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ABSTRACT A model of the electrical activity of excitable membrane was used to
simulate action potential propagation in cardiac cells. Using an implicit method for
solving finite difference equations, propagation through the intercalated disc region
between two abutting cells was studied. A model of interaction was constructed
and parameters of the cellular junction determined. Estimates of the intercalated
disc resistance were then made from these junction parameters using a field analysis
of the junction. Values of approximately 4 Q-cm? were found and correlate well
with experimentally measured values.

INTRODUCTION

The spread of electrical activity in the heart has long been observed to resemble the
propagation phenomena observable in a single cell. This behavior is responsible
for the characterization of the heart as a functional syncytium. However, anatomi-
cally, the heart is known to consist of many cells, each bounded by a plasma mem-
brane and separated from each other by an intercalated disc. The question arises,
therefore, whether activity spreads by local circuit current (as would be true in a
single axon) or by some other mechanism.

Electrical transmission between cells requires a sufficiently low membrane resist-
ance so that a transthreshold local circuit current can build up in inactive cells
adjoining an active one. From a model of end-to-end interaction of cardiac cells,
Woodbury and Crill (1), utilizing a simplified analysis, determined that the disc
resistance must not exceed 1-5 Q-cm? for electrical transmission to take place. This
paper utilizes a similar model but considers the problem in a more rigorous way.
Specifically, except for the disc, all membrane is assumed excitable and described
by the Hodgkin-Huxley equations as modified by Noble (2). Furthermore, the gap
is treated by a rigorous field-theoretic analysis. While the results, in general, agree
with those of Woodbury and Crill (1), the limitations and implications of the anal-
ysis are established. Furthermore, the same technique utilized in this paper can be
applied to the analysis of the finite (terminated) axon.
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This paper, subject to stated approximations, describes the electrical properties
that the intercalated disc must have if propagation is to occur as a result of local
circuit current. That the disc does indeed have such characteristics is not under
consideration in this paper. Results presented here neither confirm nor deny the
prevalent view that the spread of activity in the heart is electrical in nature (3-5).

MATHEMATICAL TREATMENT OF INTERACTION MODEL

The model considered is sketched in Fig. 1, and illustrates the end-to-end abutment
of two cardiac cells. Each cell is assumed cylindrical with a diameter of 15 x and
length 100 u. The two adjoining end faces constitute the intercalated disc and are
assumed inexcitable. The gap region is assumed contiguous with the interstitial
media and has the same specific conductivity. All remaining membrane is de-
scribed by the Hodgkin-Huxley equations as modified by Noble.

Even the (presumably) low resistance disc membrane can be expected to have a
high specific resistivity compared to the axoplasm or gap (this will be checked
later). Therefore, the assumption is made that the current is orthogonal to the end
caps and, in addition, that the axoplasmic surface adjoining the disc is essentially
an equipotential. As a consequence, the current field in the membrane is uniform
and the membrane thickness is not pertinent; we consider it to be infinitesimal and,
hence, describable as a surface discontinuity.

The fields in the gap can be evaluated in terms of the parameters in the above
model, based on the aforementioned assumptions. From this solution, a passive
network representation of the gap and disc can be formulated. This is necessary in
order to electrically represent the coupling of an active and inactive cell; the final
goal is a core conductor model of both cardiac cells and the intercalated disc gap
region which separates them.

Field Theoretic Analysis of the Gap Region

This section deals with the rigorous solution of the potential field in the intergap
region between the two cells shown in Fig. 1. Two identical, cylindrical fibers of
radius 7, are abutted together with separation 8. Cylindrical coordinates are chosen
as indicated. One fiber is assumed active, the other inactive. The potential field
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FiGURE 1 Model of cardiac cell interaction—the intercalated disc.
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¢(r, z) is desired in the region, 0 < z < §;0 < r < r,. It is assumed that each fiber
is capped with a membrane that is nonexcitable and characterized by a specific
resistance R;(Q-cm?).

