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ABSTRACT The possibility has been examined that the Goldman-Hodgkin-Katz
equation for ¥, , the total membrane potential at zero current, can be derived with
constant permeability ratios from a thermodynamic treatment. The flux equations
have been integrated under zero current conditions subject only to the restriction
that the total membrane potential should be independent of internal concentration
profiles, which is the requirement for the premeability ratios to be phenomeno-
logical constants, independent of solution conditions. No assumptions have been
made concerning the electric potential profile. It was found that a constant perme-
ability ratio can only be characteristic of systems satisfying certain relationships
between ionic conductances and chemical potentials. From these relationships it
was possible to define the permeability ratio in terms of the thermodynamic proper-
ties of the membrane quite generally and to identify the permeability ratio as the
product of mobility ratio and ratio of partition coefficients. Moreover, the ionic
conductance ratio at any point in the membrane has been shown to be expressable
explicitly in terms of the permeability ratio and the activities of an external solution
which would be in equilibrium with the point under consideration. Lastly, a number
of conclusions have been reached regarding the range of applicability of the Gold-
man-Hodgkin-Katz equation with constant permeability ratios.

INTRODUCTION

The total electric potential difference, ¥, , observed under zero current flow between
two aqueous solutions separated by a membrane has been one of the most widely
characterized of electrochemical and bioelectric phenomena. For biological mem-
branes this potential difference is usually described in terms of the Goldman-Hodg-
kin-Katz equation (Goldman, 1943; Hodgkin and Katz, 1949):
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where a; are the activities of the indicated ions in the solutions (') and () on the
two sides of the membrane and the permeability ratios Pya/Px and Pci/Px repre-
sent a set of coefficients defined from measurements under various external solution

217



conditions. The permeability ratio is said to be constant when these coefficients
are independent of external solution conditions.

For certain ion exchange membranes permeable solely to species of one sign
(e.g. cations) ¥, is described by a generalized Nernst equation in which the permea-
bility ratios are independent of external solution conditions (Nicolsky, 1937;
Eisenman, 1965):
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However, in the usual biological situation in which permeable anions as well as
cations are present it is generally observed that equation (1) is only approximate in
that the permeability ratios are not constant (Baker, Hodgkin, and Meves, 1964).

Depending on the transport mechanism, or the assumptions made in the deriva-
tions, the permeability ratio has been given such various physical meanings as
mobility ratio (Planck, 1890), ion exchange equilibrium constant (Nicolsky, 1937),
the product of the mobility ratio and the Donnan ratio (Teorell, 1935; Meyer and
Sievers, 1936), the product of the mobility ratio and the distribution coefficient ratio
(Hodgkin and Katz, 1949), or the product of the mobility ratio and ion exchange
equilibrium constant (Helfferich, 1962; Karreman and Eisenman, 1962). Deriva-
tions of the above equations have been made from various theoretical considera-
tions. Hodgkin and Katz (1949), following Goldman (1943), derived equation (1)
for the steady state with constant permeability ratios assuming a constant electric
field to exist within the membrane. An equation for ¥, valid also in the nonsteady
state was derived by Henderson (1907) assuming a mixture boundary. In the case of
equal total concentrations and a common anion, the Henderson equation becomes
identical in form to equation (1). When the total concentrations on either side of the
membrane are equal, equation (1) is also derived from Teorell’s fixed charge theory
for a membrane with a uniform site distribution (Teorell, 1953). For this case,
Finkelstein and Mauro (1963) have shown that the electric field is constant regard-
less of the fixed site density. However, when the fixed site density is high enough to
exclude coions, the field is constant regardless of the external solution concentra-
tions (Teorell, 1951).

On the other hand, equation (2) has been derived by Conti and Eisenman (1965)
without assuming a constant field for ion exchange membranes, permeable solely to
ions of one sign and having nonuniformly distributed fixed sites of constant chemical
properties. In this case they deduced that not only are the permeability ratios con-
stant in the steady state but also time-independent. Equation (2) has also been
shown to describe the potential of a completely dissociated liquid ion exchange
membrane, although only in the steady state (Conti and Eisenman, 1966).

218 BIOPHYSICAL JOURNAL VOLUME 7 1967



Because of the wide variety of systems to which equations (1) and (2) appear to
apply and because equations of a similar form can be deduced from such diverse
initial assumptions, it seemed reasonable to ask whether such equations might not
represent a general phenomenological property of a wide class of membranes, inde-
pendent of the details of their ionic permeation mechanism. If so, it should be pos-
sible to derive an expression for ¥, very generally with the permeability ratios
treated as phenomenological coefficients without specifying the permeation mecha-
nisms. Such derivations have, indeed, been accomplished for the steady-state case by
Patlak (1960) and by Kimizuka (1964). Their derivations of equation (1), however,
did not define the conditions under which the permeability ratio would be inde-
pendent of concentration profiles and the electric field within the membrane, which
is the requirement for the existence of constant permeability ratio and which is
desirable for an equation for ¥, to be most useful.

We will therefore start our treatment by requiring that the membrane potential
be independent of internal profiles' and derive the mathematical conditions neces-
sary for this requirement to be satisfied. Using these conditions, an expression for
V., is deduced from a general thermodynamic treatment; although it should be noted
that the derivation is not completely phenomenological since the mathematical con-
ditions imply that certain relationships must exist between ionic conductances and
chemical potentials within the membrane. We have evaluated the physical situations
under which these mathematical conditions might be satisfied and discuss the sig-
nificance and implications of an observed constant permeability ratio. From this
evaluation we conclude that the existence of an expression for V, with constant perme-
ability ratios cannot be characteristic of all membranes but is restricted to certain
physical situations, most notably those in which a membrane is permeable only to
species of one sign.

DESCRIPTION OF THE SYSTEM

The system to be treated consists of a membrane interposed between two external
homogeneous solution phases and in which a coordinate system is arbitrarily fixed
at some well defined point within the membrane, for example, at one of the mem-
brane-solution interfaces. Note that we do not assume the pressure, volume, or
temperature of the system to be constant; nor is electroneutrality assumed either.
The membrane may be composed of any number of quasi-homogeneous phases in
each of which the membrane properties are continuous functions of the space
coordinates. Thus any diffusion layers next to the membrane are considered to be
part of it. We shall limit ourselves to the case in which no external forces such as
magnetic, centrifugal, or gravitational act on the system, whose behavior is then

1 Although Planck’s derivation does not require an explicit calculation of the profiles, it is restricted
to a particular physical situation (namely a homogeneous junction between solutions of equal total
concentrations having a common anion).
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completely determined by the pressure, temperature, and concentrations of all the
components. The potential difference between the external solutions is called the
membrane potential and is said to be profile-independent when defined uniquely by
external solution conditions.

