

in respect to either their serial correlograms or their intensity functions.
The spike trains were chosen from the recordings of spontaneous spike potential activity in

developing brains (Hyvarinen, 1966). The recordings were made with glass capillary micro-
electrodes in different diencephalic nuclei under light urethane anaesthesia in rabbits ranging
in age from newborn to adult. The interspike intervals were measured with an ordinary slow
general purpose computer with a resolution of 2.16 msec (Halme and Hyvarinen, 1968).

Statistical Methods and Results

Stationarity. To ascertain the stationarity of the spike trains, we used first a photo-
graphic dot display of the intervals. This was supplemented by a one-way analysis of variance
of the impulse intervals (Rao, 1965, p. 202). For this purpose we divided the intervals into
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groups of 50, or 20 for cases where the total number of observed spikes was less than 500. Here
and in all other significance tests reported in this paper we use the 5% significance level.
The analysis of variance does not efficiently detect mild but consistent trends in the means

of the consecutive groups. To guard against this possible source of error, we plotted the means
against their serial numbers. A number of series were discarded because of unstationarity
and some were cut shorter. The number (n) of observed impulse intervals of the 17 series left
are reported in Table I.

Interval Histograms. In the construction of the marginal histograms, we varied the
grouping interval, (r), depending upon the shape of the histogram and the number of ob-
served intervals. The histograms were then scrutinized carefully to determine the cutting point
between the two hypothesized distributions. We did not in these selected cases pay attention to
the possible overlap of the two pdfsf,(x), v = 1,2.

In Fig. 3 four histograms are seen with the cutting points (c) indicated. The histogram
gives an empirical estimate of the pdff(x) in the sense that f(kr + Y2rM) -T is the probability
of an interval of length between kT and (k + 1)Tx and the histogram reports these probabilities.
To characterize the appearance of the histograms not reproduced here we report in Table I
some basic figures about the units studied. The mean, (o), and the coefficient of variation,
(a/,u), of the intervals are commonly used, and we report these though they are somewhat
out of place in the case of bimodal histograms. More to the point are the means, (A,i and 2),
of the short and long intervals computed separately. We further report Ti/Mli and o,2/(A2- c).
The coefficient of variation ac/Mli gives a rough measure of the departure of the pdffi(x) from
the exponential one. For three units (94109, 53402, and 60105) fi(x) is close to the exponential
according to this criterion. For the distribution of long intervals it is more relevant to compute

TABLE I

BASIC DATA ABOUT THE HISTOGRAMS

Unit n /A J// Al TI/;I IA2 a2/ (/A2-C) d

msec msec msec

49101 700 46 0.96 29 0.30 148 0.49 0.86
53402 710 229 1.61 57 1.09 968 0.41 0.94
58201 919 392 1.17 184 0.77 1230 0.60 0.84
62501 397 492 1.12 3 0.27 888 0.70 0.64
64201 485 189 1.32 37 1.37 524 0.68 0.81
77601 500 430 0.97 3 0.30 830 0.51 0.98
81102 1421 252 1.58 76 0.82 1070 0.43 0.93
91301 508 302 1.78 155 0.53 2172 0.43 0.92

46403 393 94 0.53 35 0.29 114 0.66 0.49
88301 341 838 0.69 93 0.62 1109 0.49 0.62
89102 421 766 1.18 60 1.19 1623 0.62 0.74

53301 601 131 0.90 36 0.52 234 0.61 0.71
60105 845 1027 0.90 18 1.09 1498 0.57 0.55
94109 259 851 0.98 41 0.92 1163 0.78 0.36

77105 225 375 1.40 141 0.79 1426 0.56 0.89
81105 348 194 2.23 82 0.72 1229 0.86 0.63
88302 309 589 1.74 121 0.84 2530 0.48 0.88
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FIGuRE 3 The marginal histogram of four units.

a-2/(u2- c) than (T2//52 . The former expression would acquire the value 1 for the delayed ex-

ponential pdf 0 exp (- O(x - c)). Table I shows, that for all 17 units the distribution of long
intervals is more concentrated than the delayed exponential pdf would be.
A measure of the separation between the two hypothesized distributions is provided by

d = (IAI- 2)27r17r2a-2. This is the constant factor of equation 26 for the serial correlations.
Note that 0 < d < 1, and that d approaches its lower bound when ,u - j2 approaches zero,
and its upper bound when either /IA - A2 approaches infinity and/or a- and 02 approach
zero. The numerical values of d are reported in Table I.

