Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1966 Jul;6(4):385–404. doi: 10.1016/S0006-3495(66)86665-1

A Chemical and Physical Characterization of Echinoid RNA during Early Embryogenesis

D W Slater, S Spiegelman
PMCID: PMC1367957  PMID: 19210966

Abstract

The properties of the major RNA components prepared from Arbacia punctulata have been characterized by sedimentation in sucrose gradients and analysis of base composition. Comparison of the components found in the unfertilized egg with those observed subsequent to fertilization revealed no differences in any of the embryonic stages examined. The base composition and sedimentation profiles of RNA from unfertilized nuclear egg fragments and from 105,000 g pellet were similar to those of the intact egg. It is concluded that the early stages of embryogenesis are not accompanied by detectable alteration of the physical or chemical characteristics of the major RNA components found in the unfertilized egg.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN D. D., GURDON J. B. ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. Proc Natl Acad Sci U S A. 1964 Jan;51:139–146. doi: 10.1073/pnas.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brawerman G., Biezunski N., Eisenstadt J. Sedimentation characteristics of template RNA from rabbit reticulocytes and rat liver. Biochim Biophys Acta. 1965 Jun 8;103(2):201–210. doi: 10.1016/0005-2787(65)90161-9. [DOI] [PubMed] [Google Scholar]
  3. COMB D. G., BROWN R. PRELIMINARY STUDIES ON THE DEGRADATION AND SYSTHESIS OF RNA COMPONENTS DURING SEA URCHIN DEVELOPMENT. Exp Cell Res. 1964 Apr;34:360–370. doi: 10.1016/0014-4827(64)90371-4. [DOI] [PubMed] [Google Scholar]
  4. COMB D. G. METYLATION OF NUCLEIC ACIDS DURING SEA URCHIN EMBRYO DEVELOPMENT. J Mol Biol. 1965 Apr;11:851–855. doi: 10.1016/s0022-2836(65)80043-2. [DOI] [PubMed] [Google Scholar]
  5. Cartouzou G., Manté S., Lissitzky S. Purification and some properties of sheep thyroid and rat liver messenger RNAs. Biochem Biophys Res Commun. 1965 Jul 12;20(2):212–217. doi: 10.1016/0006-291x(65)90348-7. [DOI] [PubMed] [Google Scholar]
  6. DALY M. M., ALLFREY V. G., MIRSKY A. E. Purine and pyrimidine contents of some desoxypentose nucleic acids. J Gen Physiol. 1950 May 20;33(5):497–510. doi: 10.1085/jgp.33.5.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denny P. C., Tyler A. Activation of protein biosynthesis in non-nucleate fragments of sea urchin eggs. Biochem Biophys Res Commun. 1964;14:245–249. doi: 10.1016/0006-291x(64)90443-7. [DOI] [PubMed] [Google Scholar]
  8. ELSON D., GUSTAFSON T., CHARGAFF E. The nucleic acids of the sea-urchin during embryonic development. J Biol Chem. 1954 Jul;209(1):285–294. [PubMed] [Google Scholar]
  9. GEORGIEV G. P., MANTIEVA V. L. The isolation of DNA-like RNA and ribosomal RNA from the nucleolo-chromosomal apparatus of mammalian cells. Biochim Biophys Acta. 1962 Jul 9;61:153–154. doi: 10.1016/0926-6550(62)90046-4. [DOI] [PubMed] [Google Scholar]
  10. GLISIN V. R., GLISIN M. V. RIBONUCLEIC ACID METABOLISM FOLLOWING FERTILIZATION IN SEA URCHIN EGGS. Proc Natl Acad Sci U S A. 1964 Dec;52:1548–1553. doi: 10.1073/pnas.52.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GROSS P. R., COUSINEAU G. H. Effects of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem Biophys Res Commun. 1963 Feb 18;10:321–326. doi: 10.1016/0006-291x(63)90532-1. [DOI] [PubMed] [Google Scholar]