The following analysis will be valid under the assumption that the end-cap re-
sistances R; are completely passive and independent of voltage and that the current
flow depends only on the voltage drop across the gap. The potential of the inactive
cell is taken to be zero since the cell is at rest. The potential assigned to the active
cell will be a constant ¢, , relative to the resting potential. Therefore, determination
of R; under “electrotonic” conditions will give values that are assumed to remain
constant under active conditions. In the region of interest, ¢ will satisfy Laplace’s
equation V2%(r, z) = 0 which in cylindrical coordinates, with no 6 variation due to
symmetry, becomes

14 de de
Boundary conditions are considered in terms of the normal current density at the
surfaces z = 0 and z = 6 and the behavior of ¢ at # = 0 and r = r,. These are:

(a) e(r,0Y) — ¢ - Je

Ry oz

=0t ’

R "oz
(¢) € finite at r = 0,
(d)e=0atr =r,.

(b) e(r,87) _ o Je

’
2l

The above relations assume that the membranes are very thin and are located at
z = 0 and z = 4. The solution to equation 1 is then to be found in the open inter-
val (0, ). Conditions (a) and (b) equate the current density crossing each disc
membrane to the normal derivative of the field at the interface times the conduc-
tivity ¢ of the medium. Condition (d) is the condition that the external medium
be the reference. It must be kept in mind that & will be very small (order r, per 1000)
and, therefore, the potential in the gap need not be the same as in the external
medium even though the two are contiguous.

Solution of equation 1 requires Bessel functions of the first kind in » and hyper-
bolic functions in z. Conditions (¢) and (d) impose a solution in the form

e(r, z) = ix Jo(k.r)[A4, cosh (k.z) + B, sinh (k,z)], (2)

where k, are the roots of Jo(k.r,) = 0. Applying boundary conditions (a) and (b)
gives

Z A,,Jo(k,.r) — € = Rd Z kanJO(knr)’
n=1 n=1
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and
3 Jo(ks?)[An cosh (kn8) + B, sinh (k.8)]
n=1
= Ruo Y Jo(knr)k.[A, sinh (k,8) + B, cosh (k,.5)].
n=1

Multiplying both sides of the above two equations by rJy(k.r), integrating with
respect to r over [0, r,], and using the orthogonality property of the Bessel functions,
permit one to solve for 4, and B, . The final solution is found by substituting the
resulting expressions into equation 2 and this yields

e(r,z) _ < 2Jo(knar) ) o
o = ,,Z; @ ¥ Rk ko r it [d. cosh (k,z) — sinh (k,z)], (3)
where

d, = [oRsk, + tanh (k,8)]/[1 + ¢Rsk, tanh (k,9)].

The above equation was evaluated for the following set of conditions where the
geometrical data are considered to be “typical”’:

ro = 8y,
& = r/10° = 80 A,
¢ = 0.02 mho/cm,

R; in the range 0.1-100.0 Q-cm?2.

The series was arbitrarily terminated at n = 16, the terms thereafter adding negli-
gibly to the sum. The results are shown in Fig. 2 with the disc resistance as a param-
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FiGure 2 Calculated potential field in gap region—evaluated at z = §/2, R;, disc resist-
ance, in Q-cm?.
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eter. This set of curves was evaluated for z = §/2 but examination of equation 3
shows that the dependence of € upon z is very slight. This is due to k.z (for 0 <
z < §) being very small. For instance, if kor, = 2.4, then ko6 = 0.0024. For nearly
all values of n and z, therefore, cosh (k,z) ~ 1.0 and sinh (k,z) ~ 0.0. Physically
this means that at any r value, the intercellular potential drop occurs mainly across
the disc resistances with relatively little change in potential across the gap. This is
not surprising since the gap has a much higher conductance than the disc. Neverthe-
less, the field analysis must take into account a z-variation of potential in equation 1
even though it be very small since it is necessary for a correct evaluation of normal
current density, which is not negligible.

Woodbury and Crill (1), using the same geometry and boundary conditions,
obtained the following differential equation from an elemental-volume treatment
of the gap region (where the z-variation in potential is neglected):

de —r
‘—1; = —x2— (éa - 26)

The solution to this equation, subject to the boundary conditions stated previously,

is
e(r) 1 —r rz)]
- “5[“CXP(v+ﬁ ’ (4)

where A2 = 200R, . This expression has been subsequently revised by Woodbury
and Crill (6). The new solution appears as equation 5 in the following paper and a
plot of it and the above equation 4 are shown in Woodbury and Crill’s Fig. 1 B.
Woodbury and Crill’s original interpretation of their curves is that effective trans-
mission can occur only for R; less than about 2 @-cm?. This is because for this con-
dition most of the current crossing the active cell surface continues into the inactive
cell. However, the question is not only how the current divides between longitu-
inal and radial components in the gap, but what the actual quantities are and how
these relate to the attainment of threshold conditions in the inactive cell. It is these
questions which are answered in the following treatment.

Current Calculations in the Gap Region

The current density in the gap region is equal to —¢Ve where e is given by equation 3.
In order to obtain a passive electrical representation of the gap, the current crossing
the three surfaces which bound the gap will now be evaluated. These consist of the
currents crossing the active and inactive disc surfaces and that crossing the cylin-
drical wall at r = r,(0 < z < §). We designate these currents as I, I;, and I,
respectively. The total current entering the gap from the active cell, I, , is found by
computing the density —ode/dz at the surface z = 0, multiplying by an elemental
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area 2rrdr and integrating over the circular cap surface. Thus
To
I, = —21r¢rf rie dr.
0 9z 2==0

Likewise, the current into the inactive cell is

"o Je
I; = —27o f r— dr.
0 a9z 2=

In a similar way the net current, I, across the cylindrical gap boundary (r =
r,0<z<4)is:

8
Oe
12 = —'21"'00'./0. E‘

re=r,

Now if equation 3 is substituted into the above three equations and the order of
summation and integration interchanged, the following result is achieved after
suitable rearrangement,

]

I, = 41ro'r.,e,,zi, (5)

n=1 Cp

0

I = —4roree, S L [d sinh (ka3) — cosh (k.5)], (6)

n=1 Cp,

©

Aror,e O 1 [d, sinh (k,8) — cosh (k.3) + 1], (7)

n=1 Cp

I,

where

(dn + Uden)kn To,

oR;k, + tanh (k,8)
1 + oR;k, + tanh (k,8)

It is apparent from equations 5-7 that I, + I; = I, as is required from continuity
considerations.

Using the same range of Ry, as previously stated, these currents were computed
and are plotted in Fig. 3. The values of current are nondimensional and must be
multiplied by the factor 4ror.e, to get actual values. It is seen that while the rela-
tive quantity I,/I, increases as R, increases, the actual quantity I, decreases since
the total amount, I; , diminishes. Conversely, as R; decreases, more current enters
from the active cell and also more is diverted to the inactive cell. Both of these fac-
tors make excitation of the inactive cell more likely at the lower ranges of R; .

Cn

n =

Resistance Calculations of the Gap Region

In this section we shall develop a resistance network to represent the effect of the
gap region in splitting the current 7; into a longitudinal (7;) and radial (%;) compo-
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Ficure 3 Gap currents I, I, Iy, and I,/I, vs. Ry.
Ficure 4 Pillbox and simple network representation of gap.

nent. This will be used to couple distributed parameter models of the two adjoining
cells so that their interaction can be studied.

Fig. 4 b is a simplified network representation of the gap region as described in
Fig. 4 a. R represents the effective cap (intercalated disc) resistance of each adjoin-
ing fiber, while r is an equivalent resistance between the intragap region and the ex-
ternal medium and accounts for transverse current flow. The currents I, I, and
I are those which flow in the corresponding resistances R, r, and R; the network is
seen to assign longitudinal current to I; and I; while transverse current is repre-
sented by I, . ¢, is the applied voltage relative to the resting value. The voltage at
point b is taken to be zero since the inactive cell is assumed to be at resting condi-
tions, and in this simple model the potential at any point is chosen as the deviation
from the resting value, an assumption made in the derivation of equation 3.

Relations for R and r are easily determined by elementary circuit analysis.

€q
R=a—7 (8a)
_ (h — DL)e
Ty (88)

Various sets of values for R and r were calculated following substitution of equa-
tions 5 and 7 for I, and I, respectively. Notice that the final expressions are inde-
pendent of the constant ¢, . Results for 7, = 8 x and § = 7,/10% r,/10°, are shown
in Table I where R; is the independent variable. These will be used to estimate values
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TABLE I

COMPUTED VALUES OF GAP RESISTANCES R AND r AS A
FUNCTION OF R; (IN Q-cm?).

Entries given for two values of cell separation, 3.

& = r,/10? 8 = ro/108
Re
R r R r
Q Q Q Q
0.1 5.1 X 10¢ 1.3 X 108 5.1 X 104 5.1 X 108
0.2 1.0 X 108 1.7 1.0 X 108 6.2
0.3 1.5 1.9 1.5 7.1
0.4 2.0 2.0 2.0 7.8
0.5 2.6 2.2 2.6 8.4
0.7 3.6 2.3 3.6 9.6
1.0 5.1 2.5 5.1 1.1 X 108
2.0 1.0 X 10¢ 2.8 1.0 X 108 1.4
4.0 2.0 3.0 2.0 1.7
5.0 2.6 3.0 2.6 1.8
7.0 3.6 3.10 3.6 1.9
10.0 5.1 3.14 5.1 2.1
20.0 1.0 X 107 3.18 1.0 X 107 2.3
40.0 2.0 3.18 2.0 2.40
50.0 2.6 3.17 2.6 2.47
60.0 3.1 3.16 3.1 2.9
70.0 3.6 3.17 3.6 2.50
100.0 5.1 3.17 5.1 2.53

of Ry that allow intercellular transmission. This is accomplished by first finding
values of R and r that permit interaction and then consulting Table I for a deter-
mination of the corresponding R; .

It is interesting to note that the values of R, calculated using equation 8 a, cor-
respond quite closely to those found by dividing R; by the cross-sectional area,
ar:.! This conforms to the assumption, expressed earlier, that the field in the inter-
calated disc is normal to the surface and to the observation that it accounts for most
of the drop in potential between the two cells.

CORE CONDUCTOR MODEL OF CARDIAC FIBER
INCLUDING GAP

This study uses the core conductor model of the nerve as the basis for examining the
dynamic interaction of two fibers. Fig. 5 is the electrical network representation of a
short section, Ax, of the core conductor model. The entire fiber consists of an itera-

1 See the following paper for a derivation of this simplification employing the closed form solution
for the potential.
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tive structure of this elemental configuration. The intracellular and extracellular
media are taken to be passive volume conductors of longitudinal resistances (per
unit length) 7 and r, , respectively. The longitudinal currents associated with these
resistances are i and i, . The internal and external potentials are denoted ®; and
&, , and the transmembrane voltage ¥ equals ; — &, . The membrane is represented
by the parallel box labelled “H-H membrane,” referring to the Hodgkin-Huxley
relationship between the transmembrane current per unit length (i,,) or current per
unit area (/) and the transmembrane voltage, V.

The Hodgkin-Huxley membrane model (7, 8) as modified by Noble (9) for appli-
cation to cardiac cells, formulates the transmembrane current I as

I-= c%’—:+ (86 + 2e)(V — V) + gV — Vi), (9)
where
g, = 0.0012 exp [(—¥ + ¥,)/50] 4+ 1.5 X 10~ exp [(V + ¥,)/60], (10)
8y = Gkt (11)

gne = gnem’h + 1.4 X 104, (12)

and Vi, V. are the potassium and sodium Nernst potentials while ¥, is the resting
potential. All voltage and current variables are functions of x and ¢. The n, m, and
h parameters are found from three first-order equations of the form

g%=—(ay+3y)y+arn (13)

where y = n, m, or h and
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o __ 00001(—¥ + ¥, + 40)
" exp[(—V + V, + 40)/10] — 1’

Bn = 0.00125 exp [(—V + V,)/80],

0.1(=V + V., + 42)
exp [(—=V + V, + 42)/15] — 1’

Ay =

5. - _ 012V +V, +98)
" expl(V+V,+98)/5 -1’

ap = 0.07 exp [(_V + Vr)/20]1

1.0
Cexp[(—V + V. + 48)/10] + 1°

After relating the transmembrane voltage and the longitudinal current of equation
9, one obtains the following expression,

B (14)

v _
ax*4

2za(r + r) [C%L: + (g, + 8k)(V — Vi) + gna(V — VN-)] . (15)

Solution of the above equation gives the transmembrane voltage at all points along
the fiber and for all time subject to the proper initial and boundary conditions.

GAP REGION

FIGURE 6 Model of cell interaction.

Implementation of an interaction model first assumes that we have two fibers
in end-to-end abutment. The network shown in Fig. 4 with resistances R and r
will be assumed to approximate the passive electrical behavior of the gap. Instead
of this T-type network, it is convenient to let the gap be represented as a =-type
equivalent network. The relationships between the 7- and w-type parameters are:

n=r =2r+ R, (16)
rz=§(2r‘+R). (17)

The distributed parameter model of the interaction system is shown in Fig. 6.
In order to couple the two cells, two nodes are designated a and b, as illustrated in
Fig. 6. If V1, V., V3, and V, are the voltages at the nodes shown, current summa-
tion at @ and b gives

Vl—Vz_Vz Vz_V.‘S
Ro r + rs ’

(18)
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and

Vo— Vs _ Vs, Vs — Vi
r2 —ra + Ro

) (19)

where R, is the resistance of the internal medium per unit length. To be consistent
with previous notation, the V’s in the above equations should be replaced by the
algebraically absolute voltages less the resting value. Doing this and introducing
equations 16 and 17 into the above two expressions and simplifying, yields the fol-
lowing results.

R.Vi — RgV: + R)V; = V.(Rs — Rsg + R,), (20)
RoV2 - RBV3 + RAVA = Vr(RA - RB + Ro); (21)
with
Re=R@rem,
Rs =§(2r+ R) + R.,(l +§).

These two equations provide the necessary coupling between the two fibers and show
a dependence on R and r, parameters which characterize the gap’s electrical proper-
ties. Simultaneous solution of these equations and equation 15 will give the trans-
membrane voltage at any point along the two fibers.

NUMERICAL SOLUTION OF DYNAMIC EQUATIONS

Equations 15, 20, and 21 characterize the potential at all points along the two fibers,
including the gap region, and for all time. For fibers of lengths L, and L, , these
equations will be solved in the region 0 < x < L, + L, where x = 0 has been
chosen arbitrarily to be the left end of the first fiber and x = L, + L, at the right
end of the second. At x = L,, the appropriate relations of equations 21 and 22
apply. It will be assumed that propagation proceeds from left to right and that at
t = 0 the transmembrane voltage is specified. The initial value problem which has
been formulated is best handled using difference equation techniques. However,
one must be careful in choosing a proper method in order to avoid problems of
stability, convergence, and the like. Explicit methods, for example, lead to essen-
tially recursive relations and are strongly dependent on the variable increments for
stability and convergence. Implicit methods of solution were chosen since stability
can be guaranteed and because they are particularly suitable to problems where the
domain of one of the variables is finite. This technique, attributed to Crank and
Nicholson (10), will lead to a system of equations to be solved simultaneously.
The basic difference between the implicit and explicit methods arises in the ap-
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proximations made for the derivatives in equation 15. Both approximate 42V/
dx? as a second central difference. But whereas explicit methods use a forward dif-
ference, the implicit method uses a backward difference in approximating a¥/at.
The approximations for the partial derivatives are then substituted into equation
15 with all variables being evaluated at ¢ + At. After rearranging, this becomes,

Vix — Ax, t + A — 2+ a + B)V(x, t + tA1) + V(x + Ax, t + AY)

= —aV(x, t) + 7, (22)
where

2
a = 2ra(r + r) C%,

B = 2wa(r + r)Ax(gxs + g + gials
v = 2xa(r + r)Ax"(gxa Ve + (81, + 81y) Vi),

with gna , 8, , and g, being evaluated at (x, # + Af) also. While « is a constant,
note that g8 and v are functions of x and 7.

This equation clearly illustrates the implicit method. Since the voltage is known
at time ¢, the left-hand side of equation 22 gives the solutions at three values of x.
Alternatively, explicit methods provide for simply a linear combination of the three
values at time ¢.

Equation 22 is the discretized version of equation 15. As such, its solution will
give values of the transmembrane voltage at points Ax and At apart. The discrete
solution will approximate the unknown continuous solution if the discrete solution
converges for Ax, At — 0.

In setting up the solution, the left fiber is subdivided into N subintervals and the
right one into M, where N and M are chosen such that the increments are of equal
size, i.e., Ax = L;/N = L,/M. The endpoints of the active fiber then are x, cor-
responding to x = 0 and x» corresponding to x = L, , while corresponding points
of the inactive fiber are xy;; and xy.a . Equation 22 can then be written as,

Vixia,t + At) — Q4+ a+ B)V(xi, t + A1) + V(xia, t + AY)
= —aV(x:, ) + vi
i=1,---, N—1,N+2,--- N+ M—1. (23)

For the gap region, equations 20 and 21 apply and can be written in terms of the
appropriate subscripts as,

R.Vy_1 — RgVy + RVw1 = Vi(Ri+ Rz — R,),
RVy — RBVNH + RAVN+2 = Vr(RA + Rs — Ro),
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where the N** node is the last one of the active fiber and the N + 1** node is the
first one of the inactive fiber. Since equation 23 represents a system of linear equa-
tions in the unknowns V(x;, t + At), it, along with the above two equations, can
be written in the following tri-diagonal matrix form having N + M — 1 unknowns.

- T V(xi,t+ At) 7
—24+a+p8) 1

RA "'RB Ra X V(xN7 t + At)
Ro _RB RA V(xN+l: t + At)

L 1 =24 a+ Bryu)l  W(xwpn—, t + A1)l
—_aV(xl’ t) + Y1 — V(xo, t + At)-‘

V:(Rsa + Rs — R,)
= Vr(RA + Ry — Ro) (24)

—aV (Xniu—1) + Yaraa
L —V(Xnya, t + Al) 3

with

R, =§(2r+R);Rs=1—f(2r+R)+Ro(l+§).

a = 2ra(r + r;)CAx%/At,
Bi = 2wa(ri + r)Ax*gna (V) + g, (V) + g, (V3)],

Y 21’0(’1 -+ fz)szlgNn(Vi) VNn + (gkl(Vt') + gk:(Vt’))ij)
i=14,--+-,N—1,N+2,--- , N+ M—1,

Il

where the conductances are shown to be functions of x and ¢ through ¥, as de-
fined by equations 10-12.

The unknowns V(x,, ¢t + At) and V(xyiux, t + Af) must be provided by the
appropriate choice of boundary conditions. It is noted that 8; and v; contain n,
m, and h evaluated at # 4+ At. Each of the latter can be written in the form of equa-
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tion 13 where the «, and g, are rate constants (different from « and 8; in equation
24). The quantity g(V(x, ¢)) indicates that the derivative depends on ¥ (x, ). There-
fore, y(x, ¢t + At) can be approximated by

y(x, t + A1) = g(V(x, ))At + y(x, 1). (25)

The quantity y(x, 0) can be found by assuming that dy/at at ¢t = 0 is zero and cal-
culating from equation 13

where «, and g, are evaluated at ¥(x, 0). The assumption of zero initial derivative
is verified by the results; it will be seen that n, m, and & change slowly during the
initial phases of depolarization when the membrane is essentially at rest.

The procedure for obtaining ¥(x, ¢ 4 Ar) can be summarized as follows.

(a) At (t + AY), V(x,t) and y(x, 1)(y = m, n, or h) have been determined. Initial
condition V(x, 0) given.

() Find y(x, ¢t + At) from equation 25 for n, m, and A.

(c) Calculate 8; and v; and substitute them into equation 24.

(d) Specify the boundary conditions at ¢ + Az.

(e) Solve the matrix equation 24.

Specification of ¥ (x, 0), ¥V (x, , At) and ¥ (xw.x , Af) is needed to start the solution
For ¥V(x, 0) we could choose the resting value of transmembrane voltage, V. .
However, one would then need a stimulus of some sort to excite the cell. This
would appear as an additional term in equation 9. This initial condition, however,
is somewhat inconvenient since the solution would include undesirable ‘“starting-
up dynamics.” Since the primary puraose of the model is to study the effect of the
gap parameters (i.e. the solution near x = L,), it is desirable that the action poten-
tial approach that end with a constant velocity. Then, any changes in the waveform
can be attributed to the gap effects only. Therefore, it is assumed that instead of the
active cell being of length L, , it is actually semi-infinite in length, terminating at x =
L, . The excitation starts at essentially x = — « and proceeds to the right. It then
approaches x = 0 with a constant velocity. Time, ¢ = 0, is chosen to be that in-
stant when the peak of the action potential is just to the left of x = 0. If this is the
case, an electrotonic spread of potential is assumed to be exhibited in the region
x> 0.

The boundary condition for ¥ (x,, t + Af) is chosen to be that potential which
would be found if propagation from the left proceeds past the point at constant
velocity; that is ¥(x,, t) is a normal action potential. Here it is assumed that the
gap is far enough away so as not to affect this simplification; this approximation
can be checked by an examination of the resulting solution.
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At the end x = L, + L,, a terminal condition must be specified. Since the fiber
ends abruptly at this point (assuming only two cells), the longitudinal current I,
and, therefore, aV (x, t + Af)/dx could, for example, be made zero. In difference
form this condition reduces to

V(xN+u , 1 + At) = V(XN.,.y_l , t+ At).

This boundary condition serves to change the (N4+ M — 1, N+ M — 1)
element of the matrix in equation 24to —1 4+ o + Byyx_1) andthe (N + M — 1)
element of the input vector to V(xyia—1, ) + Yytm_1-

RESULTS

Equation 24 was solved for the two-cell interaction problem as outlined in the pre-
vious section. Constants for the cardiac cell were taken from various sources,
primarily from Noble (9) to be:

a, radius of cell: 8 u

Zxa , maximum Nat conductance: 0.4 mho/cm

Zx, , maximum outward K* conductance: 1.2 mho/cm
C, membrane capacitance: 12 yF/cm

p, specific internal resistivity: 100 Q-cm

r1, internal specific resistance: p/ra? @/cm

r., external specific resistance, negligible compared to r,
Vna , Nat equilibrium potential: 40 mv

Vx , K* equilibrium potential: — 100 mv

V., resting potential: —90 mv

L,, L., length of cells: 0.1 cm

M, N, number of increments: 40

At, time increment: 0.2 msec

The length of the cell was taken to be about 10 times as large as a normal cardiac
cell of approximate length 100 u. This is because the spatial extent of the cardiac
action potential encompasses many cell lengths (11) and it is desirable that L
be large enough so that one complete action potential be generated within the end-
points. The effect of the gap parameters is of primary interest. This, along with
the fact that only depolarization can be simulated due to the large latency of the
plateau, dictated the choice of L, .

The initial condition V(x, 0) and the boundary condition V' (0, ¢ + At) were dis-
cussed previously. The only remaining parameters in equation 24 that need specifi-
cation are the resistance variables R and r. The choice of both is arbitrary and the
problem is solved for many different sets of R and r.

Figs. 7 and 8 show the results of the cardiac cell interaction simulations. Several
sets of values for R and r, the parameters of the gap region, were used in the model
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in order to determine those sets which permitted transmission. Figs. 7 A and 7 B
are the spatial and temporal results of one particular set which easily passed an
action potential, namely R = r = 5 X 10° @. The vertical bar at x = 0.1 denotes
the gap region. (The gap width is not to scale; it is actually much narrower than is
indicated.) It is seen that there is relatively little distortion in the spatial curves due
to the gap except when the peak is centered near the gap. The temporal variation at
x = 0.105, which is the first node of the inactive cell, is somewhat distorted but
does eventually reach full value. The gap also produces a latency in the waveform
as it decreases the velocity of propagation through the gap. This is indicated by the

TRANSMEMBRANE VOLTAGE (mv)

- ] I ] ‘
900 0025 0050 0075 0.01050125 0150 0175 0.2

DISTANCE (cm)
FiGURE 7 A Transmembrane voltage vs. distance. R =r =5 X 10° Q.