The Distribution ofRuns. Having determined the cutting point, we counted the number
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TABLE II

BASIC DATA ABOUT THE DISTRIBUTIONS OF RUNS

Unit 'X Xl G= geomet. mode= k p(k) X2 72

49101 5.9 0.86 5 0.29 1.0 0.14
53402 4.4 0.81 4 0.34 1.0 0.19
58201 4.5 0.80 3 0.17 1.1 0.20
62501 1.3 0.45 1 0.69 1.6 0.55
64201 2.4 0.69 2 0.40 1.1 0.31
77601 1.2 0.48 1 0.82 1.3 0.52
81102 4.9 0.82 3 0.19 1.1 0.18
91301 12.4 0.93 12 0.24 1.0 0.07

46403 1.2 0.26 G 1 0.86 3.4 0.74
88301 1.1 0.28 G 1 0.94 2.9 0.72
89102 1.8 0.55 G 1 0.46 1.5 0.45

53301 1.7 0.52 G 1 0.51 1.6 0.48
60105 1.3 0.31 G 1 0.72 2.9 0.69
94109 1.3 0.28 G 1 0.77 3.3 0.72

77105 4.6 0.82 3 0.25 1.0 0.18
81105 14.2 0.90 3 0.18 1.5 0.10
88302 4.5 0.80 4 0.28 1.1 0.20

of spikes in each run and tabulated the distributions of runs. We did not include the first and
the last run since they are not observed in full. The means of the runs Xi and X2 and the equi-
librium probabilities 7r,, v = 1, 2 calculated according to equation 15 are given in Table II.
We tested the observed distributions of runs for deviation from the best fitting geometrical

distribution by the ordinary X2 test (Rao, 1965, p. 325) using the maximum-likelihood esti-
mator for the parameter. For the distributions of runs of long intervals the result is uniform.
They all fit well with the hypothesis of a geometrical distribution. In some cases the number
of degrees of freedom did not suffice for a formal test but there, too, the fit by eye was good.
Among the distributions of runs of short intervals, six units fit the geometrical distribution.

These units are marked by a G in Table II. Two units (62501, 77601) have a distribution of
runs close to the geometrical distribution but differ significantly from it by the absence of the
tail. Unit 81105 has too long a tail but does have a geometric appearance.
The remaining distributions of runs of short intervals differ markedly from the geometrical.

They are all more or less symmetrical though not always with a single pronounced peak.
Three examples are seen in Fig. 4. We have not tried to fit any other family of distributions
to the 11 distributions that fail to be geometrical. To depict the peakedness of the distribu-
tions, we indicate in Table II which integer (k) has the greatest probability and the numerical
value of this maximum probability (p(k)).

The Serial Correlations. The serial correlation coefficients of the first 50 lags were
estimated using the estimator given as (5.2.17) in Cox and Lewis, (1966, p. 91). The first 700
observations were used for this purpose. From the estimates of {p,(k) 1} IA,, and oa the corre-
sponding serial correlations of the PM model were computed according to equation 26. In
Fig. 5 the empirical and model correlograms are given for the four example units. It should be
remembered here that for the renewal model the serial correlations of all lags are zero.