THE FLUX EQUATIONS

We shall proceed from the macroscopic linear laws of nonequilibrium thermo-
dynamics (see, for example, de Groot and Mazur, 1962):

N

Ji = 2 LaXi, ©)
where J; are the fluxes, X; the thermodynamic forces, and L, the phenomenological
coefficients, which are, in general, functions of the thermodynamic properties of the
system. The nondiagonal elements of the matrix L, are called coupling coefficients,
since they describe the coupling between different kinds of thermodynamic processes
(e.g. heat flow and diffusion), and are interrelated by the Onsager reciprocal rela-
tionships.

La, = Lk" (4)

Equations (3) describe quite generally the flow of matter and heat through a sys-
tem in which any number of chemical reactions may take place and are valid for
ordinary transport phenomena such as heat conduction and electric conduction
even under rather extreme experimental conditions (de Groot and Mazur, 1962,
p. 31). These equations may be used to relate the fluxes and forces both within the
membrane and at the phase boundaries, depending on how the forces X; are defined.
Within the membrane the forces become gradients of the thermodynamic potentials,
written explicitly as:

Ji =2 La grad g + Iy gradT’ (5)
k=0 T T

where f; is the electrochemical potential, T is the absolute temperature, and /;, is
the thermal diffusion coefficient. gz, is defined as the sum of electrical and chemical
potentials:

B = e + zeFY, (6)

where p is the chemical potential of component k, z; the corresponding valence,
¥ the electrical potential, and F the Faraday constant.

For each phase boundary (including unstirred layers), which may be regarded as
a surface of discontinuity separating two adjacent phases, the forces X, simply be-
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come the differences in thermodynamic potentials between the phases. We assume,
however, as is usually done, that the thermodynamic potentials are continuous
functions throughout the system, implying thereby that the difference of electro-
chemical potential and the difference of temperature across each discontinuity are
zero,” a situation usually referred to as “local thermodynamic equilibrium.”

The fluxes J; appearing in equations (3) are referred to the center of gravity of the
system and hence we may write

J. = C.‘(V; ol V) = J: bl C;v, (7)

v; and v being the velocities of the i*® component and the center of gravity, respec-
tively; C; being the concentration; and Ji being the flux relative to the fixed coordi-

nate system.
Since we are considering the system only after mechanical equilibrium has been

2 This is a mathematical statement, however, which involves two physical assumptions about the
system. First, the frictional coefficients of each boundary must be zero, for otherwise there would have
to be a definite difference in potential across each boundary in order to overcome the frictional
forces. Second, and for the same reason, we must assume the inertial forces to be zero at the bound-
aries. They are not zero, however, until the whole system has come to mechanical equilibrium; i.e.,
when the internal frictional forces are counterbalanced by all other forces in the system. Establish-
ment of mechanical equilibrium usually occurs very quickly in comparison with thermodynamic
processes and is therefore (except for extremely thin systems) reached virtually at the beginning of a
process, long before the stationary state is reached; and, indeed, the time constant for establishing
mechanical equilibrium may be taken as the time constant for establishing boundary conditions. In
fact, by writing the force balance equation for a single ion, it can be shown that the time constant
7m for establishing mechanical equilibrium is given by:

where u is the mobility of the ion, M the molecular weight, N Avogardo’s number, D is the self-
diffusion coefficient, and R is the universal gas constant. To assess when the time constant of mechan-
ical equilibrium is short compared with the time constant of diffusion we will consider an example
relevant to the thinnest system in which we are interested at present, the cell membrane. The time
constant of diffusion is given by (K. S. Cole, 1965):

&

TpD = —7<
wD’

and we can estimate the ratio between 7, and 7p :

™m _™M(D\ M ( d ¥}
70 RT \d/)  RT\=x7p

Note that r./7p is proportional to the square of the ratio of the diffusion coefficient to membrane
thickness. Using Cole’s estimate of the time constant 7p = 3 X 1073 sec for diffusion of potassium
across the squid axon membrane and taking M as 39 g per mole and d as 100 A, this ratio is found
to be 2 X 1017 even for this very thin membrane.
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established, the fluxes and forces appearing in equations (3) are no longer inde-
pendent, and consequently one of the components may be eliminated from the flux
equations. In particular, we shall choose to eliminate the “solvent” (i.e. the matter
in which the ions are dispersed) whether this is a liquid or a solid. The method of
elimination is described in textbooks on irreversible thermodynamics (see de Groot
and Mazur, 1962, pp. 345-347), and we shall here only quote the result:

Ji= Y 1,8 g gadT | o (8)
k=1 T T
where v, is the velocity of the solvent and where L, are now related to the inverse
frictional coefficients with respect to the solvent but are still subject to the Onsager
relationships of equation (4). The fluxes J; are now referred to the fixed coordinate
system as opposed to the fluxes J; appearing in equation (3) which refer to the
center of gravity of the system.
At first we shall consider a single phase membrane, separating two homogeneous
(e.g. aqueous) phases, and later extend the theory to a multiphase membrane. In
order to solve for the electric potential, we use the definition of electric current:

I=2JzF. )

After multiplying the flux equations (8) by Fz; and adding them we get, using equa-
tion (9):

I-= lei;grady.-+ S Ligad ¥ + Lgad T+ Fu X zCi,  (10)

where L;, the partial specific conductance, is defined (Fitts, 1962), as

2
L; = Fz‘sz Ly (11)
T %
and /, as:
I, =§,Zz,. Ii,. (12)

In equation (10), we have taken the Onsager reciprocal relationships (4) into ac-
count (see Fitts, 1962, pp. 74-76). Note also that the summations include all com-
ponents in the system except the solvent.

