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ABSTRACT A method is presented by which the steady-state properties of an ho-
mogeneous, permselective membrane at uniform temperature can be predicted
without knowledge of its thermodynamic properties other than assuming that they
are functions only of local mole fractions in the membrane. By making this assump-
tion, it is shown how the ionic conductances can be calculated at any point in the
membrane from two sets of measurements, (@) Rsymm, the steady-state resistance
of the membrane measured between identical solutions and (b) V,, the potential
difference between nonidentical solutions for zero current. These two parameters
are measured at different external solution compositions (e.g. a varying sodium-
potassium ratio ranging from zero to infinity). From these measurements it is shown
how the flux equations may be integrated without a knowledge of mobilities, activity
coefficients, and other interior membrane parameters. The application of the method
to fixed site membranes with variable mobilities is described and the theory for this
particular case has also been verified experimentally in glass membranes.! A possible
application to biological membranes is discussed and a comparison is made between
the present treatment and previous treatments used to calculate the steady-state
properties of cell membranes, notably the theory of Teorell, Meyer, and Sievers
and the constant field theory.

In relating various transport phenomena in membranes such as fluxes, currents,
and potentials, the usual procedure has been to separate the processes into interior
diffusion processes and boundary equilibrium phenomena (Teorell, 1935; Schlogl,
1954; Conti and Eisenman, 1965). The diffusion equations may then be integrated
between the interior boundaries of the membrane and combined with the boundary
conditions to obtain the fluxes in terms of total membrane potential and external
solution conditions. This procedure, however, requires that the mobilities, activity

1 Eisenman, G., and J. Sandblom. Data to be published.
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coefficients, and pressure be either constant or else known functions of the concen-
trations in the membrane, which in many cases they are not.

It was found, for example, in the course of testing the membrane theory by Conti
and Eisenman (1965) which assumes mobility ratio and difference in standard
chemical potentials to be constant and implicitly assumes the individual mobilities
to be independent of mole fractions, that the theory was insufficient in accounting
for certain electrochemical phenomena in glass membranes.! The current-voltage
relationships for these glass membranes were more complex than expected due to
the variation of the mobilities with local mole fractions.!

A strong mole fraction dependence of mobilities has also been observed in mem-
branes made of benzene-saturated polystyrene filters (Ilani, 1966). For these types
of membranes the calculation of fluxes and of the current-voltage relationships
become difficult and existing theories are inadequate. A more general theory is
therefore needed and is presented in this paper.

A different method for solving the flux equations in steady state is used, in which
the usual procedure of separating boundary and interior processes is circumvented
and in which the thermodynamic variables in the membrane need not be known
functions of the concentrations. It is therefore possible to calculate ionic fluxes in
membranes of very complex behavior and due to the nonspecific assumptions in-
volved, the present method also offers an advantage over the classical methods used
to calculate the steady-state ionic fluxes in cell membranes (e.g. Hodgkin and Katz,
1949; Linderholm, 1952), which assume mobilities to be constant in the membrane.

In the following treatment the only assumption made about the thermodynamic
properties of the membrane is that they are functions only of the local mole frac-
tions of the permeable ions (i.e. the fraction of total concentration of cations or
anions in the membrane). In addition the membrane is assumed to be homogeneous.
The I-V relationships as well as the ionic currents are then defined entirely in terms
of the local ionic conductances L; which can be calculated from two sets of simple
measurements [(@) R.ymm , the steady-state resistance of the membrane measured
between identical solutions and, (b) ¥,, the total membrane potential for zero
current] as will be explained in the text.

It will be shown that a membrane which is homogeneous and in which the thermo-
dynamic properties depend only on local mole fractions will have a completely
linear (ohmic) resistance in symmetrical solutions leading to a simple relationship
between the symmetrical resistance R.ymm and the local ionic conductances. The
method is therefore not applicable to membranes which have a nonlinear resistance
in symmetrical solutions.

A membrane of heterogeneous structure for example will in general show rectifi-
cation in symmetrical solutions (Patlak et al., 1962). The same is true if the mem-
brane parameters are not only functions of local mole fractions but also depend on
external forces. A typical example in which this occurs is a mobile site membrane,
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where the sites can redistribute under the influence of an applied electric field and
where the symmetrical membrane resistance will be highly nonlinear (Conti and
Eisenman, 1966). A similar phenomenon may also be observed in the presence of
water flow producing salt filtration and a redistribution of ions in the membrane
(Teorell, 1961). The present treatment is therefore only applicable to fixed site
membranes in the absence of water flow and when the thermodynamic properties
depend only on local mole fractions.

The second set of measurements necessary to calculate the ionic conductances is
provided by ¥, , the total membrane potential at zero current. Although in principle
the present treatment is valid for any number of ions of arbitrary valence, the only
expression for ¥, which has been derived under the mentioned nonspecific conditions
is applicable only to coion-impermeable membranes (Sandblom and Eisenman,
1967). Since furthermore the method has already proved to be successful in the
description of transport phenomena in hydrated glass membranes where these con-
ditions are fulfilled and where the ionic mobilities have been found to be functions
of the degree of ion exchange,! we shall confine the treatment to ideally permselec-
tive (i.e. coion-excluding) membranes and later discuss some possible generaliza-
tions.