Unfortunately, there is no satisfactory statistical test for the deviation of empirical correlo-
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FIGURE 4 The distributions of runs of short pi(k) and long jp2(k) I intervals of four units.

grams from the correlograms of some postulated model (cf. Perkel, Gerstein, and Moore,
1967 a, p. 401). From the mathematical point of view, the information inherent in the correlo-
gram can, however, be expressed also by the spectrum of the sequence {Xi ; i = 1, 2, * .-I of
intervals (Cox and Lewis, 1966, p. 71). The spectrum of intervals of an observed series can be
estimated, and there are tests for the deviation of an estimated spectrum from the theoretical
spectrum of a postulated model. On the other hand, the spectrum of intervals is relatively
inaccessible to interpretation. In short, the correlogram has a clear-cut interpretation but
lacks a useful statistical theory and the opposite, more or less, is true of the spectrum of inter-
vals. For this reason we resorted to the spectrum of intervals for a test of the deviation of the
observed series from the PM model with regard to the second-order properties of intervals.
The power spectrum of the empirical series was estimated by the periodogram estimator (cf.
Cox and Lewis, 1966, Sect. 5.3). For this purpose only the 301 first observations were used.
To use the full set of observations at this point would have led to rather formidable compu-
tations.
The spectral density of the PM model was evaluated by the basic formula (Cox and Lewis,

1966, formula 4.4.8, p. 71) using the 50 first model correlation coefficients. The convergence
of the model correlations toward zero was slowest for unit 91301 (see Fig. 5). For most units
the model correlations were already zero up to the fourth or fifth decimal at lags between 40
and 50. Thus it is obvious that the use of only 50 coefficients in calculating the spectral density
did not introduce any error.
The test of the model followed the recommendations given by Cox and Lewis, (1966, Sect.

6.5 [i] and 6.4. [ii]), and was accordingly based on the ratio of the periodogram of the data to
the spectral density of the model. We tried the appropriate x2 test with ten groups of size 15
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FiGuRE 5 The serial correlation coefficients of the first 50 lags for four units. The dots con-
nected by solid lines indicate the empirical estimates and the crosses connected by broken
lines indicate the coefficients of the fitted PM model.

and six groups of size 25 and finally we tried the Kolmogorov-Smirnov test of the quantities
(6.4.5.). All three procedures led to exactly the same conclusions at the 5% significance level.
To gauge not only the fit of our model but also its fit compared to the basic renewal model,

we performed the Kolmogorov-Smirnov test of the empirical periodogram using the renewal
model as a hypothesis. The results of these tests are reported in Table III in the following
manner. If the PM model does not fit, this is marked by a minus sign; if the PM model fits
and the renewal model does so, too, this is indicated by a zero; and if the PM model fits but
the renewal model does not, a plus sign is used.

It was noted that the test for the deviation from the renewal model does not have good
power in cases where the absolute values of the serial correlations are small (around 0.10),
though the consistent pattern of the coefficients shows that the renewal hypothesis cannot be
correct. Two such cases are units 81105 and 91301; the correlogram of the latter is given in
Fig. 5. It is obvious from Fig. 5 b that the PM model is a much better explanation of the
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-TABLE III

THE FIT OF THE PM MODEL COMPARED TO THAT OF THE
SIMPLE RENEWAL MODEL

Unit Correlogram fit Intensity fct fit Combined fit

49101 + + +
53402 + 0 +
58201 + + +
62501 + 0 +
64201 + + +
77601 + + +
81102 + + +
91301 0 + +

46403 + 0 +
88301 + 0 +
89102 + 0 +

53301 --
60105 - 0
94109 0

77105 + -

81105 0
88302 +

empirical correlogram than the flat correlogram of the renewal model. The test based on the
spectral theory does not work here, evidently because the amplitude of the correlogram is not
very large. These two cases (81105 and 91301) are, however, the only ones where the test
gives counter-intuitive results.

The Intensity Function. The intensity function of the data was estimated by the pro-
cedure developed in Cox, (1965), see also Cox and Lewis, (1966, Sect. 5.4. [v]). Here, again,
we used only the 300 first observations to avoid excessive computation. A corresponding in-
tensity function of the PM model was calculated by the following simulation method. Using
the cutting point we classified each of the 300 first impulse intervals as short or long. The
serial numbers of the short and long intervals were noted, and the short and long interval ob-
servations were then shuffled separately at random. A shuffled series was constructed by
replacing each short interval with a short one and each long interval with a long one. The
intensity function of the shuffled series was estimated in the same way as that of the empir-
ical series.
The intensity function of the corresponding renewal model was calculated by using the

integral equation of renewal theory (Cox, 1962, p. 54) as a starting point. Assuming that both
the pdf of the marginal distribution f(x) and the renewal density hn(x) are constant for the
grouping intervals (0, r), (Tr, 2T), a recursive formula for hR(kr + Y2,r), k = 0, 1, * , can
be derived. The input of this computation is then f(kT + M2T), k = 0, 1, * , and for these
we used the relative frequencies, divided by r, of the marginal histogram.

In Fig. 6 the empirical intensity functions and the corresponding intensity functions under
the PM and renewal hypotheses of the four example units are shown. The values of the in-
tensity functions relate to the corresponding conditional probabilities (equation 1) in the
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FIGURE 6 Intensity functions and renewal densities for four units. The solid line indicates
the empirical estimate of the intensity function, the broken line indicates the intensity func-
tion of the fitted PM model, and the dotted line indicates the renewal density of a renewal
process with the same marginal histogram.

same way as the histogram relates to the probabilities of interval lengthi, cf. p. 784. A formal
test of the goodness of fit would again call for turning to spectral theory, and the numerical
work is heavy. Instead we have appraised the fit by eye, using the same three categories as for
the serial correlations: the PM model fits better than the renewal model (+), both models
fit (0), and the PM model does not fit (-). The classification was rather obvious; this is
illustrated by the examples in Fig. 6. The full result is given in column 2 of Table III.

It is obvious that in cases where fi(x) is close to the exponential distribution, the intensity
function converges rapidly to a constant value, so that not much difference can be found
between the renewal and the PM hypotheses. A good example is unit 53402, for which it is
clear from the correlogram test that the PM model is a much better description of the structure
of the series than the renewal model. In this case the intensity function, however, gives no
resolution. Note that ul/,u = 1.09 (see also Figs. 5 and 6). This remark, combined with the
remark about the power of the periodogram test (p. 788), illustrates the point that the sta-
tistical analysis of spike trains should never be restricted to only the process of counts or to
only the sequence of intervals.
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The final column in Table III gives the combined result of the fit of the PM model. Units
where either the serial correlations or the intensity function or both do not fit, are marked by a
minus. Units where the fit in either aspect is better than for the renewal model and which are
not unfit in either aspect are marked by a plus.

Before we turn to the conclusions, the following question should be posed and answered.
What features of the model do we actually test? In the derivation of equation 26 for the serial
correlations, the two necessary assumptions are that

E(XiXi+k I (v, w)) = A.A., v, w = 1, 2 (10 )

the discrete process is an alternating renewal process. (20 )

The discrete process means, of course, the series of l's and 2's indicating from which distribu-
tion the intervals are drawn (cf. equation 8 and Fig. 2). That this process is an alternating
renewal model implies, more particularly, that the consecutive runs of l's and 2's are sto-
chastically independent. A simple counter example would be that a short run of l's tends to be
followed by a long run of 2's.

Calculating the intensity function of the model by the shuffling technique means that we take
the observed pattern of l's and 2's as given and assume that the lengths of the intervals depend
only upon the state of the process, that is

Prob{Xi . Xi+k YI (V,W)} = F,(x)Fw(Y). (30)

From 30 follows 10, but the contrary is not true; accordingly 30 is a sharper assumption. It
is an advantage of the explicit way of analysis (cf. in Experimental Method and Data) that
the testing of assumption 30 can be made without interference from the possible fitness or
unfitness of assumption 20. It is thus clear that if the test based on the serial correlations
shows significant deviation from the PM model, then either 10 or 20 or both are not fulfilled.
If the empirical intensity function deviates from the intensity function of the model, then 30
is violated. The common feature of 1°-3° is that various quantities are assumed to be sto-
chastically independent.

Conclusions

The third column of Table III shows that the PM model fits for 11 out of the 17
nonrenewal spike trains studied. Because of the arbitrary selection of the studied
spike trains, the over-all result is of little interest aside from the fact that empirical
series can be found for which the PM model is an appropriate statistical description
of their structure. It is more revealing to find homogeneous subgroups both in the
group of fits and in the group of misfits.

Let us first note that for all units the observed distribution of runs of long intervals
is geometrical. The means (X2) of these distributions are with few exceptions close
to 1, that is, the stay in the resting state seldom lasts longer than for one interval. After
a rest of one long interval, the probability of starting a new burst is high. The inter-
pretation of the geometrical distribution of runs of long intervals is, further, that this
probability is not increased by resting for another interval or for any number of
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intervals. After a rest, whether the first or the second or the nth, the probability of
changing to bursting is constant.
The most conclusive empirical finding is contained in units 49101, 53402, 58201,

62501, 64201, 77601, 81102, and 91301. These eight series are characterized by the
facts that the PM model fits and that the distribution of runs of short intervals dif-
fers significantly from the geometrical distribution. These neurons function in the
bursting state in a way that is clearly opposed to their function in the resting state. It
seems as if the neuron possesses a counter which allows it to fire with short intervals
for a predetermined number of times and then to turn to a rest. The counter works
with a certain tolerance; the number of allowed short intervals varies to some extent.
The preferred number of spikes in the bursting state varies between units in our
material from 1 (unit 77601) to 12 (unit 91301). The degree of peakedness of the
distributions of runs of short intervals also varies considerably. Unit 77601 has the
highest concentration and the probability of only one short interval is 0.80; unit
58201 has the lowest peak and the probability of three short intervals is 0.17, but
there is almost the same probability for two, four, and five intervals.
For the above mentioned eight pulse trains, the superior fit of the PM model over

the renewal model is well documented. They have pronounced intensity functions
and/or serial correlograms which the PM model is able to reproduce, (cf. Figs. 5
and 6). For these series, then, the assumptions 1°-3° seem to be well fulfilled.
The second group is comprised of units 46403, 88301, and 89102. These units are

characterized by the fact that the PM model fits and the distributions of runs of both
long and short intervals are geometrical. These series are the closest we have come to
finding empirical examples of the semi-Markov model. The interpretation of the
semi-Markov model is that both for the bursting and the resting state the mechanism
of switching to the opposite state lacks a memory.
These three series are, however, not entirely unambiguous. Their intensity func-

tions fit the renewal hypothesis and they differ, in fact, from the renewal model only
in that their serial correlations of the first few lags are not zero. Unit 88301 is given
as an example in Figs. 5 and 6. We are not convinced that these series could not be
described equally well by some other model. The gain of the PM analysis performed
lies, in these cases, mainly in giving a hint of the source of the correlations and less
in giving a very definite description of the function. Under the renewal hypothesis
the probability of a long interval succeeding a short one would be the same as the
probability of a long interval succeeding a long one. For these three cases the serial
correlations arise from the fact that the former probability is somewhat larger.
We do not want to stress the fact that both distributions of runs are found to be

geometrical. That is, if one chooses a cutting point that is not related to the function-
ing of the cell, or that is related to the functioning but causes a large proportion of
misclassifications of the intervals, then one could expect the observed distributions
of runs to be approximately geometrical. For instance, if for some of the series in
the first group we had mistakenly placed the cutting point in the middle of the dis-
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tribution of short intervals, the distribution of both runs would have been approxi-
mately geometrical. This does, however, not invalidate the result that, given this
cutting point, the series fulfill assumptions 1P and 20 and this combined with the afore-
mentioned asymmetry of long and short intervals explains the serial correlations
observed.
The first group of misfits is composed of units 53301, 60105, and 94109, charac-

terized by the fact that the serial correlograms of the PM model do not fit the em-
pirical correlograms. The empirical correlograms of these series have much the same
appearance as those of the second group of fits. The observed distributions of runs of
short intervals are also geometrical. Here, however, assumptions 1P or 20 or both are
not fulfilled. For unit 53301 it is clear that 30 is not fulfilled, either, but for the other
two units the intensity function is inconclusive at this point. The correct conclusion
seems to be that the cutting point is totally unrelated to the functional patterns of
these units. The analysis performed does not even detect the source of the serial
correlations.