Since z; is equal to zero for a neutral component, it is seen from equations (10)
and (11) that the coefficient in front of gradient of u; corresponding to a neutral
component contains only the coupling coefficients with charged components and
does not depend on the neutral component’s self-diffusion coefficient. (Although
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z; for a neutral component is zero, it is seen from equation (11) that L;/z; is a finite
quantity.) Thus, a neutral component only contributes to the current by virtue of
its interaction with charged components. The same conclusion applies to the
gradient of temperature which may produce an electric current only by virtue of the
coupling between temperature and diffusion of charged components.

THE ELECTRIC POTENTIAL

Our task is to integrate equation (10) under zero current conditions; i.e., when
there is no transport of charge at any point in the system. This means that for non-
steady-state systems the time constant of diffusion must be large in comparison with
the time constant for the Planck charging process (Cole, 1965). Furthermore we can
only consider situations in which the last term (the charge transport created by a
moving medium) in equation (10) vanishes.

For all solid membranes this term vanishes since v, is zero. For liquid (i.e. solvent)
membranes the last term vanishes only when the condition of electroneutrality
applies:

n
Z z;C; = 0. (13)
i=1
The membrane could also consist of a porous solid medium containing a liquid
(Teorell, 1953), in which case we treat the fixed medium as the eliminated solvent
and regard the solvent in the pores as one of the n components.

From this point on, our treatment applies strictly to liquid membrane systems only
under the condition of electroneutrality (i.e. when the number of sites per unit vol-
ume is large compared to the space charge density). It applies to solid and porous
membrane systems without this restraint. If we integrate equation (10) between the
two internal membrane boundaries x = 0 and x = d under conditions (13) for
liquid systems and without this restraint for solid systems, we obtain the internal
potential (commonly called the diffusion potential to distinguish it from the internal
potential under nonzero current conditions):

/"2 i sz (14)

It should be apparent from equation (14) that in order for the potential to be
independent of the concentration profiles the expressions within the integral signs
must be total differentials. Only then is the potential a function only of the end points
of the integral and thereby defined uniquely by external solution. It is proven in
Appendix I that a necessary and sufficient condition for the expressions within the
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integral signs to be total differentials is that equations (15) be satisfied:

L; = G(x,t)B; exp (z"‘a), z;#0; (15a)
;‘idm -0, z=0; (15b)
I,dT = 0. (15 ¢)

This proof is valid for a general thermodynamic system in which any set of n + 1
variables chosen arbitrarily from w;, --- us ; T; Li/z1, - -+ La/za ; I, is necessary
and sufficient to specify the system (i.e. they constitute a set of true independent
variables). In equation (15 a) « is a constant which is the same for all components,
independent of x and of the time variable ¢, G(x, 7) can be any function of the param-
eters in the system and therefore depends on x and ¢ but is the same for all com-
ponents, and B; are integration constants which are independent of x and ¢ but
different for different components.®

The Physical Meaning of Equations (15). Before using equations (15) to
integrate equation (14), we shall examine their physical meaning. Let us compare
equations (15 a) with the usual expression for the chemical potential:

pi = RTIn C; + RT In f; + ui(P, T), (16)

where f; is the activity coefficient and ! the standard chemical potential, which is a
function only of temperature and pressure. Eliminating u; between equations
(15 a) and (16) gives the expression

0
G(X, t) .ﬁi = L‘ exp( i ) . ﬁ_RT/“a’C{_RTIz‘a. (17)

Z;i
Taking the ratio of equation (17) for the i species relative to j, we obtain:

0

M
€X —RT/z 1-RT/z;
B:i N P zia fi fie O }ETIse

B;. - ); — ”(} fiETlee : Cj®Tlzja’
exp —2
Zia

(18)

8 Equations (15 a) and (15 4) can mathematically be comprised in the following equation

L;
In=
(z.d z;> ! (15 ab)
Y odw ¢ a

where the differentiation is carried out at constant G.
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where \; is the partial equivalent conductance of the i** component obtained by
dividing L; by C;.

Condition (15 a) is therefore equivalent to requiring that the thermodynamic
variables appearing in the right-hand side of equation (18) combine to yield a con-
stant, which will be shown in equation (22) to be proportional to the permeability
ratio. It should be noted that all the particular conditions assumed in the various
derivations for equation (2) described in the Introduction are included as special
cases of this condition.

Equations (15 b) and (15 ¢) simply require that there be no contribution to the
electric current by the neutral species or the temperature. The meaning of equation
(15 b), pertaining to neutral components, is then either that u; must be constant or
that the coefficient of du; must be zero. The latter condition is reasonable if the
neutral components are nonpolar solutes (e.g. sugars, dissolved gases, or associated
ion pairs) in fairly low concentrations; for then the frictional forces or coupling
coefficients between charged and neutral components can be neglected, in which case
the coefficient of du; becomes zero. The neutral components may, however, be sol-
vent molecules [as in diffusion in a porous plug (Teorell, 1959)] in which case the
frictional forces can no longer be neglected. Instead p; must then be constant
throughout the system to satisfy equations (15 b). As an example, consider water
as the solvent and write:

dupy, = vo(dP — dr),

where v, is the partial molar volume of water and = the osmotic pressure in the
system. u,, is seen from this expression to be constant only when the pressure P
counterbalances the osmotic pressure, namely when the system is in osmotic equi-
librium. Of course, equations (15 b) always apply if the membrane is] completely
impermeable to the solvents.

Equation (15 ¢), pertaining to the temperature, leads to conclusions similar to
those for neutral components. Either /, or dT must be zero, implying either that
thermal diffusion effects are negligible or that the temperature is uniform through-
out the system.

Integration of Equation (14) and Expression for V,. Inserting equations
(15 a) into equation (14) and integrating from O to d gives

3 8, pi(d)
Y=t = —pln ZZ = Emm)

‘

(19)

where p:(0) and ui(d) are the chemical potentials of species i just within the mem-
brane at the two membrane-solution interfaces at 0 and d respectively. Equation
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(19) can also be rearranged using the definition (6) of g :

2 s exp ('z ‘(d)) 2. 6: exp (“ ‘(?) (20)

Since, by the condition of continuity of the electrochemical potential, the electro-
chemical potentials z; are the same in the solution phases as within the membrane,
we can solve explicitly directly for the total membrane potentials, ¥, , from equa-
tion (20) to obtain:

o, 2uBiexp w
Vo = —‘Flﬂ ¢
ZB‘ exp s
) i Q
Z ﬂ ”(BT/z,a) exp "0—:/'
a i ai Zia
= _F o7

/(RT|z5a) M
E:B, a; " exp ——
Zio

b1

Dividing through by one of the exponential terms we get the desired expression

for V, :
8; exp (u?(sol))
3 g RTIe) )
P e ()

S gl B exp ( (SOI)>
ral 8, exp( (sol))

prov1ded that the solvent is the same on the two sides of the membrane, in which
case u’7 = p. = ul (sol).

Equation (21) can be seen, by comparison with equations (2) and (18), to be
identical in form to equation (2) with the permeability ratio a constant defined in
terms of the thermodynamic properties of the membrane by:

pi(sol J(sol) — u?

;| exp ("’ o )) _ exp (%) )" ﬂ—arh.a Cil—m'/g‘-a

P (M‘#gl“)) exp (M) N e R
j

Zj o

In (21)

V<,=—;_,"7

>

(22)

|
2|

where u° (sol) and x° refer to the solution and membrane phases, respectively.
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Equation (21), for the membrane potential at zero current, and equation (22),
expressing the thermodynamic conditions for the existence of a constant permeability
ratio, are the principal results of this paper. Some general features of these expressions
will be examined below and their applicability to experimental systems will be con-
sidered in the Discussion. It can be seen immediately that the permeability ratio is
a function of the standard chemical potentials of the ions in the membrane (uf)
and the solutions (u{ (sol)), of the partial equivalent conductances in the membrane
(\s), of the ionic activity coefficients in the membrane (f;), and of the ionic concen-
trations in the membrane (c;). It should also be apparent that the existence of a
constant permeability ratio does not require the individual constancy of any of
these terms but only the constancy of their products as defined in equation (22).

The proportionality factor relating P,/ P; to §8./8; is seen to be:

exp [u?(sol) _ n‘}(sol)] _

Z; o Zia

Since an undetermined factor G(x, ) appears in equations (15 a), this means that
equations (2) and (21) can only define a constant ratio between permeabilities
whereas the individual permeabilities remain as undefined variables.

Equation (21) is somewhat more general than equation (2) in that neither z nor
RT/a need be unity; and the problem is now solved in that a general form of equa-
tion (2) with constant permeability ratios has been derived by requiring only a
profile independence of the membrane potential.

We have shown how this requirement is only fulfilled for systems in which equa-
tions (15) are satisfied, and it is for this reason that a purely phenomenological deriva-
tion of equation (2) cannot be obtained when specifying that the permeability ratios
are independent of solution conditions.

Equation (21) for the total membrane potential is also identical in form to equa-
tion (19) for the internal potential but with the chemical potentials of equation (19)
replaced by the standard chemical potentials and ionic activities of the external
solution phases. Furthermore, equations (19), (20), and (21) can be extended to in-
clude any number of phases within the membrane using the conditions of the con-
tinuity of electrochemical potentials, provided that one can assume that the param-
eters o and B; have the same value for all membrane phases. Since no assumption
has been made about stationary states except the existence of mechanical and charge
equilibrium, equations (19), (20), and (21) are time-independent as long as equa-
tions (15) are valid.

THE RELATIONSHIP BETWEEN IONIC CONDUCTANCE
RATIO AND PERMEABILITY RATIO

Before discussing the above results it should be noted that P,/ P; can be related to
the ratio of partial specific conductances L;/L;. By dividing equations (15 a) we
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get, recalling equation (22):

0 0
m(sol)) (m(sol) — m)
P _ B, P (__z.: a ) _ L i Zia . (23)
P; B exp (p‘}(sol)> L; exp (u‘}(sol) — p,~> ’
Zja Zia

and, due to the continuity of electrochemical potentials and the fact that the electric
potential difference across the interface is the same for species i and j, the ratio of
exponential terms appearing in equation (23) will be the same, whether the chemical
potentials refer to just inside or just external to the membrane. We can therefore
write equation (23) at each interface as:

L,-(O) a;(m'ls,'a) L;( d) a’{(kT/z;a)
I,0) & = L@ a",-’ TR (24 a)

P,
P;

One may also, however, visualize any point in the membrane as being in equi-
librium with a particular set of external solution conditions. The conductance ratio
at any point in the membrane can then be expressed explicitly in terms of the perme-
ability ratio and the activities in the external solution which would be in equilibrium
with the point under consideration as:

P; _ Lix,1) ajx, )
P; Lix,0) aix, HFTise’ (24 b)

where the activities refer to external solutions. This procedure has proved useful in
evaluating the current-voltage characteristics of membranes whose thermodynamic
properties, while unknown, are functions only of the local mole fractions (Sand-
blom, 1967).

For univalent ions and za = RT, equation (24 b) reduces to:

P; N ¢ a; (24 ¢)

_= e — . =

using the definition of partial equivalent conductance \ given above (see equation
18). If we define the partition coefficient of an ion as the ratio between its concentra-
tion in the membrane and its corresponding activity in the external solution, equa-
tion (24 c), and therefore equations (15), imply that the permeability ratio can be
regarded, quite generally, as the product of the equivalent conductance ratio and
the ratio of partition coefficients. This also follows from the definition of the indi-
vidual permeabilities given by Hodgkin and Katz (1949).
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DISCUSSION
Properties of Certain Physical Systems

Although we have concluded that equation (21) follows from a general thermo-
dynamic treatment, the restrictions imposed by equations (15), which are necessary
conditions for the existence of a constant permebaility ratio, will limit the number
of systems to which equation (21) applies, as will be discussed below.

The Effect of Coions. Equations (15) which have been derived without
any assumptions regarding the valences can, however, be satisfied only in membranes
permeable to species of one sign (i.e. membranes which are impermeable to coions).
This follows from the thermodynamic requirement that (8L:/dp)p,r.ujw; > O
which is only fulfilled if all z;a > O in equations (15 a).

There is one important exception to the above conclusion, however, namely when
the total ionic concentrations on both sides of the membrane are equal. For permeant
monovalent species, ¥, is then described by the following equation in the steady
state (see Appendix II):

Za.'HP—‘ﬁ.-'-Ea—”.&:.

vo=RL & " P* % 7 (25)
F 4 P; - P
o gt r e B

where the plus and minus superscripts refer to cations and anions respectively.
Equation (1) is seen to be a special case of equation (25) for a single anion and two
cations.