Several of the equations derived by this general method turn out to be similar or
identical to the equations derived for fixed site membranes by Teorell (1953) in the
limit of large fixed site concentration as well as to the equations obtained using the
constant field assumption (Goldman, 1943; Hodgkin and Katz, 1949) in the limit
of complete coion exclusion. The present treatment also contains the treatment of
. Conti and Eisenman (1965) as a special case. There is however, a fundamental
difference between previous and present treatments, namely that whereas the older
theories always permit a calculation of concentration profiles and potential profiles
within the membrane, the present method, due to the nonspecific assumptions, leaves
the profiles undetermined. We therefore conclude that characterization of transport
phenomena alone, such as fluxes and potentials for various solution conditions
surrounding the membrane, is not sufficient to specify the internal concentration
and potential profiles which also depend on the equilibrium properties of the
membrane (e.g. ion exchange isotherms, activity coefficients, etc.).

DESCRIPTION OF THE SYSTEM

The system to be considered consists of an homogeneous membrane surrounded
by two external solutions kept at constant concentrations and containing » number
of permeating species. We choose a coordinate system with the x-axis perpendicular
to the membrane boundaries and assume that all fluxes are directed along the axis.
Additional assumptions are (a) local mole fraction dependence of thermodynamic
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properties; (b) uniform temperature; (¢) no frictional coupling forces between the
ions in the membrane; (d) complete coion exclusion; and (e) steady state.

When assumptions (b) and (c) are fulfilled, we can use a generalized form of
the Nernst-Planck equation:

of; .
J.-=—u.-c;£ 1=1,2,---n. (1)
where u; are the mobilities, c¢; the concentrations, J; the fluxes, and g; the electro-
chemical potentials defined as

i = RTlllC,' + RTlnf, + u:(p) + ZiFlP.

where ¢ is the electric potential, p the pressure, f; the activity coefficients, and u;
the standard chemical potentials of the ions. If the quantities u;, f;, and ui are
known functions of the concentrations in the membrane, equations (1) can be inte-
grated across the interior of the membrane, which is the classical way of treating
the problem and which gives the fluxes and currents in terms of the boundary con-
ditions inside the membrane. In order to express the relationships in terms of the
external boundary conditions, some properties of the boundaries must be known or
assumed. For this purpose it is necessary to assume only that the continuity of
electrochemical potentials is preserved at all phase boundaries which is valid as
long as the boundary processes are not rate-limiting. This assumption, together
with the assumption that the variables u;, f;, u;, and ¢;, defining the thermody-
namic properties of the membrane, are functions only of local mole fractions, per-
mits a procedure for calculating the steady-state properties different from the clas-
sical one.
To show this, we shall use a slightly different form of equations (1), namely:

_ L om

Ji = I;“"Zi2 CK

i=1,2., 0 ,n (2

where L; are called the partial specific ionic conductances (Fitts, 1962), and are
seen by comparison with equations (1), to be proportional to the product of mo-
bility and concentration. The ionic conductances L; are related to the integral
conductances, g;, often used in biological applications, by the following equation
(Finkelstein and Mauro, 1963):

1 ¢ dx
5-[05 | (3)

In order to present the method we shall first show how the concept of correspond-
ing solutions introduced by Scatchard (1953) can be used to integrate the flux
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equations, once the ionic conductances L; are known. We shall then explain how
the ionic conductances may be calculated from measurements of ¥, and Ryymm -

PROPERTIES OF A CORRESPONDING SOLVENT MEMBRANE

In order to visualize how the current-voltage relationships of the membrane may
be deduced we shall construct the following hypothetical membrane diagrammed
in Fig. 1 and based on the concept of corresponding solutions (Scatchard, 1953).
The membrane is divided into a number of compartments, each filled with the
same solvent that surrounds the membrane. These compartments also contain the
same coions as the surrounding solutions and since complete coion exclusion has
been assumed, each little solvent compartment will retain its original tofal concen-
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FiGure 1 Diagram of the membrane and corresponding “solvent membrane.” The mem-
brane is divided into a number of small compartments surrounded by solutions containing
the same solvent as the external solutions. The parameters of the /th membrane compart-
ment are shown in the figure and the arrows indicate that the equivalent fraction X;? refers to
the surrounding solution compartments which are in equilibrium with the membrane com-
partments.
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tration throughout the experiment. We shall also reduce the size of the solvent
compartments to such an extent that their influence on the diffusion rate can be
neglected. The diffusion rate is then determined purely by the membrane parts
(shaded areas in Fig. 1). For each solvent compartment, we can also write the
condition of electroneutrality:

2 Xi=1, 4
=1
where the summation is carried out over the counterions and where X; is the equiva-
lent fraction of ionic species i.