Units 77105, 81105, and 88302, which make up the second group of misfits, are
more interesting. These series are characterized by the fact that their observed serial
correlations differ markedly from zero for a number of lags. These correlograms are,
further, well reproduced by the PM model. The observed distributions of runs of
short intervals are not geometrical; those of units 77105 (see Fig. 4) and 88302,
especially, are markedly peaked. The empirical intensity functions of these units
are clearly periodic, but here the PM model fails definitely. Our conclusion is that
for these units the cutting point is relevantly related to the functional pattern and
assumptions 1° and 20 are fuffilled but 30 is not, that is, the lengths of the intervals
are not dependent only on the state of the neuron. Superimposed on the dependence
upon the state of the neuron, there seems to be a finer structure of dependence which
we have not been able to identify.

DISCUSSION

We have found that for some spike trains the PM model is an appropriate statistical
description. It was noted already in the section on Basic Mathematical Concepts
that, if the PM model fits a spike train then the data are summarized by the
estimate of the two pdfs f. (x), v = 1, 2 and the two discrete distributions {p, (k) I .
the description of the spike trains that fit the PM model is thus given by the his-
tograms (Fig. 3), the distributions of runs (Fig. 4), and the assumptions of
the model (Description of the PM Process). Though this is a more concise de-
scription than the full set of data it is still not a very sharp characterization and it is,
further, clear that the assumptions we test by the present approach (cf. the last part
of Statistical Methods and Results) are not very informative from the physiological
point of view. This makes us question how the present approach could be sharpened.

It seems relevant here to start from the distinction between an explicit and an
implicit statistical analysis (cf. Experimental Method and Data). We chose the
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explicit way for the study presented here in hope of finding some salient universal
features in the distributions of runs. The only such result was the geometric form of
all the distributions of runs of long intervals. This is not a very well-established result
because of the general rarity of long runs of long intervals. Once the explicit analysis
has not succeeded very well, we should contemplate the implicit possibility.
The task is then to set forth hypotheses about the mathematical form of both the

distributions of intervalsf, (x), and the distributions of runs {Pv (k) 1v v = 1, 2. These
hypotheses should, of course, be based on physiological considerations of the
mechanism of spike production. An implicit statistical analysis based on such hy-
potheses would not need the questionable device of a cutting point. It would also
be considerably stronger than the explicit analysis in the sense that the possibilities
of the data to fail the PM model are greater, but the gain in information, in cases
where the PM model still fits, is sharper. It is, however, no easy task to derive hy-
potheses about the distributions. We have no definite results to report here. The
following two approaches based on some earlier work could be considered.
Thomas (1966, pp. 154-162), starting out from some cell properties discussed by

Burns (1955), proposes the following model of the clustered firing of neurons.
There is a Poisson process of main spikes. These spikes are evoked by conditions
external to the cell. Each main spike may be followed by a subsidiary spike which is
then evoked by conditions internal to the cell. The probability for a subsidiary spike
to follow a main spike is constant for all main spikes. Each subsidiary spike may,
further, be followed by another subsidiary spike, which again is evoked by conditions
internal to the cell. The probability for a subsidiary spike to follow a subsidiary
spike is also constant through all subsidiary spikes, but different from the probability
of a subsidiary spike to follow a main spike. If a subsidiary process is operative at
the time of a main spike, it is then terminated and a new one may start, as after every
main spike. The intervals between subsidiary spikes are drawn from a distribution
which can have any pdf. For mathematical convenience Thomas assumes that this
distribution is exponential in most connections.
From the statistical point of view Thomas's model can be described as a two state