The derivation of equation (25) has been carried out in Appendix II for univalent
ions assuming that RT « = z; . This means that « is positive for cations and negative
for anions; and, since the potential is then no longer profile-independent, equation
(25) is valid only in the steady state. The validity is further restricted to membranes
in which the cross-coefficients can be neglected (i.e. Ly = 0, i # k). In deriving
equation (25) we have defined a constant ionic permeability ratio from equation
(24), recalling that « is positive for cations and negative for anions. This definition
implies, as we have seen, that the permeability ratio is equal to the product of the
mobility ratio and the ratio of partition coefficients. If the system satisfies the
boundary conditions of Hodgkin and Katz, the ratio of partition coefficients is a
constant. Similarly, if ideal Donnan conditions prevail at the membrane-solution
interfaces, it can be shown that the ratio of partition coefficients is a constant when
the total ionic strength is constant (see Appendix II).

Equation (25), valid for equal total concentrations (" = '), has also been de-
rived under more restricted conditions by Planck (1890) for a homogeneous un-
charged membrane and by Teorell (1951) for a membrane with a uniform fixed site
distribution and ideal behavior. For these cases, Finkelstein and Mauro (1963)
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have deduced that the electric field is constant in the membrane. It is shown, how-
ever, in Appendix II that equation (25) is valid more generally; and since the indi-
vidual mobilities need not be constant, the electric field need not be constant.
Therefore equation (25) does not imply a constant electric field.

In the case of a single common anion and the same total ionic strength throughout
the system, equation (25) also follows from the Henderson derivation for mixture
boundaries and is also valid in the nonsteady state. It is evident, however, that for
this particular case the anion satisfies equation (15 b) and that therefore this case
also follows from the present treatment.

Despite the above exceptions, the necessity of fulfilling conditions (15) of the
present treatment indicates that in general a membrane can only have a constant
permeability ratio in the absence of coion permeation, which is why we have defined
the permeability ratio from equations (2) or (21) rather than from equations (1)
or (25).

Zero Current Conditions and Mosaic Membranes. Another important
assumption of the present treatment is that the electric current is zero everywhere in
the membrane. In a mosaic membrane, for example, we may still have local circu-
lating currents (e.g. resting currents, Teorell, 1959; Eisenman and Conti, 1965)
although the total membrane current is zero. The membrane potential is then no
longer profile-independent since the profiles will influence the potential by the IR
drop as seen from equation (14), and equation (25) is no longer valid.

Fixed Sites vs. Mobile Sites and Time-Dependent Permeability Ratios. In
applying the present results to ion exchange membranes it is useful to distinguish
between those having sites which are restricted to the membrane phase but free to
move within it (which we shall call “mobile site’”” membranes) as opposed to those in
which the ion exchange sites are fixed spatially at particular locations within the
membranes (i.e. “fixed site” membranes). The former are essentially liquid ion
exchangers; the latter correspond to the more conventional solid ion exchangers.
A constant permeability ratio can be characteristic of these membranes in three
situations pertaining to time:* (@) at steady state, (b) instantaneously, and (c) tran-
siently. The permeability ratio may be constant in all three cases in some systems,
or only in certain of these cases, as will be discussed below.

(a) Fixed site membranes. The particular physical situations for the applicability
of equation (21) are all consequences of satisfying equations (15), and in certain
fixed site membranes these equations are satisfied at all times. For example, equa-
tions (15 a) can easily be shown to be satisfied for the usually assumed ideal mem-
brane behavior, in which mobilities and standard chemical potentials are constant,

4 In the following treatment we will have occasion to refer to a “time-independent” behavior of the
equations. By this we will mean that the observed potential becomes independent of time, attaining
steady-state values even while ionic concentration profiles and electric potential profiles within the
membrane are changing with time.
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activity coefficients are unity, and the cross-terms vanish. In this case, equations
(22) for univalent ions are satisfied with « = RT. Consequently, the permeability

ratios are constant, equation (2) describes the potentials, and equation (22) reduces
to:’

exp pi(sol) — i
. — T .. s
_' = ————-—o Q . —‘ = Kj" “—. ) (26)

where K;; is the ion exchange equilibrium constant defined by K;; = 1/K;; =
(aj/a;) (cﬁ/ ¢;’) in which the primed quantities refer to the concentration of the ions
in the membrane while the unprimed quantities refer to the activities in the solution
phases.

More generally, a constant permeability ratio can also be characteristic of certain
kinds of nonideal behavior, for example when o = nRT. One such type of non-
ideal behavior is that considered by Conti and Eisenman (1965) in which d In a/
d In ¢ was assumed to equal n, and for which the equilibrium is described by Kj; =
(aj/a)l(ci/c/)]". Another type of nonideal behavior not considered by these

authors, for which o =nRT, is that in whichdIln L/d Inc¢ = 'll(see equation 15 ab).

In either of these cases the electric potential is described by equation (21) at all
times (i.e. in the steady state, instantaneously, and transiently); and equation (22)
simplifies to:

0 0
#i(SOl) — M
p; exp nRT u; 1n Ui
- = 0 0'—=Kj."—. (27)
P; ot (sol) — i U U
PRT

We therefore conclude that ¥, of a variety of fixed site membranes is described
by equations (21) or (2) with constant permeability ratios which are independent
of time. It can also be seen why the existence of a constant permeability ratio does
not require the individual constancy of the equilibrium constant or of the mobility
ratio but merely that their products be constant.

(b) Mobile site membranes. On the other hand, equation (21) generally does
not apply to mobile site membranes in a time-independent form. This is because in
a membrane containing mobile sites their movement contributes to the electric cur-
rent and the sites must therefore be treated as additional components in the system

8 Note that in such an ideal membrane the absence of cross-terms implies that the equivalent con-
ductance ratio \;/\; equals the mobility ratio u;/u; .
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(Conti and Eisenman, 1966; Sandblom, Eisenman, and Walker®). In consequence,
we find that a mobile site membrane does not obey equation (21) except at steady
state, provided that all charged species are completely dissociated, in which case
the sites behave effectively as fixed, a conclusion already reached by Conti and
Eisenman (1966). Even at steady state, equation (21) does not apply precisely to
mobile site membranes if dissociation is incomplete since in this case the sites will
“circulate” in the membrane moving as free species in one direction and combined
with counterions in the other direction (Sandblom, Eisenman, and Walker®).
Indeed, the treatment of Sandblom, Eisenman, and Walker indicates that, in the
limiting case of strong association, ¥, is given by a linear combination of two
logarithmic terms:

o

+

I,P.‘1 ,|3c|
V.,—‘ST_(l—i)ln %Pl RT 1, ln.z"'
Tz F || s PL ' ziF |z 7zl
’Za.‘ T’,_l ‘Za‘ ) ;

(28)

2
J
2

il

KR
+

.

where z; and z, are the valences of counterions and sites respectively, and ¢, is an
average value of the transference number of the sites in the interval 0 to d. The first
set of permeability ratios, indicated by the superscripts 1, is determined by the
properties of the membrane solvent alone; while the second set, indicated by the
superscripts 2, is determined by the site properties.