Suppose now, that we make the number of solvent compartments vere large
and make them very close, and that we perform a diffusion experiment in whch
the outer solutions are kept constant. The ionic composition in the small solvent
compartments will then change during the course of the experiment, but will con-
stantly be in equilibrium with the composition in the membrane compartments.
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Provided that the compartments are sufficiently close, the flux of ion species i be-
tween two neighboring solvent compartments can be expressed as:

L Ag'
Ji = —m—a—l—, (5)

where / denotes a particular membrane compartment and §° the distance between
the neighboring solvent compartments. The difference in electrochemical potential
refers to the two inner boundaries of the membrane compartment /, but due to the
continuity condition this difference is also the same for the two neighboring solvent
compartments. L;! is the ionic conductance in the membrane compartment and if
we assume the two neighboring solvent compartments to be sufficiently close to
have approximately the same composition (i.e. membrane compartment / is sub-
mersed in symmetrical solutions), we can write L;* as a function of the local sur-
rounding solution composition (X; , --- , X,). That L;* can be obtained in this
way is a result of our assumption that the thermodynamic properties depend only
on local mole fractions, in which case each set of mole fractions in the solvent
compartments completely determines the mole fractions in the adjacent membrane
compartments and vice versa. Since we are also dealing with steady-state conditions,
there is no concentration change anywhere in the membrane, and J; is consequently
the same throughout the whole system.

We have consequently, in making equation (5) apply identically to both sets of
compartments, made use of three assumptions: steady state, continuity of electro-
chemical potentials, and the thermodynamic properties depending on local mole
fractions only.

Clearly, if we let the number of solvent compartments tend to infinity, and the
distance between them approach zero, equation (5) will approach and become
identical to equation (2). We can then visualize two membranes, a hypothetical
one containing the same solvent as the surrounding solutions and having a given
fixed charge distribution determined by the coion concentration in the corresponding
solvent compartments (the solvent membrane is by definition also coion-excluding).
If the conductance function L;(X;, - -, X,) is a known function of the equivalent
fractions at any point in this membrane, the profiles, potentials, and fluxes for this
membrane are completely determined by equations (4) and (5).

The second membrane is the real membrane, whose behavior is not affected by
the presence of the corresponding solvent membrane, which is purely hypothetical.
The hypothetical and real membranes have the same properties as far as the fluxes
and total membrane potentials are concerned, since at steady state the same con-
stant amount is flowing through both membranes. We have therefore obtained a
means to relate the fluxes, currents, and total membrane potential of the real mem-
brane without knowing the actual profiles within it. It should be emphasized that
the corresponding solvent profiles or hypothetical profiles which are obtained as a
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result of solving equations (4) and (5) are not the same as the membrane profiles
or real profiles. In fact, we know nothing about the real profiles as long as the
equilibrium properties of the membranes are unknown.

However, if the real profiles are determined by measuring the concentrations in
each little membrane compartment, then the equilibrium properties can be cal-
culated. They could also be calculated from the conductance functions, if some
known functional relationship existed for mobilities or equilbrium properties such
as constant mobility ratio, constant pressure, etc.

We have therefore, by this method, circumvented the procedure of solving for
concentrations and the potential at the boundaries inside the membrane which
with the classical method is necessary in order to arrive at the fluxes and current-
voltage relationships. It amounts to introducing the boundary conditions (con-
tinuity of electrochemical potentials) before integrating the flux equations instead
of after the integrations. It also illustrates a fact pointed out by Guggenheim (1950),
namely, that the splitting of the electrochemical potential in an electric and chemical
component is without physical significance. We can for example, conceive of filling
our solvent compartments with any arbitrary solvent and consequently achieving
any splitting of ¥ and u, in equation (2) that we like.

For convenience, however, we shall choose the solvent in the hypothetical mem-
brane to be the same as in the external solutions. We can therefore write equation
(5) explicitly as:

CLi(Xy, - ,X.) d

Ji = F?z ;2 Z;c

(RT In v; X; + Fz: ¢) (6)

All the quantities in equation (6) refer to the corresponding solvent membrane and
the notation ¢ is used for the potential to indicate that it is not the same as the
interior membrane potential y. Similarly the notation v; refers to the activity coef-
ficients in the corresponding solvent membrane to distinguish them from f;, the
activity coefficients in the real membrane. Any variations in the activity coefficients
J: and standard chemical potential u; in the membrane will appear in the evaluation
of the conductances L; as functions of the equivalent fractions X;, ---, Xa .

EVALUATION OF THE IONIC CONDUCTANCES, L;

In evaluating the conductances L; as functions of equivalent fractions in the ex-
ternal solutions we shall restrict the treatment to the case of two counterions with
equal valence z.

Membrane Potential at Zero Current

Tht total membrane potential at zero current is measured for various solution
compositions (the solution on one side of the membrane is kept constant and varied
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on the other side) and from these measurements it is often possible to calculate a
set of permeability ratios P;/P; defined by the following equation:

P:
Za."—-‘
v KT 5% B )
zF Za'”&
T P;

where a; are the activities in external solutions and the superscripts refer to the two
sides of the membrane.? The permeability ratios are known to be constant (i.e.
independent of external solution conditions) in many ion exchange membranes,
including also some biological situations (Eisenman, 1965).