semi-Markov model with two types of intervals. (This is obvious from his Sect. 3.4,
though not explicitly stated.) His model thus predicts that the serial correlations
decrease exponentially in absolute value with the increasing order of the lag. In
Hyvarinen's (1966) large material (cf. p. 774) very few such correlograms were
found. Accordingly it seems to us that Thomas's model is not very realistic. The basic
thinking of Thomas could, however, be combined with the more flexible PM model
by abandoning the assumption that the process of main spikes is Poissonian. This
assumption is, in fact, rather awkward. It is difficult to find a good reason why the
process which reacts to outside stimulation (Thomas, 1966, p. 160) should be Pois-
sonian. The Poisson assumption was obviously introduced by Thomas on mathe-
matical grounds only. In the frame of the PM model it could be substituted by assum-
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ing that the pdf of the intervals in the "resting" state, that is f2(x), has any
form whatsoever.
Thomas assumes that the probability that the cell turns to bursting is contant after

every main spike. In the PM terminology this is equivalent to the runs of long in-
tervals having a geometric distribution, that is, {P2(k) } is geometric. This is in good
agreement with our empirical results and we think this assumption should be re-
tained. To avoid ending up with the semi-Markov model, the distribution of runs of
short intervals, that is (pi (k) 1, should not be assumed geometric but must have a
memory. One should, accordingly, not assume that if a subsidiary process comes into
operation that the probability of its ending is constant after every subsidiary spike.
No other clues to its form are available. Neither do we have any clues to the form of
the pdff (x) of intervals in the bursting state. There are thus many gaps to be filled
in but it is an advantage ofthe PM scheme that they could be filled in on physiological
grounds.
Many models for the mechanism of spike production share the common feature

that, immediately after a spike, the membrane potential is supposed to return to a
resting level. Through the effect of incoming excitatory and inhibitory postsynaptic
potentials, the electrical state of the membrane is then changed. If the depolariza-
tion of the membrane reaches a threshold, the neuron fires. Many variants of this
basic scheme are possible (cf. Stein [1967] and for a review up to 1965, see Moore,
Perkel, and Segundo [1966]).
The assumption that the membrane potential returns to the resting level after

each spike, is crucial from the statistical point of view. If every feature of the mecha-
nism repeats itself after each spike in accordance with the same probabilistic rules,
the spike train has the statistical properties of a renewal process. It is thus clear that to
build a model of spike production which could produce spike trains having the sta-
tistical characteristics of a PM model, at least some of the assumptions inherent in
the above scheme have to be abandoned. A natural way to do this is to retain the
assumption that the membrane potential returns to the resting level after each spike,
but to introduce the assumption that the ratio between the arrival rates of the ex-
citatory postsynaptic potentials (EPSP) and the inhibitory postsynaptic potentials
(IPSP) may vary for different intervals between spikes. The task is then to derive the
probability distributions of the number of intervals in a run of intervals with a
high ratio of EPSP to IPSP arrivals and in a run of intervals with a low ratio of
EPSP to IPSP arrivals, that is to say, the distributions (pi (k)} and (P2(k) 1,
respectively.
To make the PM model available for an implicit statistical analysis one should, of

course, also specify the process by which the EPSP's and the IPSP's arrive and the
mechanism by which they influence the membrane potential and the functioning of
the threshold. These hypotheses should be at least detailed enough to make it pos-
sible to derive the form of the distributions of interval lengthf1 (x) andf2 (x).
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The assumption that the membrane potential returns to the resting level after each
spike implies that the length of the intervals do not directly influence each other.
The only source of their serial correlations is through the fact that during some in-
tervals the ratio of EPSP to IPSP arrivals is high and during others low; that is to
say some intervals are more alike than others. This is exactly the content of the basic
assumption of the PM model (cf. p. 776): the intervals are of two types, and condi-
tional on the type, they are independent of each other.
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