30—

-60

TRANSMEMBRANE VOLTAGE (mv)

-90

[0} 2 4 6 8
TIME (msec)

Ficure 7 B Transmembrane voltage vs. time. R = r = 5 X 10° Q. Time (#) in msec.
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separation of the peaks at x = 0.1 and x = 0.105. Finally, the point x = 0.15
undergoes a normal action potential indicating full recovery at the midpoint of the
second fiber.

Figs. 8 A and 8 B show the temporal variations at x = 0.1 and x = 0.105,
respectively, for a range of values for r. The action potentials at x = 0.105 all
eventually go positive if the second fiber fires at all. Of course, there are certain
values of r for which there is no transmission. A firing threshold was found for the
second cardiac fiber to be in the range 16-20 mv above resting.

Fig. 9 summarizes the interaction simulation and indicates the results of exam-
ining several sets of R and r. Each cross or point represents an experiment, as a
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60— R=25x10° ohms
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] | | J
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2 4 6 8 10
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FIGURe 8 A Transmembrane voltage vs. time. x = 0.1 cm. R = 2.5 X 105 Q. r in Q.
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FiGure 8 B Transmembrane voltage vs. time. x = 0.105. R = 2.5 X 10°Q. r in Q.
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FIGURE 9 Summary of firing results. + denotes firing. 0 denotes nonfiring.

result of which the inactive cell either fires or doesn’t fire, respectively. For reference,
the line R = r is included in the drawing. It is seen that the points producing firing
are clustered in a “region of firing” which is delineated from those not producing
excitation by a line labeled “active boundary.” The farther within the region of
firing and away from the boundary, the more efficient is the transmission in terms
of the time delay produced by the influence of the gap upon propagation velocity.

It is apparent that certain values of r may be less than R and still provide for
transmission. In general, however, for the range of R that is expected (<10%,
r should be at least as large as R. Referring back to Table I, it is seen that the con-
dition > R fixes the maximum allowable value of R; , the specific intercalated disc
resistance, to be approximately 4 Q-cm? at 6 = r,/10°. This corresponds quite well
with experimental determinations of R, (reference 5).

DISCUSSION AND CONCLUSIONS

This analysis confirms the low resistance requirement which must be met if the
intercalated disc is to permit electrical transmission in the heart. Furthermore, the
model permits a consideration of the effect of intercalated disc and gap parametric
values on the properties of the resultant action potential propagation such as veloc-
ity, current flow, waveform, and magnitude. The model demonstrates a particular
usefulness in a problem where direct physical measurements are very difficult. It
should, however, be noted that the validity of the results depends on the chosen
geometry, the Noble-modified Hodgkin-Huxley dynamic equations, and several
additional, stated assumptions.

One important simplification is the assumed inexcitability of the disc resistance.
Consequences of an excitable disc resistance upon interaction have not been in-
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vestigated. However, since excitable membrane shows a large decrease in resistance
during activation, and since the model requires low values of Ry, the assumption is
probably not a critical one. Had the requirement on R; come out large, then the re-
sults could strongly depend on the specific value of R, .

The interaction results of Fig. 9 suggest that the gap model may not be com-
pletely satisfactory. The shape of the “active boundary” for R less than 10’ is not
expected, intuitively, and indicates that a more sophisticated model of the gap is
needed (perhaps one including an excitable disc resistance).

Other electrophysiological problems can be studied using models of this type.
For instance, this model can be extended to determine velocity changes in a tapering
nerve fiber simply by making the radius a function of distance. This study would be
of interest since nerve fibers decrease in diameter as they approach synapses, the
junction sites of nerve fibers. Also, it could be modified in order to examine lateral
interaction which would occur where fibers are densely packed as in a nerve bundle.
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