The Meaning of Permeability Coefficients

Depending on the transport mechanism, or on the assumptions used in deriving
equation (7), the permeability ratio has been given such various physical meanings
as mobility ratio (Planck, 1890), ion exchange equilibrium constant (Nicolsky,
1937), the product of the mobility ratio and the Donnan ratio (Teorell, 1935;
Meyer and Sievers, 1936), the product of the mobility ratio and the distribution
coefficient ratio (Hodgkin and Katz, 1949), or the product of the mobility ratio
and the ion exchange equilibrium constant (Helfferich, 1962; Karreman and Eisen-
man, 1962). Equation (7) has also been derived under the nonspecific conditions of
the present treatment (Sandblom and Eisenman, 1967) and the existence of a con-
stant permeability ratio therefore does not involve any assumptions about either the
mobility ratio or the ion exchange equilibrium constant separately, and conse-
quently does not restrict the generality of this treatment. If the permeability ratio
is constant, equation (7) can be used to calculate the ratio P/ P, directly from V.

When use is made of the continuity of electrochemical potentials at each of the
membrane boundaries, the permeability ratio is also related to the ionic conduct-
ances at all points in the membrane by the following simple equation (Sandblom
and Eisenman, 1967, equation 24):

Live Xy  Liay Py (8)

LiviXi Liay P

The activities @; and a. refer to the corresponding solvent membrane.
In order to see this more clearly, the permeability ratio could have alternatively
been defined from equation (8) and equation (7) then obtained as a result of this

2 Equation (7) describes the potential of a wide variety of glass electrodes in mixtures of any two
univalent cations as well as in certain three-ion mixtures in which one ion is held at constant activ-
ity (e. g., Na-K mixtures at constant pH, Eisenman et al., 1966).
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definition. This may be done by dividing two of equations (6) and rearranging:

!_1 . Ly vi Xy — dvi Xy e"HIET (9)
Jz L1 Y2 X2 d’h Xz eFe9/RT

Using the definition (8) and assuming the permeability ratio to be constant,
equation (9) can be integrated to give:

Ji Pr_ @™ — af (10)

J2 Pl a2”erV/RT — a2/

where V is the total membrane potential. This formula is equivalent to the extended
(fixed site) Behn formula given by Teorell (1951). It has also been derived by Conti
and Eisenman (1965) under more general conditions, valid for permselective fixed
site membranes. For two counterions and zero current:

S+ =0

and equation (10) can be rearranged to give equation (7).

From equation (8) and a measurement of the permeability ratio it is possible to
calculate the jonic conductance ratio L,/L; as a function of equivalent fractions in
the corresponding solvent membrane.

Symmetrical Membrane Resistance

In order to obtain a second relation between the ionic conductances, we shall use
the expression for the theoretical membrane resistance (Teorell, 1953):

d
d
R=fo ZxL.- (11)

This resistance is measured at high frequencies (in the biological literature the in-
verse of the theoretical resistance is often referred to as the chord conductance).

In symmetrical solutions we shall show that under the assumptions made, the
resistance will be linear and equation (11) takes a very simple form. Using equation
(9) we obtain the following:

Fz¢/RT Fz$/|RT Iy ! My " FzV|RT ry !
J1 P!_d’YlX1€'¢ _'Ylee =l - X N Xle' —-—mXi

Jo P1 dvaX; eF#IRT — 3 X, oFbIRT _ N X1~ 2 WX PFVIRT _ o T X1

(12)

If the solutions on either side of the membrane are equal, it follows that v," X" =
71'X1’ and v.”Xy” = v,'X,’ and inserting this in equation (12), we get:
i P w'X{ _nX e — Xy _nX

e SIE 13
Jy P Xy 4 Xy eF#ET — )XY v X, (13)
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Combining this with the condition of electroneutrality it is evident that X; and X,
are independent of x, the position in the membrane, when the external solutions are
identical. This is also true for the case when the permeability ratio is not constant
although the proof is omitted here.
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FIGURE 2 Resistance of a thin (ca. 0.1 x) hydrated NAS 27-4 glass membrane (interposed
between identical solutions of varying Nat-K+ compositions) as a function of the mole
fraction of K+ in solution (constant ionic strength of 1.0 M). The filled and open circles refer
to two series of measurements of the resistance, which was found to be time-independent
and voltage-independent under these experimental conditions. The dashed curve illustrates
the resistance expected if mobilities were constant, and the observed maximum in resistance
indicates that mobilities are mole fraction—dependent. The data are to be published.!

Since X; and X, are constant in the symmetrical case and the conductances are
functions only of the mole fractions, equation (11) can be written:

d
R!ymm(Xl ’Xﬁ) - Ll(Xl ,X2) + L2(X1,X2) ’ (14)

and from equation (14) it is seen that the resistance in symmetrical solutions Rsymm
is independent of the electric field and is therefore linear. It may then either be meas-
ured by an AC measurement or a DC measurement. From equations (4), (8), and
(14), it is now possible to calculate L, and L, as functions of mole fraction X; in
external solution (equivalent to the corresponding solvent membrane). It is there-
fore necessary to measure the symmetrical membrane resistance Reymm in a series of
solutions in which the equivalent fraction X; is varied from 0 to 1. Such measure-
ments have been carried out elsewhere! with the typical results shown in Fig. 2.
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Notice that the dashed curve illustrates the resistance expected (for example, from
the treatment of Conti and Eisenman, 1965) if mobilities were constant; while the
observed maximum of the resistance indicates that the mobilities are in fact mole
fraction—-dependent.

Nonhomogeneous Membrane

The theory can also be extended to the case in which the thermodynamic properties
are not the same functions of local mole fractions throughout the membrane, but
also depend on distance in such a way, that the conductance relationships are the
same throughout the membrane apart from a proportionality factor which is dif-
ferent for different parts of the membrane (e.g. a fixed charge membrane with a
nonuniform site distribution and where the thermodynamic properties depend on
site distribution as well as on local mole fractions (Conti and Eisenman, 1965)).
This means that we can write L; as:

Li(X: , Xz, x) = f(x)-Li(X1, Xa),

where X; and X; are the equivalent fractions in the corresponding solvent mem-
brane. f(x) is a function of distance which is independent of the electric field.
Equations (7)—(13) are unaltered by this generalization, and equation (11) takes the
following form:

S

Reyom = Li(X1, Xz) 4+ Lo(X1, Xo) (15)

where S is defined as

_ [ dx
s=[ 7%

METHODS OF SOLUTION

1. Analogue Computer

When the ionic conductances L; and L, have been obtained as functions of X,
the flux equations (6) will contain two empirical functions. The problem must
therefore be solved numerically, an endeavor for which the analogue computer is
well suited since the empirically obtained functions may be stored in function gener-
ators. The functions, y1(X1) and v:(Xz), which in general are empirically deter-
mined functions, must also be fed to function generators in order to solve equations
(6). It is not unreasonable, however, to neglect variations in activity coefficients
throughout the corresponding solvent membrane in which we choose the ionic
strength to be constant and the same as that in which R.ymm is measured.

If the total ionic strength is different on the two sides of the membrane, the
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boundaries between the corresponding solvent membrane and the external solution
may be treated as classical fixed site membrane boundaries (see Teorell, 1953).
In the following, however, we shall assume the total ionic strength to be equal on
the two sides of the membrane in which case the boundary potentials between the
corresponding solvent membrane and the external solutions cancel. If gradients of
activity coefficients in the corresponding solvent membrane are neglected, the flux
equations (6) can be written:

- _Ld
h= 24 (RT I X, + 2Fe), (16 a)
Jo= —L2 4 (pr1n X, + 2Fg) (16 b)
ozt dx :

Multiplying equation (16 a) by X;/L; and equation (16 b) by X, L, and adding the
two equations we get, using the condition of electroneutrality :

FZJl X1 + FZJ2 Xz — _d_qS
L, L, dx

If, instead, equation (16 a) is multiplied by 1/L, and equation (16 b) by 1/L, and
the two equations are subtracted, we get:

(17)

FzJ, _FzJ, _ _RT dX,  RT dX,
L, L, FzX, dx ' FzX, dx

(18)

and after rearrangement, taking again the condition of electroneutrality into
account:

FihXa g  FzhXs o RT d%
L, 2 L, ! Fz dx

If the functions X;/L, and X,/L, are calculated as functions of X; and stored on
function generators, it is seen from equations (17) and (19) that the problem can
be programmed relatively easily on an analogue computer and solved numerically.!
Typical current voltage characteristics calculated in this manner for a glass mem-
brane are shown in Fig. 3 and compared with experimental observations.

(19)

2. General Case of a Constant Permeability Ratio

Some useful expressions may also be obtained by combining the flux ratio rela-

tionship (10) with equation (19). Rearranging equation (19), we first introduce the
permeability ratio from equation (8):

F2 1,

X (X, _____ Xl) - -RT%I. (20)
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Ficure 3 Computed and observed steady-state current-voltage relationships of a thin (ca.
0.1 p) hydrated NAS 27-4 glass membrane when interposed between solutions having the
indicated compositions. The continuous curves are computed from the data of Fig. 2 and
equations (17) and (19); while the open circles are the experimentally measured values.
Positive current flows from left to right of the indicated systems. The data are to be pub-
lished.

When the variables in equation (20) are separated and integrated, the following
expression is obtained:

RT [* Ly(Xy) -dX,

T2 g, ’ 21
Z N X (Xz - ‘:;-2 . %Xl) 20
1 2

Jl-S =

where L, is given as a function of X; .
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We can now use the condition of electroneutrality (4) and the flux ratio equation
(10) to eliminate the flux ratio and X; from the numerator in equation (21):

Jg Pl X’” erVIBT _ Xz’

I A S oy S

erV/RT _ l

=1-_¢ -1
Xl”eFtV/RT P Xl,

- Xy, (22)

If L,(X,) is known, it is now possible by numerical methods to evaluate the in-
tegral in equation (21) in terms of the total membrane potential V.
The fluxes can also be expressed in terms of the electric current:

Fz(h + ) =1, (23)

where 7 is the electric current.
Combining equations (21) and (22) gives:

_ _RT Je
I= S-Fz(l+71)

and after inserting equation (10) in equation (24), we get a relationship between the
total electric current, the external boundary conditions, and the total membrane po-
tential ;

fxl’ Ly(X,) dX,
, FiVIRT _ ) 24
X, Xl (1 _ e 1 Xl> ( )

Xl”ehvlm' —_ Xl’ '

_ _RT n rsvier _ ot o Paoyn pvier _ 4 ]
I = m[Xle Xi +P1(X2e X,)
: f‘*’ Py(X) dX (25)
x' [Xi"eF7RT _ X\ — (eFVIET — 1)X,]’
where we have defined the permeability P, as:
Pix) = B ooy o (26)
1

We have previously only defined a permeability ratio assumed to be constant,
thereby leaving the individual permeabilities undefined with respect to a function
or a constant, which is now introduced in equation (26).

Equations (25) and (26) also illustrate the fundamental character of the ionic
permeabilities and conductances. From the extended definition of an ionic per-
meability coefficient (equation 26), a precise physical meaning can be given to both
the permeabilities and ionic conductances in terms of coefficients appearing in the
flux equations for the corresponding solvent membrane. Combining equations (6)
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and (26) gives:

L= —Pi— - =2 — L; 7 (27)

where I; is the ionic current, and where P; is here defined to include the dependence
on x.

Apart from proportionality constants, the ionic permeability coefficients and ionic
conductances are seen to be defined as the coefficients of the concentration gradient
and the potential gradient respectively in the corresponding solvent membrane.

If in equation (25) we substitute for P;(X;), the expression Rgymm Obtained from
equations (15) and (26), we get:

I = _E [Xllfep,vjnr _ X1, + _1;2 (X2” erV/ET _ Xgl)]
zF P,

[ =
?

xy’ Ruyom I:Xl + %X{I I:Xlr/envmr — X/ (™R _ I)Xl] (28)
and we see that .S cancels out and does not appear in the equation. Consequently,
it is not necessary to determine the function f(x) or the membrane thickness d in
order to evaluate the I-V curves. The integral in equation (28) may be evaluated
numerically for each value of the potential ¥ by plotting the integrand as a function
of X; (Rsymm is obtained from the empirical curve in Fig. 2) and measuring the area
under the curve from X;’ to X;”.

The current-voltage relationship is uniquely defined by the external solution
conditions, R,ymn and ¥, , and we have shown that this result follows without mak-
ing any assumptions about mobilities and equilibrium thermodynamic properties
other than that they are functions of local mole fractions. Although the I-V curves
may have a very complex appearance (see Fig. 3), the Ryymm curve (Fig. 2) and ¥V,
contain enough information to characterize completely the steady-state properties
of the system.

3. Special Case of a Constant Mobility Ratio

For comparison, we shall evaluate the integral in equation (25) for one particular
case, namely when the mobility ratio is constant. In this case, Py(X;) can be ex-
pressed in terms of X; in the following way; using the definition of L, and equation

(8):

Ll Me - m - L2
F2—Z2=u1ch=ulc(l—X2)=ulc—rF2—22
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L, L\

pTzz(“f’z)—“*‘

Ly P, Py
FTXII:XI(I'—"E>+"E:|—MC —f(x) (29)

where 7 is the mobility ratio and ¢ the fixed charge concentration. The superscript m
refers to the membrane phase. Inserting equation (29) into equation (25) and in-
tegrating, gives

s P ” Fz
ZF.RT [Xlllel? VIRT _ Xl’ + ’IT: (Xz eF VIRT _ le)]
TS
(Xl" +rB X,") e VIR — (X,’ +rh X,’)
P Py

1

I =

X! +r§X,’_|
+Ih———1, (30)

” P
X1 + rﬁXg”

Fzy
RT

which is the same result as that obtained by Conti and Eisenman (1965) using the
classical method of solving for the internal profiles, and which may be considered
to represent a special case of the present treatment.

Asymptotic Behavior

Equation (25) can also be used to evaluate the asymptotes of the I-V curve. Examin-
ing this expression as zV tends to minus infinity, we see that the integrand has a
singular point at X; = X;’, and similarly, when zV tends to plus infinity, the integrand
has a singular point at X; = X;”. If for large negative zV, we therefore expand
Py(X;) in Taylor series around X; and integrate, we get for the asymptote:

P(X) (X" — Xl')"], (31 a)

l 14 ’ 14 4 RT ~
[= —= o

5 (PXNX + Po(X)XY) [V + 2 X0 SRy
where P"(X,’) is the nth derivative of P, with respect to X; at the point X; = Xi'.
The same procedure applies for large positive zV when the I-V curve has the following
asymptote:

R_Ti S (X - X"

1 14 ” ” ”
1= —LBOX + POxE [y + 55 P 00 =T (1)

It is seen by comparing these expressions with equation (15) for the symmetrical
resistance and definition (26) of the permeabilities, that the slopes of the asymptotes
are identical with the symmetrical resistances for the corresponding solution con-
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ditions. It is therefore not necessary to measure the quantity Reyms directly in sym-
metrical solution conditions, which can be experimentally difficult (e.g. in living
cell membranes). Instead, the limiting slopes for various exterior solution conditions
could be used to calculate Ryymm(X1) from equation (31 b).

Another interesting relationship is obtained by dividing the two limiting conduct-
ances from equations (31):

GV — —w) _ P(X)X) 4+ PAX)X, _ PXy)
GV — + ) Pi(X)")X)" 4+ Po(Xe")Xy” Py(Xy”)

Py,
X' +22x.
. 1+P1 ? =P1(X1,)erzvo/nr (32)
Xl” + %2 er/ p l(Xl”)
1

If the permeabilities are constant-independent of X; , the ratio of the limiting con-
ductances is seen from equation (32) to become equal to the exponent of ¥, . This
was also found by Teorell (1951, 1953) to be the case for a fixed site membrane
with equal total concentrations on the two sides of the membrane. However, in
those dense membranes mentioned in the introduction where the mobilities are not
constant, this simple relationship is no longer valid and must be substituted for by
the more general relationship expressed in equation (32).

It is also seen from equations (25), that whereas the slopes of the asymptotes
depend only on the end points (X;’ and X;”) of the permeabilities, the intercepts
of the asymptotes with the V-axis depend not only on the end points, but also on
the shape of the permeability curves (L;/X; and L,/X; plotted as functions of X;)
in the vicinity of these points as expressed by the derivatives.

It is also apparent that the intercepts of the asymptotes provide an alternate way
of expressing the permeabilities in terms of external solution conditions. Let us
consider namely the intercepts of the asymptotes for small differences in external
solution conditions, in which case the intercept potential can be written according
to equation (31):

_RTa1n Pi(Xa) 0
= . av_ 1

AV‘” Fz 8X1

- X)), (33)

where higher orders of X;” — X, have been neglected. In the limit where X;”
approaches X;’, equation (33) can be written:

dVe _ RT 91n Pi(Xy)

8X1 Fz 6X1 ’

J. P. SANDBLOM Steady-State Ionic Currents, Conductances, and Membrane Potential 259



and when this equation is integrated, we get:

_ RT . Py(Xy)
Vo = 7z ln_Pl(l) , (34)
where Py(1) is the conductance of the membranes in pure solutions of species 1,
according to equation (26). Note that the potential ¥« does not correspond to an
actual measured potential but rather to an integrated form of the intercept potential

AV» measured at small X;” — Xi'.

Individual Ionic Currents

The individual ionic currents are obtained directly by combining equations (23)
and (28):

— _5! ” FeVIRT __ y !
L= Fz (Xl e Xl)

fxlll Xm
% Ry I:X1+ 2 Xz] [Xl”e""’” — X = (T - l)Xl] (35 a)

RT
Fz

X7 dx,
jxu Reym I:Xl + };_:Xz] [X1” eVIRT _ x ! _ (MVIRT _ l)Xl] (35 b)

12 = — _}P;? (Xg” erV/RT _ Xgl)
1

These equations show also that the individual ionic currents are related to and com-
pletely determined by the permeability ratio and Reymm . Since we have shown
that R.ymm and ¥, can be obtained from a set of I-V curves when the solution com-
position is varied only on one side of the membrane, it is possible to use these to
calculate both the ionic conductances and steady-state ionic currents as functions
of membrane potential and external solution conditions without actually knowing
the mechanism of ion transport. This should be particularly useful in biological
membranes where the structure is unknown and where the ionic currents and con-
ductances have been used to describe the dynamic behavior of the membranes
(Hodgkin and Huxley, 1952).

General Cases

We shall also briefly discuss the case in which the valences of the two permeant
species can have any arbitrary value and the permeability ratio need not be con-
stant. The method is not altered and still consists of finding the ionic conductances
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as functions of mole fractions in external solutions for the purpose of solving equa-
tions (6). Equation (15) for the symmetrical resistance is still valid provided that
L, and L, have the same dependence on distance. This assumption is valid when the
membrane has a uniform fixed-charge distribution, and could be valid also with
nonuniform fixed-site distribution when the ions have the same valence in which
case the ion-site interactions are independent of site spacing. When the valences
are different, this is no longer true and the assumption is then probably only valid
when the membrane is uniform.

The additional relationship necessary to solve for the individual conductances
in the case of constant permeability ratio was seen to be derived in a simple way
from ¥V, measurements. In the case of variable permeability ratio, Conti and Ciani®
have shown that it is possible to express the ionic conductance ratio in terms of
external solution conditions by a method, in which small changes in ¥, are meas-
ured following a small step change in solution conditions. This treatment is not
based on any assumptions on transport mechanisms other than those made in the
present treatment, and makes no assumption about the valences or the permeability
ratio. For a fixed-site membrane containing two permeable ions we can therefore
generalize the statement that R.ymm and V are two independent sets o measurements
Jfrom which the ionic conductances can be expressed in terms of external solution com-
positions. This is then sufficient to solve equations (6) to obtain the fluxes and currents
in terms of external solution conditions and total membrane potential.

DISCUSSION
Assumptions

The most important assumption made in this treatment is that the local thermo-
dynamic properties depend only on the local mole fractions, the validity of which
can be tested experimentally. There are several conceivable cases, however, in which
this assumption will not be true. One type of system already mentioned for which
the theory does not hold is a membrane containing mobile sites. In this case the local
thermodynamic properties will then not only depend on local mole fractions, but
also on the field since the sites will rearrange under the influence of the electric
field. The same argument also applies if the condition of electroneutrality is not
valid, the ionic conductances depending then not only on local mole fractions but
also on the electric field. The electroneutrality condition is therefore implicitly
contained in the local mole fraction-dependence of thermodynamic properties. In
these cases, the conductance appearing in equations (6) does not correspond to the
conductance measured in symmetrical solutions and calculated from equation (15).

One might also conceive of stress gradients produced in the membrane as a result
of profile rearrangement, and these stress gradients will not only produce local

3Conti, F., and S. Ciani. Data to be published.
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effects but also distant effects as well, and thereby change the properties in other
parts of the membrane.