  12. GROSS P. R., KRAEMER K., MALKIN L. I. BASE COMPOSITION OF RNA SYNTHESIZED DURING CLEAVAGE OF THE SEA URCHIN EMBRYO. Biochem Biophys Res Commun. 1965 Feb 17;18:569–575. doi: 10.1016/0006-291x(65)90792-8. [DOI] [PubMed] [Google Scholar]
  13. HAREL J., HAREL L., LACOUR F., BOER A., IMBENOTTE J. FRACTIONS WITH DIFFERING BASE COMPOSITION IN RNA FROM MALIGNANT CELLS OF MOUSE. J Mol Biol. 1963 Dec;7:645–651. doi: 10.1016/s0022-2836(63)80111-4. [DOI] [PubMed] [Google Scholar]
  14. HARRISON R. J., TOMLINSON J. D., BERNSTEIN L. The caval sphincter in Phoca vitulina L. Nature. 1954 Jan 9;173(4393):86–87. doi: 10.1038/173086b0. [DOI] [PubMed] [Google Scholar]
  15. HAYASHI M. N., HAYASHI M., SPIEGELMAN S. CHROMATOGRAPHIC SEPARATION OF ANNEALED AND ENZYMATICALLY SYNTHESIZED RNA-DNA HYBRIDS. Biophys J. 1965 Mar;5:231–246. doi: 10.1016/s0006-3495(65)86713-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HAYASHI M., SPIEGELMAN S. The selective synthesis of informational RNA in bacteria. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1564–1580. doi: 10.1073/pnas.47.10.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HULTIN T. Activation of ribosomes in sea urchin eggs in response to fertilization. Exp Cell Res. 1961 Nov;25:405–417. doi: 10.1016/0014-4827(61)90290-7. [DOI] [PubMed] [Google Scholar]
  18. KATZ S., COMB D. G. A NEW METHOD FOR THE DETERMINATION OF THE BASE COMPOSITION OF RIBONUCLEIC ACID. J Biol Chem. 1963 Sep;238:3065–3067. [PubMed] [Google Scholar]
  19. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  20. MCCARTHY B. J., HOYER B. H. IDENTITY OF DNA AND DIVERSITY OF MESSENGER RNA MOLECULES IN NORMAL MOUSE TISSUES. Proc Natl Acad Sci U S A. 1964 Oct;52:915–922. doi: 10.1073/pnas.52.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maggio R., Vittorelli M. L., Rinaldi A. M., Monroy A. In vitro incorporation of amino acids into proteins stimulated by RNA from unfertilized sea urchin eggs. Biochem Biophys Res Commun. 1964 Apr 22;15(5):436–441. doi: 10.1016/0006-291x(64)90481-4. [DOI] [PubMed] [Google Scholar]
  22. Monroy A., Maggio R., Rinaldi A. M. Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc Natl Acad Sci U S A. 1965 Jul;54(1):107–111. doi: 10.1073/pnas.54.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NEMER M. OLD AND NEW RNA IN THE EMBRYOGENESIS OF THE PURPLE SEA URCHIN. Proc Natl Acad Sci U S A. 1963 Aug;50:230–235. doi: 10.1073/pnas.50.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nemer M., Infante A. A. Messenger RNA in early sea-urchin embryos: size classes. Science. 1965 Oct 8;150(3693):217–221. doi: 10.1126/science.150.3693.217. [DOI] [PubMed] [Google Scholar]
  25. RAKE A. V., GRAHAM A. F. KINETICS OF INCORPORATION OF URIDINE-C14 INTO L CELL RNA. Biophys J. 1964 Jul;4:267–284. doi: 10.1016/s0006-3495(64)86782-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  27. Spirin A. S., Nemer M. Messenger RNA in early sea-urchin embryos: cytoplasmic particles. Science. 1965 Oct 8;150(3693):214–217. doi: 10.1126/science.150.3693.214. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES