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ABSTRACT To have a better understanding of the flow of blood in arteries a
theoretical analysis of the pressure wave propagation through a viscous incom-
pressible fluid contained in an initially stressed tube is considered. The fluid is
assumed to be Newtonian. The tube is taken to be elastic and isotropic. The
analysis is restricted to tubes with thin walls and to waves whose wavelengths
are very large compared with the radius of the tube. It is further assumed that
the amplitude of the pressure disturbance is sufficiently small so that nonlinear
terms of the inertia of the fluid are negligible compared with linear ones. Both
circumferential and longitudinal initial stresses are considered; however, their
origins are not specified. Initial stresses enter equations as independent parame-
ters. A frequency equation, which is quadratic in the square of the propagation
velocity is obtained. Two out of four roots of this equation give the velocity of
propagation of two distinct outgoing waves. The remaining two roots represent
incoming waves corresponding to the first two waves. One of the waves propa-
gates more slowly than the other. As the circumferential and/or longitudinal
stress of the wall increases, the velocity of propagation and transmission per
wavelength of the slower wave decreases. The response of the fast wave to a
change in the initial stress is on the opposite direction.

INTRODUCTION

The arteries in a body are inflated with a mean pressure of approximately 100 mm
Hg. This pressure creates a relatively high circumferential (hoop) stress. Also,
arteries in a body are naturally under longitudinal tension. Thus, propagation of
pressure waves in a viscous liquid, contained in an initially stressed (both circum-
ferentially and longitudinally) elastic tube is a problem of interest in blood flow.

The propagation of pressure waves in an inflated elastic tube have attracted the
attention of many investigators. One may find a fine historical perspective of this
problem in the paper of Lambossy (1951). There is no unanimous agreement with
regard to the effect of a pressure increase on the propagation velocity. However, the
majority of scientists agrees that a small increment in the mean pressure decreases
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the velocity of propagation of waves in a tube. On the other hand, to the authors'
best knowledge, there is no investigation which considers the effect of longitudinal
tension on pulse propagation.

In this paper a theoretical analysis of the pressure wave propagation through a
viscous liquid contained in an initially stressed tube is considered. The liquid is as-
sumed to be Newtonian. The tube is taken to be elastic and isotropic. The analysis
is restricted to tubes with thin walls and to waves whose wavelength is very large
compared with the radius of the tube. It is further assumed that the amplitude of
the pressure disturbance is sufficiently small so that nonlinear terms in the inertia
of the fluid are negligible compared with linear ones.

In the final formulation of the theory, the initial stresses appear as independent
parameters. If one assumes that the initial strains are very small, then measuring
displacement components from an unstressed reference state, the values of the
initial stresses can be calculated with the equations of linear elasticity. On the other
hand, if the deformations leading to the initial stresses are very large [this is the
situation in arteries; see for example McDonald (1960)], one cannot use linear
theory to calculate the initial stresses. Then one either has to calculate initial stresses
using large elastic deformations theory (see Tickner and Sacks, 1964), or has to
determine them experimentally. In the forthcoming theory it is assumed that the
numerical values of the initial stresses are known.

Since in the absence of the initial stresses the problem presented here reduces to
the one treated by Womersley (1955 and 1957) it is expected that the results ob-
tained here should also reduce to the corresponding ones given by Womersley.
Keeping this fact in mind, in order to facilitate comparison, we tried to carry the
present analysis parallel to Womersley's work as much as possible.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The phenomenon which we are considering here is caused by the interactions of the
fluid with its container, the tube. Therefore, a mathematical study of the problem
should include statements with regard to the motion of the fluid, motion of the wall,
and condition on their interface, namely, boundary conditions.

Hydrodynamics Equations. We will assume that fluid is incompressible
and Newtonian. To express the problem we will use cylindrical coordinates r, 0, z.
We will choose the z axis along the axis of the tube. We will consider only developed
flow. Therefore, the choice of the origin is immaterial.

Fluid flow is governed by the Navier-Stokes equations and the equation of con-
tinuity. Assuming flow is axially symmetric, in the absence of the body forces, these
equations read (see Goldstein, 1938):

dt+ u + w p_Ou 2+ 1 (a:t Or clz pr Or rO(r iz2ri
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O9w Ow w 49 IlO (O lOw O2W\
at + u d + w d = -d + + r dr + aZ2- (2)

d9 (ru) + d= °O. (3)

Here t denotes time; u and w denote the components of the fluid velocity along r and
z directions respectively; p is the pressure, p is the density, and v is the kinetic viscosity
of the fluid.

Equations of Motion of the Tube. As the wave travels, the tube will be de-
formed under the influence of the internal (elastic) and external loads. To express
equilibrium of a surface element of the tube in its deformed state we will introduce a
new coordinate system connected to the surface of the tube, see Fig. 1. We will con-

FIGURE 1 The two coordinate systems which are used for the description of the
problem.

sider axially symmetric deformations. In this case, the middle surface (the surface that
bisects the thickness of the tube) is obtained by rotation of a plane curve, R = R(z, t),
about the axis of the tube.
The position vector M, of any point in the middle surface is:

M = zz + R(z, t)r. (4)

Here, z and r- are unit vectors of the cylinder coordinate system. Clearly,
M = M(z, 0, t). Let us suppose that 0 is kept at a constant value, while z changes.
Then, equation (4) determines the meridian curve which generates the middle surface.
The unit vector

(= M)/ OM - ( + dr)/[1 + (dz) ]1
Oz Oz Oz I/ \az /

is tangent to the above described 0 = constant curve of the middle surface. As the
second base vector we choose 0, the tangential unit vector of the cylindrical coordi-
nates. The third base vector n is taken to be the normal unit vector of the middle
surface. Thus, n is orthogonal to t and 0. In terms of the vectors r and z we have:

cl(_dR ^/1+ (dR 2 1/2(6
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To analyze internal forces, we cut from the tube an infinitesimally small element
by the surface z = constant, z + dz = constant, 0 = constant, and 0+ do= constant.
In Fig. 2, we have shown the resultant forces and moments per unit length of the side
faces of this infinitesimal element as though they were acting on the edges of the middle
surface. In the following, we will assume that the thickness h of the tube is very

FIGURE~2 T, N, and S are the components of the resultant forces per unit length acting on
the side faces of a wall elements; Met and M80 are the bending and M99 and M8, are the
twisting moments per unit length acting on the side faces of a wall element.

small compared with the radius of the tube. Then, tensile stresses can be assumed as
uniformly distributed across the thickness. Under these conditions bending moments
of the stresses and shear stresses No and N8 are very small and can be neglected. Thus,
only three quantities T8, T0, and SO = St enter into the equations of the equilibrium
of the element.
From the assumed symmetry of loading and deformation we can conclude further-

more that there will be no shearing forces acting on the sides of the element. That is,
we have SO = S, = 0. Next, we consider the external forces acting on the element.
Let P denote the total external load per unit area of the middle surface. For axially
symetric loading, P will have the following form:

p = P8t + Psi.(7
Summing up all of the forces in the 7 and n directions we obtain the following equa-
tions of equilibrium for the tube element (see Goldenveizer, 1961).

.az T+a(T)+ [+ (az) ]~ o (8)

T/[1 + (dR\) _/ 02R IT+[ (OR\2]3/2

The external forces acting on the tube element can be considered in two groups;
inertia forces and surface forces. First let us consider inertia forces. Let t = t(z, t)
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and - = 7(z, t) denote the longitudinal and radial displacements of the middle surface
due to the wave motion (see Fig. 3). Then, the inertia force per unit area is

-poh( t2
+ 492 ) (10)

Here, po denotes the density of the tube wall at the reference state. Since both density
and thickness of the tube vary during the motion, strictly speaking, in the above expres-

Deformed middle surface

Initial middle surface

R Roa

FIGURE 3 A point P (z, Ro) of the middle surface of the wall at rest displaces to a position
P(z + E, Ro + ,7) as wave travels along the tube. Note that R(z, t) is not equal to Ro + v in
general.

sion we should use their instantaneous values. However, for the motions we are
considering, the changes in density and thickness are negligible. Solving equations (5)
and (6) for r' and z, and substituting the result into expression (10), we can express
inertia force in terms of j and n.

poh [(2~ &~a74RV (&2~aR a12,
OR2 1/2 LCO?t2 Ot2dz a\t2 dz t2- ]

+-

The surface forces which act on the element come as the reaction of the fluid to its
container. Let T, denote the stress tensor of the fluid. Then, (-T, h) calculated at
r = R - (h/2) gives us the reaction of the fluid to the inner surface of the tube
element. The components of this force along ? and n directions are respectively
(-T, n) -? and (-TF7?) n. In terms of the components of T, we get:

(-Tpn-).t=d (Tx Trr) + ((dR) - 1)T,.] -(/2) (12)

(Tp.n).n - 1 F~ ORZ 'ORz 1 42

T)L2 2 a9 TVx- Trr _ T,, (13)

Here, [ ]R - (h/2) indicates that the value of the quantity in the bracket should be
calculated at r = R - (h/2). The components Tr,, T,,, and Tr, of TF, expressed in
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terms of velocity derivatives and pressure are given by the following relations. (Gold-
stein, 1938),

Trr = -p + 2M-r

T.,= -p+ 2 aw, (14)Oz

(Iw 0u
T,, = Eud+-

Let us substitute the values of P, and P,, from equations (11), (12), and (13) into
equations (8) and (9). Then equations of motion of the wall becomes:

aR To + a (RTj) - pohR( at2 + aR at2)

T9 O2R TR poh (OR a9 2_
R[1 + (az ) ]r) I + (az ) ]

- AR21/2 49 2 RTr Trr- (z) T,, = 0. (16)
+ _ Oz)O

Elasticity Relations. Stress components a3 and T2 are related to the dis-
placement componentsT and v with elasticity relations. In general, displacements are
measured from a natural unstressed reference state for them. As the mean pressure
decreases, initial tangential stress decreases. However, this is not true for the longi-
tudinal initial stress; it can be decreased only by dissecting the arterial segments at
its ends. Suppose, removing a piece of artery from a body, we obtain an unstressed
reference state for it. Then, using this piece of artery, one may obtain a stress-strain
relation. However, deformations required to bring back this piece of artery to its
original state in the body are very large. Thus, one is forced to use the large elastic
deformation theory. This theory is more difficult than the linear theory. To detour
the difficulty we face here we will completely ignore the origin of the initial stresses
and assume that, as the wave moves along the tube, the points of the wall undergo
small deformations about the initially stressed state. Furthermore, we will assume
that excess stresses due to these small deformations are related to the corresponding
excess strains linearly.

Let T. and Tg, denote circumferential and longitudinal initial stresses. Then stress-
strain relations are given by the following formulas. (Goldenveizer, 1961, p. 110).
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To - To =1 2( + cd (17)

Eh (a 7~Tt - Tt. = t 2 (z+ O- R (18)

Here E and a denote, respectively, Young modulus and Poisson's ratio of the wall.
Boundary Conditions. To complete the description of the problem on hand

we have to supplement the equations given in previous sections by boundary con-
ditions. Since fluid particles adhere to the inner surface of the tube, the velocity of
the fluid particles on the wall must be equal to the velocity of the wall. That is,

u(r, z, a)rq-h2 =d (19)at

w(r, z, t) r -R- (h/2) at (20)

As another kinematical condition we will express the fact that the component of
the fluid velocity normal to the wall of the tube is equal to the normal velocity of
the normal velocity of the inner surface of the tube. Since r = R(z, t) - (h/2) is the
inner surface of the tube, this condition can be written as (Goldstein, 1960, p. 10):

d [r - R - (h/2)] = 0;dt

carrying out differentiation, we obtain

aR + w d= (21)

Here u and w have to be calculated at r = R - (h/2).
The conditions (19) and (20) being more general in nature, include equation (21)

as a special case. However, as we will show later equation (21) yields a useful result
when equations are linearized.
We will consider boundary conditions related to the coordinate z and time t after

we linearize the above given equations and conditions.

LINEARIZATION OF THE EQUATIONS AND
THE BOUNDARY CONDITIONS

After stating governing equations and boundary conditions we are ready to attempt
to solve the problem.

However, equations of fluid motion and equations of motion of the wall are non-
linear. It is very difficult to solve them. To simplify the problem we will linearize
these equations.
To start linearization, first we will expand all of the dependent variables into a

power series in terms of a parameter e, around a known solution of the problem. As
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the known solution we will take the rest state. That is, an incompressible fluid is at
rest in an inflated and stretched tube. The choice of the parameter e is immaterial.
However, the parameter e should be chosen so that for e = 0 all the dependent
variables of the problem should give us the known solution which we started with
(see Souriau, 1952).

Let us expand dependent variables of our problem into the power series of

U = U1E + UV2e + ...

W = W1e + W2E2 + ...

P = Po + P1E + P2E2 + ...

t =t116 + G2E2 +..
X = 1e + 72E' + ...

R = Ro + R1e + R262 + *--

To = To. + Te.e + To.e2 + *.

T= Tto + Tt,e + Tt e2 + ... (22)

Here po, Ro, To., and T,. are constants. Their values are given as the initial state of
the system.
To carry out linearization, we will be forced to calculate the value of a certain

function f = f(r, z, t) at r = R - (h/2). Using Taylor's theorem together with power
series expansion of e we find

f(r, z, t)lr.R-(h,/2) = fo(a, z, t) + E[fl(a, z, t) + R1(z, t) Ofo(a,z, t)] + 0(E2). (23)

This formula helps us to calculate the value of a function at a variable boundary.
Let us substitute equations (22) and (23) into the governing equations and boundary

conditions given in the previous section. Collecting coefficients of the like powers of e
and equating them to zero we obtain sets of equations for different order of approxi-
mation.
For the zeroth order approximation equations (1) and (2) give us:

(PO= 0, 9p°= O (24)
clr O9z

From equation (15) we obtain

RT PO =0 (25)

The rest of the equations do not contribute to the zeroth order approximation.
From equations (1), (2), and (3) we get the following first order relations:

0u1 _ 1 Pi+(2U+ 1+!ui + d 1\ul
Ot pOr~~\02 rOr 7), (26)
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Ow, _. ap, +v1a2WI +( oW + a2W, (27)

I da (rul) + dawl = 0. (28)
r ar Oz

Similarly from equations (15) and (16) we obtain the following first order equations.
O92, [o, Otl+ICljR, (Tt. T- +lOTt 29

poh + + + z(29)ir cl r azlrta Oz RR0 /

poha2 71 = pl - 21 dr] + Ro1 Tao TO TgTCR+ 2R (30)

In writing these last two equations we used equations (14). The first order stress-
strain relations are:

To. =
Eh

2 ( + at) (31)

T,=
Eh (Ok, + 11(2Te1 = _ \2Oz RoJ (32)

The first order relations from the boundary conditions (19) and (20) are, respectively:

U1 Ir-a = ath s(33)

W1jIr-a at (34)

To the first order, equation (21) gives us:

UlIr-a - atR = 0.

Comparing this result with equation (26) we see that to the first order approximation
we have (see Fig. 3):

R= 71 (35)

Equations for the second and higher order approximations may be obtained
similarly. In the following, we will assume that the perturbations ul, wi, pi, t1, 171,
R,, Tp1, and T,1 are very small, so that we can neglect altogether high order approxi-
mations and in equation (22) we can replace e with 1.

SOLUTION OF THE PROBLEM

Zeroth and First Order Solutions. The integral of the equations (24) ispo = constant.
It is evident that the value of this constant should be equal to the initial inflation
pressure of the tube. Solving equation (25) for To. we obtain the value of the initial
circumferential stress in terms of the initial pressure and Ro.
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The first order equations of the tube are coupled to the equations of motion of
the fluid through the velocity derivatives they contain. Therefore, we have to start
from fluid mechanics equations.
We are interested in the propagation of forced waves which are harmonic in t and

z. We will assume that ul, w1, pi vary in t and z in the following manner

ul= a1(r) exp [ico(t -zc)],
W= w1(r) exp [ico(t -zc)],

Pi = P(r) exp [iw(t -z/c)]. (36)

Here, w denotes the circular frequency of the forced oscillation and is a real constant;
c denotes the velocity of propagation of the oscillation.
The general solution of the equations (26), (27), and (28) corresponding to the

forced harmonic oscillations described by equation (38) was given by Womersley
(1955). This result is

L yaO1(pg a ,r ) jl(CC2 + 21 ax\(

wl= 0-A- J2Joo +-)0a
+lA (Cx a+ (o) J((ao 0 + o)j/2a exp[i(t-zc)], (37)

+ B 0o+ /3o)1 Joi (0 + a% exp [ico(t - z/c)], (38)aoJO(O) \

Pi = A Jo(i3o -) exp [i(r- z/c)]. (39)

Here A and B are integration constants; Jo(x) and J1(x) denote the first kind zeroth
and first order Bessel functions; a0 and fB. are dimensionless parameters and are given
by the following relations.

2
2 33 a 2_3 2aao= -I a, (40)

,60= - =,(. (41)

To determine the integration constants A and B we have to use the boundary
conditions (33) and (34). The right-hand side of these conditions involves i, and q,.
Since the equations of motion of the wall are linear, their solutions which correspond
to the forced harmonic oscillations given by the equation (36) will have the following
form

= C exp [ic(t -z/c)], (42)
t = D exp [ico(t -z/c)]. (43)

Here C and D are constants to be determined.
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Substituting now equations (37), (38), (42), and (43) into the boundary conditions
(33) and (34) we obtain the following two equations for the unknown constants
A, B, C, and D.

AOa J (8 ) + B 0J((a + 3)) - iwC = 0, (44)
()o ao Jo(CIO)

AI23oa.SO + B (a2 + 4)1/2 Jo((a2 + p2)1/2
- A '6a2 Jo(130) + B Jo00

- iwD =0. (45)Icz,, aYo Jo(ato)

We will use the equations of motion of the tube wall to obtain two more equations
to determine the four unknown constants. To express the excess stresses Tp, and T81
in terms of displacement derivatives we will substitute equations (31), (32), and (35)
into equations (29) and (30). Carrying out this substitution, we obtain:

a 2F7 Cluj___ ___Eh__ 17

poh -i=P-2s,u +T9 + T,. 071 l E I(5ij+ 1 (46)COtL O9rJ+TO a2 az2 1 - O' z a2

Ot O~~r Oz a Oiz 1-c ldt~ ~ w[ ur+ Td, ] Te, d7i + 1Eh (Oztl Oz (47))

In these equations we have replaced 1/Ro with 1/a. This replacement is equivalent
in neglecting h/2a in comparison with unity.

Finally substituting equations (37), (38), (39), (42) and (43) into the equations (46)
and (47), we obtain the two additional equations which are necessary to determine
the constants A, B, C, and D. From equation (46) we obtain

A{Jo(o) + 2 [Jo(lo) J2-0)]

- B :° [J ((ag2 + #2)l/2) - J2((a2 + /2)1/2)]
aao Jo(ao) 0

+ 2+ To. Eh)I1+hP&2]+ Eh aoo(8+C Th )- +2 2 .] + D l 2 a2 = ° (48)

Here J2(x) denotes the first kind of second order Bessel function.
Similarly from equation (47) we find:

2f3~ ~ t(a + 2i32)
- A --o J@(o) + B J1+ 0 j((a!2 + 32)1/2)a2 aao Jo(ao)

C o( Eh + Tt - To) + D1 Eh a2 + Poh2) 0. (49)

These last two equations together with the equations (44) and (45) constitute a
system of homogeneous linear equations for the four unknown coefficients A, B, C,
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and D. In order to have solutions of the type prescribed by equations (36), (42), and
(43) for our problem, this system of equations should have a nontrivial solution. This
requires that the determinant of the coefficients of the system must be equal zero.
Equating the determinant of the coefficients to zero, we obtain the frequency equation
in which the only unknown is the velocity of propagation c. As a quick inspection
of the equations (44), (45), (48), and (49) reveals that, to solve the frequency equation
for c is a very difficult task. Therefore, to obtain a reasonably simple frequency
equation, we will limit our investigation, hereafter, to the study of propagation of
oscillations which have long wavelengths.

Long Wave Approximation. To simplify the frequency equation we will
assume that the wavelengths of the oscillations are very large compared with the
the radius of the tube. This requirement is equivalent to lIo = law/cl << 1. Since for
blood flow, the parameter a(c/v)12 is of order one, this inequality, on the other hand,
implies that a(w/l)2>> law/cl. Thus, when the magnitude of io = i(ac/c) is very
small, we can introduce the following approximations.

Jo6o) C- 1, J1(BO) - 2 ' J(o) 88, aZ + go ~ aO (50)

Carrying the relations given by equation (50) into the equations (44), (45), (48), and
(49) we obtain the following set of linear equations for A, B, C, and D.

-J23a; A + '30F1oB - iwC = 0, (51)

-oa2 A + B - iw D = O, (52)

A -A° (2- Flo)Ba

+ Tg 2 +T Eh2 12+ pohA2)C+ Eh2D =O, (53)

3 2M3ao--2 A+ F1OBa0 2a

Hee - Eh o + Tg, - Te.) 32 C ± ( -E 2 + pohl)D = 0. (54)

Here

Flo = 2 J1(ao)/ao Jo(ao) (55)

and Womersley (1957) contains extensive tables of this function.
Equating the determinant of the coefficients of the equations (51) through (54) to

zero we obtain frequency equation for the long wave approximation.
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#Oa
-n2 1 0 -icMao

24_ Noa 3-fOF1o -iw O
2,uoco 2 T = 0 (56)

~9 Eh 1 +phw2 2h 2f|1 -$° (2-Flo) T_._2+Te' _2 Eh2cPOa a2 a2 1-cr2a2 1-ac2 a2

go Mao Eh_2
| 2 2a Flo (Eh2 O+T' -T*) Eh 2 poh2

Before we attempt to expand this determinant, let us try to get some feeling about
the order of magnitude of the initial stresses T,* and To9.

In one of the experiments which we observed on the descending aorta of a dog,
a marked 4.6 cm length of aorta retracted considerably when it was dissected at both
ends. When this segment was removed from the body its excised length was only
3.2 cm. This corresponds to an extension e = 0.44. Assuming that, even for this
large deformation, the linear theory holds, taking po = 150 mm Hg, o = 0.5, E =
2 X 106 dyne/cm2, and h/a = 0.16, we obtain

.- 2 X 105 dyne/cm2 and ' °3.4 X 105 dyne/cm2a a

This rough calculation indicates that Tt./a, Teo./a and Eh/l -_ a2 1/a have the same
order of magnitude. Then, going back to the equation (56), we see that we can neglect
the term TJ.321/d in comparison with the terms Te,/a2 and Eh/l _ cr2 1/c?. Again
the quantity pohce2 which appears in the same elements of the determinant together
with T,./Id and Eh/l-_r2 1/c can be neglected, even for very large harmonics.

Let us substitute into the determinant the values of a. and ,Bo in terms of a and j3;
(see equations (40) and (41)].

Since the determinant is equal to zero, without altering its value, we can perform
on it the following operations: (a) multiply first column by iPa2/f, third column by
/lw, fourth column by i/X; (b) multiply second row by l/i,B, third row by 3a/lpa2,

fourth row by ia/,u; (c) replace the elements of the second row with the elements of
the first row minus twice the elements of the second row; replace the elements of the
third row by the elements of first row minus elements of the third row.
Furthermore noting that 1 + i#23a 2(2 - Flo) 1, the determinant (56) becomes

1 1 0 1

0 1 - Flo 2 1

|°(_TOO +Eh 1\ 2 + Eh h|2 =

\ a 1- ra- a2Aw 1-cr aa Aw

g,i32 2Flo (Eh c2+ Te'. To) ( Eh 2 Pohw)
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Here we assume that the terms such as Te.f3/a, EhIl/(l - o2)a are of order one.
Now let us expand this determinant by its first column. Noting that, cofactors of

both of the elements 1 and -i12 have a magnitude of order one, we can neglect
-i32 times its cofactor in comparison with the cofactor of 1. This gives us:

1-Flo 2 1

|1 (_ To. + Eh a) 32 + Eh(,a =0 (57)

| F ( Eh a2+ T. To. 2 (Eh (2 h2) a
~F0 (Eh T 2 -2Nh. 2a a a/a2w \1 -ra ~apw

Expanding the determinant (57) and introducing the following dimensionless param-
eters

To./ Eh = TO, T./
E = T, k = poh/pa. (58)

we obtain frequency equation.