Temporal Behavior of the Membrane Potential. One of the most important
characteristics of the membrane potential is its time course subsequent to a step
change in solution conditions. From the preceding sections we can conclude that in
general the permeability ratio can be constant and ¥, can be time-independent during
the transition from one steady state to another only if there is no coion movement in
the membrane and if, moreover, the sites are fixed. Under these circumstances
equations (21) and (2) are valid at all times subsequent to establishment of the
boundary conditions. An exception to this restriction is that the same behavior is
expected for coion-permeable membranes in systems having a single common anion,
or cation, and the same total concentrations everywhere. In this case the Henderson
(1907) derivation applies and equation (2) is valid at all times.

Thermally Insulated Systems. It has been shown above that the perme-
ability ratio must be constant and the same everywhere in the membrane in order for
equations (2) or (21) to apply with a permeability ratio independent of solution con-
ditions. In reaching this conclusion, it was explicitly assumed that all portions of the
membrane are in thermodynamic contact which, however, need not be the case
experimentally. The situation may well be that two or more regions of the membrane

¢ Sandblom et al. Electrical phenomena associated with the transport of ions and ion pairs in liquid
ion exchange membranes. I. Steady state theory. To be submitted to J. Phys. Chem.
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(e.g., the left-hand side and the right-hand side) are isolated thermodynamically
from each other and yet are maintained in contact electrically (each membrane
region could be separated from the other by an electrically conducting reservoir of
constant composition). In such a situation, in which there is no transfer of matter or
heat between the two regions, ¥, is still defined; and equation (21) is still valid, but
with permeability ratios which can be different for the two sides of the system. This
conclusion also applies to systems in which thermodynamic isolation exists tran-
siently (e.g., because of their thickness).

Some Comments on Biological Resting Potentials

Despite the fact that the Goldman-Hodgkin-Katz equation (1) has been used
extensively in describing the resting potential of biological membranes, it has been
noted that the permeability ratios are not constant under conditions in which ionic
strength is unequal on the two sides of the membrane (Baker, Hodgkin, and Meves,
1964; Chandler, Hodgkin, and Meves, 1965). This behavior is not surprising in the
light of the present demonstration (see equation 25 and Appendix II) that equation
(1) is expected to apply with constant permeability ratios only when a membrane
separates solutions of the same ionic strength if permeable species of more than one
sign are present. On the other hand, our results indicate that ¥, is expected generally
to be describable using constant permeability ratios only when the membrane is
permeable to species of one sign (in which case equations (2) or (21) apply). There-
fore, it would seem worthwhile to test the adequacy of equations (2) or (21) under
conditions of varying ionic strength, after replacing the relatively permeable Cl™
by an anion to which the membrane is less permeable. Recent experiments on the
crayfish axon, which has an appreciable chloride permeability, indicate that the
permeability ratios vary considerably with external solution conditions even when
these are kept at constant ionic strength.”

In describing bioelectric resting potentials such as those of the squid giant axon,
the Goldman-Hodgkin-Katz equation has generally been used with the explicit
assumption that the ratios of the permeabilities are the same for both surfaces of
the membrane (see equation (3) of Baker, Hodgkin, and Meves, 1964). When one is
dealing with a (thin) membrane which is not capable of providing thermal insulation
between its two surfaces, the present analysis indicates that the permeability ratios
must be the same on both sides of the membrane if equation (2) is found to describe
the data satisfactorily for variations of solution conditions on one side. It would, there-
fore, be of interest to assess the extent to which the permeability ratio (e.g. of Na
to K) is observed to be the same for the perfused axon when measured by variations
of internal as opposed to external solution concentrations, particularly when pre-
cautions have been taken to use anions to which the membrane is relatively im-
permeable.

7 Strickholm, A., and G. Wallin. Submitted for publication.
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In contrast to this situation is the one observed for the isolated frog skin in which
it has been found that equation (2) is obeyed reasonably well for variations of either
the external or internal solution conditions separately, but in which the perme-
ability ratios defined by equation (2) are found to be very different for the outer vs.
inner surfaces (Lindley and Hoshiko, 1964). These findings can only be reconciled
with the conclusions of the present treatment if the inner and outer surfaces of the
frog skin are effectively separated from each other by a reservoir (presumably the
cell interior) which serves to isolate them thermodynamically from each other
while providing electrical contact between them.

CONCLUSIONS

1. A purely phenomenological derivation of an equation for ¥,, the membrane
potential for zero current, cannot be obtained when one requires that the perme-
ability ratios be constant.

2. Equations (15) define the mathematical conditions for a thermodynamic deriva-
tion of an equation for ¥, with constant permeability ratio.

3. Equation (21) gives an explicit integral expression for ¥, whose only parameters
are a set of constant permeability ratios defined in terms of the requirements
given by equation (22) for the membrane’s thermodynamic properties. Equation
(21) is a generalized Nernst equation.

4. An examination of the physical situations in which equations (15) are satisfied
indicates that, in general, an expression for ¥, with constant permeability ratios
cannot be characteristic of all membranes but is restricted to certain physical
situations, most notably those in which a membrane is permeable solely to ionic
species of one sign. In certain fixed site membranes equation (21) is not re-
stricted to the steady state, but may also be valid transiently. In mobile site mem-
branes, equation (21) only applies to the steady state in the limit of complete
dissociation; while for incomplete dissociation an equation having an addi-
tional logarithmic term (equation (28)) is needed even in the steady state.

5. However, when the total ionic concentrations on both sides of the membrane
are equal, V, is describable by equation (25), an equation of the Goldman-
Hodgkin-Katz type, for a variety of permeation mechanisms even when the
membrane is permeable to species of both signs, provided there are no local
resting currents.

6. It has been shown that a constancy of the permeability ratios does not require an
individual constancy of the mobility ratios and partition coefficient ratios but
merely that their product be constant. This result also indicates that the Gold-
man-Hodgkin-Katz equation does not imply a constant electric field.

7. It has been demonstrated that permeability ratios can be independent of solution
conditions for certain kinds of nonideal behavior, one of which is exemplified
when d In a/d In c is constant.
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8. A number of conclusions were reached relevant to biological resting potentials.
First, the Goldman-Hodgkin-Katz equation is not expected to apply when the
ionic strength is not the same on both sides of a membrane and there are present
ionic species of more than one sign to which the membrane is permeable. Second,
a membfane which obeys the Goldman-Hodgkin-Katz equation for variation of
solution conditions on one side must have the same set of permeability ratios for
both faces; and vice versa, unless the faces are thermodynamically isolated from
each other. Conversely, if thermodynamic isolation is maintained between the
two faces (e.g. by a suitable reservoir of constant ionic composition), each face
can obey the Goldman-Hodgkin-Katz equation with a different set of perme-
ability ratios.

APPENDIX I

THE CONDITIONS UNDER WHICH 4y IS A TOTAL
DIFFERENTIAL

JOHN P. SANDBLOM

The problem is to find the conditions necessary for the following expression to be a total
differential :

> —dpi I (29)

When these conditions are fulfilled, the integral will be a function only of the end points and
independent of the integration path.

In order to simplify the equations, we shall denote the u; by x;, T by xn41, (Li/z:) by y:
and /; by yn41, in which case equation (29) reduces to:

ntl
i yidx;
dh = in"l— . (30)
i Z; yi
t=1
where ¢ = hand z,4; = 0.

The problem is solved if we can find the conditions on y; and x; which will make dk a total
differential. In general, this problem has infinitely many solutions but we shall limit ourselves
to the case in which the system is uniquely determined by n + 1 variables chosen arbitrarily
from the set y;, x; . To each point in the » + 1 dimensional space therefore a unique set of
values y1, + -+, ¥nt1, X1, - * -, Xnq1 cOrresponds. Mathematically this means that we can write
n + 1 functional relationships between these variables or in particular

xi = xi(V1, + 5 Yny1) (31)

where y; , - - -, ¥at1 are chosen as the independent variables. The functions x; are assumed to
be well behaved.
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The form of equation (30) suggests that equations (31) must have the following form:

xi = x:(yi, 8),
where g is a function of all y;, in order to satisfy equation (31). To prove this we shall rear-
range equations (31) in the following way:
xi =XVi, &, &), (32)

where g1, - -+, g1 are functions of the independent variables y; chosen so as not to alter
the values of x; . Taking the differentials of equations (32) we get:

a%; a%;
dx; = — dy; — dg;, 33
6y.~y+;6g,-g’ (33)

and after substituting equations (33) in equation (29) this yields:

X axX;
Z Vi v dy; Z’; yi— dgj (34)
dh = = * L .
2 Ziyi + 2 ziyi
Since dk is a total differential, it follows that 4 must be a function of all the variables appear-
ing in equation (34), and we can therefore write this function as:

k=E(yl’""yﬂ+l,gl;"'gﬂ+l)’ (35)
The differential of this function then becomes:
oh R
dh =) —dy; —dg;j. 36
;ayi Y +zi:<"8:’ 8 (36)

If we now compare equations (34) and (36), we get:

o%

— Yi
Sh _ ~ 9yi (37 a)
y; Z Z; Yi
9Xs
£=z.-:y‘ag,~. (375)
og; E Zi Yi

Since 4 is a total differential, it follows from equation (36) that the following relationships
must be fulfilled:

a%h %h
= (38 a)
ay; dy;  9y; dy;
*h a%h
og; 9y 9g; ays’

(38 b)
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where y; and g; may be treated as independent variables. Combining equations (37) and
(38) gives:

9% 0%;
2 Yiay: _iy’ayj (39 a)
Wi Dziyi i) ziyi

* 1

p2E 0%
9, "oy _ 85" ag; (39 b)
ogj 2. zZiy¥i Vi 2L ZiYs

3 L

Although the functions g;, are not independent variables, we have shown here that from
the way in which they are constructed they must satisfy equations (39), when treated as
independent variables.

After performing the differentiation of equations (39 b), we get, taking into account
equations (32) and treating the functions g; as independent variables:

a%; %3 ¥ 0x;
yi 2%; ag; yi 2% t 7 agj (40)

S ziy: ogiayi ZziYi+ZziYi ayiogi  (Lziy)t’
1t 1 £ 3 1

which reduces to:
0X;
3_x_;:__z. ‘Zyu ag; (41)
ogi 2 ziyi

Equations (41) constitute (n + 1) equations for each g; and if we subtract any two of these
equations we get if z;, z; # 0:

—. =Tk, (42)
z; 08; Zzr ogj
These equations can be integrated directly giving
X: Xk
o - Z = nk(yl ’ . y,.+1). (43)

A comparison between equations (32) and (43) shows that the functions £; must be of the
following form: )

Xy = zﬂf'(yt) + in(gl y "ty g'H-l), (44)

where U is a function of the variables g1, - - - , gn41 . These functions can now be introduced
in equations (39 a); and after the differentiations are carried out, this yields

ofi(ys) ofi(ys)
ay: Ty 45)

i
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Since in equations (45) we have a complete separation of variables, each side of the equa-
tions must be equal to a constant o:

yiéf_%(}%z = a. (46)

Integration of equations (46) finally gives:

fi(yi) = alny; + vi, 47

where +v; are integration constants. Eliminating f;(y;) from equations (47), with the aid of
equations (44), gives:

X
;=alﬂyi+’)’i+U(gi,"',gn+1)- (48)

1

This equation applies to all x; whose corresponding valences z; are different from zero.
From those x; whose corresponding valences are zero we get from equations (39 a) and
41):

Yig,. = 0, (49 a)
i _ (49 b)
agj

Finally substituting the definitions of the variables y;, g; in equations (48) and (49), we get
after rearrangement the conditions (15) which are the basis of our analysis:

Li = B:G(x, 1) CXD:; z; %0 (15a)
;Lfi'd#i=° ;=0 (15b)
lgdT =0 (15¢)
where:
G(x, t) - €xp U(gl y *tty gn+1)
o
and

. it £
B z.exp( o )

Note that the functions g; are functions of the phenomenological coefficients and are therefore
in general functions of time and distance in the membrane, expressed in G(x, f).
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APPENDIX II

A GENERAL DERIVATION OF THE GOLDMAN-HODGKIN-
KATZ EQUATION WHEN TOTAL IONIC CONCENTRATIONS
ARE THE SAME ON BOTH SIDES OF THE MEMBRANE

JOHN P. SANDBLOM

We shall solve the flux equations (8) in the steady state considering only isothermal systems
and univalent ions. Assuming the cross-coefficients (L. i = k) to be zero and the electro-
neutrality condition (13) to be valid, the equations (8) reduce to:

Jit = —Lit(x) -%(RT In a:t(x) + Fo(x)), (50 a)

L = —Li(x) - dix (RT In ay=(x) — Fy(x)), (50 )

where the superscripts refer to positive and negative ions respectively.

Since the electrochemical potentials are continuous throughout the system, the electro-
chemical potential of an ion at a point x in the membrane is equal to the electrochemical
potential of a solution which would be in equilibrium with the membrane phase at the point
x. The activities a;(x) and the potential ¢(x) in equations (50) therefore can equally well
refer to the activities and the potential of such an hypothetical solution as to the more usually
considered quantities in the membrane phase (Sandblom, 1967). Consequently, when equa-
tions (50) are expressed in terms of hypothetical solution values and integrated, they yield
directly the fluxes in terms of the external solution conditions and the total membrane
potential.

Dividing two of the equations (50 a) and rearranging, we get:

Jit Lit(x) ait(x) _ da;t(x)-eFV(@RT
Jit Lt (x) a;t(x)  dajt(x)-ePV@IRT"

(51

Recalling the relationship between ionic permeability ratios and ionic conductance ratios
(equation 24) and assuming for simplicity that RT/z,a = 1, equation (51) can be integrated
to yield:

Jit Bt _ait"emn — ait 52

where the superscripts’ and ” refer to the two sides of the membrane and where V is the
total membrane potential. Equation (52) is equivalent to the extended Behn formula, given
by Teorell (1951), for which the above constitutes a more general derivation.

A corresponding equation may be derived for the anions:

Jio P a” — ay'-efVIET

Jl_ Pk— al” —_ al—, . eFV/RT * (53)

Next we multiply equations (50 @) by a;*(x)/L;~(x) and equations (50 b) by ax—(x)/Li(x),
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after which they are added separately to yield:

PO A +((")) RT% Fajﬁ, (54 a)
> g "L’;—_((”‘c)) RTd—a + Fa ‘;ﬁ , (54 b)

where a is the total activity of cations and anions respectively which, taking into account the
condition of electroneutrality, is:

a=3Xa*t=Ya . (55)

Recall that since a;+ and a;~ refer to an hypothetical solution in equilibrium with the mem-
brane phase, equation (55) does not exclude the possible presence of fixed charges in the
membrane.

Adding equations (54) and taking the relationships between ionic permeability ratios and
ionic conductance ratios (equation 24) into account, we get:

at(x) [E g Bt L) ar(x) T f:—'—:l - —2rT% (56)
k

Li*(x) P+ Li(x) at(x) " » dx

If we now define a permeability ratio between cations and anions in analogy with equation
(24) which was derived for each category separately, we get:

P_"' _ L{“(x) . ap (x) (57)

We emphasize that equation (57) is a definition and cannot be deduced in the same way as
equation (24) was deduced from equations (15). For this reason equation (57) is not equiva-
lent to equation (22) which is only valid for cations and anions separately if we define perme-
ability ratios from equations (24) and (57). Further implications of definition (57) will be
discussed at the end of this Appendix.

If we require the permeability ratio P;*/P;~ to be constant, it is seen by integrating equa-
tion (56) that the term within the bracket must be zero when the total concentrations are
equal on the two sides of the membrane (ie. a” = d’), or:

P“' P
T B A =

In order to use this result, we add the flux ratio equations (52) in the following two ways:

; it P+ a”efvIRT _ gf (59 a)
Ji¥ = a;tefVIRT _ g 5
P+
+ ‘ 4/ FVIRT _ .+
;J. _z,-:P, [a:t"eF” a;t'] (59 b)
Jj+ - a’.+”erv/ar — aj+l .
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Equations (59 b) are then divided by equations (59 a) to give:

+

> gt E%; la:t"eIET — g;+]

. T = =2 7 _FVIRT 7 H (60 a)
gt P; a’e —a
B v P i+

and, similarly, for anions
P—

A X P_’:' lai™” — ar'e™I®T]

k
N ST C @5
- k Pk—

Finally, in order to obtain the membrane potential at zero current, ¥, equations (60) are
divided and combined with equations (58) and (61), using the condition of zero current:

XUt =2, (61)
[y k

to yield equation (25), which can therefore be valid with constant permeability ratios quite
generally, subject only to the assumptions made above, the most important of which is that
the total ionic concentrations are the same on both sides of the membrane.

Let us consider briefly certain physical conditions under which the permeability ratio
as defined by equation (57) will be constant. From the relationship between ionic conduct-
ance and mobility ratio we get:

Pt N\t et arr

PrTA o at )
If the mobility ratio is constant it follows that the quantity
¢t ar (63)

cr aj'"

relating membrane and hypothetical solution concentrations (i.e. the ratio between distribu-
tion coefficients) must also be constant. This condition is fulfilled in the treatment of Hodgkin
and Katz (1949) where membrane concentrations are assumed to be proportional to solution
concentrations. It is also fulfilled in the treatment of Teorell (1951) where the membrane
has a uniform fixed site distribution and obeys ideal Donnan boundary conditions. In this
case the quantity in equation (63) reduces to 7> where r is the Donnan ratio. However, since
r is a function of a (the total activity in the external solutions), the term within the brackets
in equation (56) is therefore also a function of a. Dividing equation (56) by this term, called
f(a), and integrating, we get:

dat(x) " da
fo Lg% = —2RT j; Nt (64)

When ' = a”, the integral on the right side is zero if f(a) > 0. f(a) must therefore be zero-
and consequently both a and r are constant and equation (58) is satisfied.
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