4( -2F) - 2 -Tr + a(Tt - T)](c) + 2 [-k(1 - Flo)(1 - re)

+F1o(2 + rT- Te 2 2]( ) + F10+ 2k = 0. (59)

Here

(( ) 1/2 (60)

is the Moens-Korteweg formula, for the velocity of wave propagation in an incom-
pressible, inviscid fluid enclosed in a thin walled elastic tube.

Before starting to discuss the solution of the equation (59) let us note here that for
re = xs = 0 this equation reduces to the frequency equation given by Womersley;
in addition if we assume that the effect of wall inertia is negligible (i.e. k = 0) we
obtain the frequency equation given by Morgan and Kiely (1954).
The roots of equation (59) are complex numbers. We will represent them as

Co = X iY

since

exp [iw(t - z/c)] = exp [iw(t - zX/co)] exp -2r x]

where X is the wavelength of the oscillation, we see that co/X = velocity of propaga-
tion of the wave, exp (-27rY/X) = transmission per wavelength.
The equation (59) being a fourth order equation, there are four solutions for co/c.

However, since we solve equation (59) first for (CO/C)2 and then take the square root
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of (co/c)2, two of the solutions of equation (59) differ from the other two only in sign.
Thus, two out of four solutions of the frequency equation give us outgoing waves,
and the remaining two solutions represent incoming waves. Here we will consider
only the two outgoing waves. We will denote by cl and c2 their propagation velocities.
The values of cl and c2 will depend on the initial stresses re and Tg, the Poisson's ratio
o, and the parameter k. For the numerical examples which we will consider here we
will take u- = 0.5 and k = 0.1 and let re and Tt vary.

In Fig. 4 we give the variation of c1/co versus a for an inflated tube. We see that

12

olu~~~r I\ kuQ 'r

2

0.8-0.

0.6
0.2 0.8

1
~~~~~~~~~~~~~~~~~1.0

O 1 2 3 4 5 6 7 8 9 10
a

FIGURE 4 Dimensionless velocity of propagation of the first type wave, cl/co, plotted
against a. Ts was taken to be zero while Te took different values between zero and 1.

as the initial circumferential stress increases (i.e. as the inflation pressure increases)
velocity of propagation decreases. The curve rT = r, = 0 coincides with the curve
given Womersley (1955). The velocity of propagation is insensitive to changes in
a for a > 5.

In Fig. 5 we represent c2/co versus a for an inflated tube again. As we see from the

4.0

2D-

I.O.

C0 I 2 3 4 5 6f7 8 9 lb

FIGURE 5 Dimensionless velocity of propagation of the second type wave, c2/cO plotted
against a. Tg was taken to be zero while r took different values between zero and 1.

H. B. ATABEK AND H. S. LEW Wave Propagation through Viscous Fluid 495



figure, this second wave propagates much faster than the first type of wave. Contrary
to the behavior of the first type of waves, the ratio c2/c0 increases as -e increases.
The Figs. 6 and 7 represent the transmission per wavelength versus a for the first

and second type of waves respectively. The transmission of slow waves improves
monotonically as a increases. On the other hand as re increases transmission de-
creases. The transmission behavior of the fast waves is quite different from the slow
waves. For low values of a transmission is very high. As a increases transmission
decreases rapidly and after passing through a minimum approximately at a = 3.5,
transmission starts to rise again steadily with a, but rather slowly. The effect of
circumferential tension on the quality of transmission of the fast waves is opposite
of the slow waves; as re increases transmission becomes better.

a

A0.9

c

0~~~~~~~~~~~~~.

EUU 0.8
1.0

0~~~~~~

|!OI 2 3 ~~4 5 6 7 a 9 O0

FIGURE 6 Transmission per wavelength plotted against a for the first type waves; Tr 0
and rg varied between zero and 1.

0.s
~~IK vsj irno-aj o
@1~~~~~~~~~~~~~~~~~~~.

a.0.

.a06~ ~ ~ ~ ~ ~ ~ 0

*03~~~~~~~~~
0.3*1
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FIGuRE 7 Transmission per wavelength plotted against a for the second type waves;
r = 0 and To varied between zero and 1.
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In Fig. 8 we show the effect of the initial longitudinal stress on cl/co. Comparing
this figure with the Fig. 4 we see that the effect of rT is the same as the effect of rT.
As Tr increases the velocity of propagation cl decreases. On the other hand as we
have shown in Fig. 9, the velocity of propagation c2 increases with T1.
The effect the longitudinal initial stress rT, on the transmission of the slow and fast

waves are represented in Figs. 10 and 11. Similar to the inflated tube case, for small
a transmission is better for the fast waves; for large values of a slow waves are trans-
mitted better. Response of the quality of transmission to an increase in rT for the
two type of waves is similar to their response to an increase in rT.
The combined effect of re and rT on the propagation velocities and transmissions

of both type of waves are represented in Figs. 12 to 15. It is remarkable that the effects
of the initial stresses are additive for both types of waves. For example, for the slow
wave, the curve re = rg = 0.2 of Fig. 12 is very close to the curve rT = 0.4, x, = 0

1.2
k-CL-I r.- O r T=0

t.O 0.2

0.8

,aiJ Os

04 04 =
06

0.2 08CL
LO

o0 2 3 4 5 6 7 8 9 10
a

FIGURE 8 cl/co plotted against a; To = 0 and -T took different values between zero
and 1.

FIGURE 9 c2/cO plotted against a for -r = 0 and rt varied between zero and 1.
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FIGURE 10 Transmission per wavelength plotted against a for the first type waves; re = 0
and rt varied between zero and 1.

FIGURE 11 Transmission per wavelength plotted against a for the second type waves;
re = 0 and Tg varied between zero and 1.

5
al

FIGURE 12 The variation of cl/co versus a
longitudinal and circumferential stress.

under the combined effect of the
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FIGURE 13 The variation of C2/Co versus a under the combined effect of -r and rg.
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FIGURE 14 The variation of the transmission per wavelength for the first type waves
under the combined effect of r0 and rg.
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FIGURE 15 Transmission per wavelength for the second type waves under the combined
effect of Tr and rt.
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of Fig. 4 and also to the curve re - 0; T, - 0.4 of Fig. 8. Similarly, for the slow waves
transmission gets worse under the effect of the combined initial stresses.

It is instructive to investigate propagation properties of these two types of waves
as a co. Since a = a(co/l)",2, we see that for constant a and co, a goes to infinity
as v 0. That is, a = o phys,ically is equivalent having an inviscid fluid inside the
tube. The initially stressed tube case, is rather difficult to treat without going into
numerical calculations. Here, we will assume re = rt = 0. Then, since lima-o F10 = 0,
the frequency equation (59) is simplified considerably, leading to the following solu-
tions for (co/c)2.

/2(C)2 = 4{k+ 2
J [(k + 2)2 _ 8k(1 _ ^2)]1/2J (61)

Poisson's ratio a, can only change between zero and 1/2 and k > 0. Then, it can be
shown easily that [(k + 2)2- 8k(l _ a2)]1/2 is always positive and k + 2 > [(k + 2)2 -
8k(l _ J2)]1/2. Therefore equation (61) has always two positive roots. These two roots
gives us the following values for cl/c0 and c2/c0 for outgoing waves.

cIAo = 2/{(k + 2) + [(k + 2)2 - 8k(1 _-2)]1/211/2, (62)

C21Co= 2/{(k + 2) - [(k + 2)2 _ 8k(l _ °2)]1/211/2 (63)

Since the roots of equation (61) are real, we see that when fluid is inviscid both
type of the waves do not attenuate. This, clearly, is in agreement with what we ob-
serve on the curves ro = x, = 0 of the Figs. (6), (7), (10), (11), (14), and (15) as
a- co .

For k = 0, the equations (62) and (63) give us cl/c0 = 1 and c2/cO = co respec-
tively. Similarly for a = 0, (for 0 < k < 2), from equation (62) we obtain cl/c0 = 1.
Thus, the velocity c0 can be interpreted as the velocity of propagation of the first
type of waves either through an unstressed, massless tube filled with an inviscid
liquid, or through an unstressed tube whose Poisson's ratio is zero and is filled with
an inviscid liquid. On the other hand, for o- = 0 equation (63) gives us

C2 = Co(2/k)1/2 = (E/p)/2. (64)

Equation (64) represents the velocity of a longitudinal wave through the tube wall.
The two last results which we have obtained here for a = c, rT = rt = 0, and
a = 0 are in agreement with the expressions given by Morgan and Ferrante (1955)
as the solution of the inviscid problem.

After we determine c, we go back to the equations (51), (52), (53), and (54) and
solve them for A, B, C, and D. Since this system of equations is homogeneous, we
can only determine three of the unknowns in terms of the fourth one. The unknown A
represents the coefficient of the pressure increment. Since the pressure is the easiest
to measure among the dependent variables of our problem, here we will express B,
C, and D in terms of A. From the equations (51), (52), and (53) we obtain
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B _ 1 x[2-(1 -re)] + 2 (65)
A Cp x[(1 -re) F0l-o 2] '

C 1 ux(F1o- 1) + Flo
A - C2p x[2oa- (1 - r9))F10] (66)

D _ i 2-x(l -re)(1 - FlO) (67)
A cp x[2a -(1 - 'rO)Fi0]

where

Eh

X_(1
2
&)p2 (68)

Let us remark here that, the initial longitudinal stress rt and the parameter k enter
these equations implicitly through x.
To determine velocity components, first we have to carry the implications of the

long wave assumption [see equation (50)] into the equations (37), (38), and (39). Doing
so we find

, =[-A~2 + B 0 .Ji(aoa)] exp [iw(t-z/c)], (69)

#Oa ~~a
WI = -A 2+ B exp [iw(t - z/0] (70)

P1 = A exp [ic(t - Z/c)]. (71)

Then substituting equations (65) and (66) into equations (69) and (70) we obtain

F (~~, rul =p -ai + nm
o o(ao) -J

exp [io(t- z/c)],(2

A Jo____wI = - + m i ( )] exp [iw(t - z/c)], (73)
where

2 + x[2o- (1 -r)] (74)
x[(1 - 'r9)F10 2a]

Similarly substituting equations (66) and (67) into equations (42) and (43) we can
express t, and t71 in terms of A. The ratio t/V71 is independent of A. Studying this
ratio we may gain some insight about the nature of the first and second type of waves.
From the equations (42) and (43) we see that the path of the particles of the tube wall
are ellipses. The modulus of the complex number 011/t gives us the ratio of the major
and minor axes of the ellipses. Substituting equations (66) and (67) into equations
(42) and (43) and dividing resulting equations, we find that
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FiGuRE 16 The ratio of the major axis to the minor axis of the paths of the wall particles
for both type waves plotted against a for -r== T= 0 and rp = Tg = 0.2.

a Eh ~12 [2 -x(1 - Te)(l -Flo)] (5
t1/771= i v [I aa2)ap x[xx(1 - Fo) - Fl] (75)

In Fig. 16 we plotted 11/nq v/a[(l _-2)ap1Eh]` versus a for the first and second
kind of waves. From these curves, we observe that the radial motion of the wall is
more pronounced for the first type of wave. Since the factor v/a[(l -_ 2)ap/Eh]112 is,
in general, very small for both types of waves the paths of the particles of the wall
are very flat ellipses.

CONCLUDING REMARKS

As we already remarked, for re = r = 0 equation (59) reduces to the Womersley's
frequency equation. However, in neither of his publications, did Womersley mention
the existence of the second type of wave.

Propagation of waves in liquid filled elastic tubes was studied experimentally by
Muller (1951) and Taylor (1959). Only Muller considered the effect of the pressure
of inflation on pulse propagation velocity. His experimental data agree with the
findings of this theory, qualitatively for the first kind of waves. A quantitative com-
parison requires that the exact values of the tangential and longitudinal stresses to
be known. However, in Muller's paper there is no indication about the magnitude
of the longitudinal stress induced on the tube either during the assembly of the ex-
perimental setup and/or due to radial inflation.

Taylor's experiments, on the other hand, were carried out with tubes inflated to
a constant internal pressure. Without knowing the exact magnitude of the longitudinal
stress induced on the tube, it is not possible to compare his data with the results of
this theory quantitatively. However, his measurements of the transmission per wave-
length are significantly lower than what Womersley's theory predicts. Recently,
similar results have been found in transmission measurements in arteries (McDonald,
1965). On the basis of data obtained by McDonald, it was concluded that the trans-
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mission in arteries was about half of what Womersley's theory predicted. Both of
these experimental results are qualitatively explained by the theory presented herein.
The propagation behavior of the second type of waves is markedly different from

the first type of waves. This should make it rather easy to detect them experimentally.
However, there are no remarks about their existence in the above-mentioned experi-
mental investigations. This may be attributed to the method of excitation used in
these experiments. In both of these experiments oscillations are generated by applying
alternating pressure to the fluid. Since the second type of waves are essentially longi-
tudinal waves through the tube wall, modified with the existence of the fluid, they
might be excited if the oscillations are generated, vibrating the tube wall longitudinally.
The longitudinal displacements predicted by the theory given here, corresponding

to large pressure increments, are very large when they are compared with the observed
longitudinal oscillations of arterial walls. Therefore, we join Womersley (1957) and
the others in agreement on the necessity of bringing in some kind of longitudinal
constraint, in order to use this theory in the study of flow of blood in arteries. Ex-
periments carried out presently by Patel and Fry (1965) to explore the nature of the
constraint on the aorta of dogs, reveal that, the simple elastic tethering model of
Womersley (1957) is not an adequate one. Once the mechanism of the longitudinal
tethering is clearly understood, the present theory can be extended to cover flow of
the blood in arteries. However, even in that extended form, if this theory is to be
useful in practice, the values of the initial stresses Te and rT have to be determined
experimentally in arterial system.
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