Effect of Cross-Coefficients

It was also assumed from the beginning that the frictional drags between ions could
be neglected. If this is not so, the flux equations (2) must be rewritten in the following
way:

J1 = Ln 6#1 Lu 3_;7.2 y (36 a)
ox ax

Jy = —Ly P _ [, % (36 b)
ox ax

and due to the Onsager relationships the cross-coefficients are equal, or Lz = Ls; .
Since we are now dealing with three independent conductances, we need a third
independent measurement to determine how L, varies with external solution con-
ditions. From ¥, and Rgymy it is only possible to calculate the total ionic conduct-
ances

L L,
F_T;l_zlLu+22L12 and FT z1 Ly + 23 Lo

(Sandblom and Eisenman, 1967)

and in order to solve equations (29) a third relationship is needed involving the
three phenomenological coefficients Ly;, Lz, and Ly, .

Experimental Verification

The theory has been tested on thin, completely hydrated glass membranes whose
thermodynamic properties are very complex functions of local mole fractions, and
where the classical theory has proven to be inadequate.! The present method, how-
ever, applies surprisingly accurately to these membranes (see Fig. 3) which demon-
strates the usefulness of the assumptions and the procedures. A further advantage
is that the thermodynamic properties of the membrane (mobilities, ion exchange
isotherms) can be calculated from the ionic conductances provided that some func-
tion, relating the chemical potentials or other suitable thermodynamic properties
of the membrane to the mole fractions, is known or may be assumed.!

Information Contained in the Current-Voltage Relationships

We have shown that the current-voltage relationship can be calculated from the
ionic conductances (given by Reymm and V) for any set of solution conditions. We
have also shown how conversely the I-V curves can be used to calculate the ionic
conductances as functions of external solution conditions and how the conductance
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functions can be used to predict all the steady-state properties of the system. The
agreement between theory and experiment will then test the validity of the assump-
tion that the thermodynamic properties depend only on local mole fractions, and
no information is obtained from which it is possible to calculate the equilibrium
properties of the system. Measurements of ionic fluxes as well as electrical measure-
ments are dynamic measurements (extra membrane quantities) and serve to predict
the dynamic behavior of the system, but cannot give information about the equi-
librium properties. In order to determine these in an unknown membrane, another
class of measurements is needed equivalent to measuring the actual concentrations
in the membranes (i.e. inframembrane quantities).

Attempts have been made to determine the equilibrium properties from I-V rela-
tionships (Conti and Eisenman, 1965), but the method used involves an initial
knowledge about the system and therefore permits all the properties to be deter-
mined, as pointed out in the preceding section.

Biological Membranes

Some implications relevant to biological membranes have already been pointed out.
There is, however, a special case of equations (25) and (35) which is of particular
interest in connection with the ionic theory of Hodgkin and Katz (1949). If the per-
meability P,(X;) appearing in equation (25) is a constant, equations (25) and (28)
can be integrated directly and combined with equations (10) and (23) to give:

Y/ P n ’ P ’
X" 2y, ) nvmr_(X -—2-X)
Pl( 1 + X 2 Je 1+Pl 2

_ . P , (37 a)
I = V—S,—

eFlVIBT — 1

Py Xy e™VIRT _ x/
'S P VIRT _ | ’

L = -V (37 d)

n F !
P2 X2 e 2V/RT __ X2

L =-V. S eFVIET _]

(37 ¢)

Similar equations in which activities appear instead of equivalent fractions have
already been derived and used by Hodgkin and Katz (1949) under the following
basic assumptions: (a) that ions in the membrane move under the influence of dif-
fusion and the electric field in a manner which is essentially similar to that in free
solutions; (b) that the electric field may be regarded as constant throughout the
membrane; (c) that the concentrations of ions at the edges of the membrane are
directly proportional to those in the aqueous solutions surrounding the membrane;
and (d) that the membrane is homogeneous.

In our treatment we have shown that the same equations can be derived by re-
placing the first three highly idealized assumptions of Hodgkin and Katz by the
more general thermodynamic assumptions (a) thermodynamic properties are func-
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tions of local mole fractions only, (b) complete coion exclusion, and (c) constant
permeabilities.

In its general form the present theory gives no information about the concentra-
tion profiles and the potential profile, by the nature of the method employed. Equa-
tions (37) do therefore not necessarily imply a constant field.

However, in the special case of constant mobilities and a uniform fixed-site dis-
tribution, the potential profile in the membrane is proportional to the potential
profile in the corresponding solvent membrane. This profile is linear when the per-
meabilities are constant (see equation 17) and the present treatment reduces to
previous treatments of fixed-site membranes (Teorell, 1953; Conti and Eisenman,
1965).

It is interesting to note that the original constant field theory (Goldman, 1943;
Hodgkin and Katz, 1949) does not explicitly take into account the presence of fixed
sites, although some effects of a possible fixed-site distribution have been considered
in a recent publication by Hodgkin and Chandler (1965).

In deriving equations (37) it has been assumed that the permeabilities are con-
stant. This assumption can be tested by calculating the ratios of outside to inside
permeabilities from the limiting slope conductances (equation 32).

If we use the data given by Hodgkin et al. (1952) for the limiting conductances of
the squid axon in sea water, we get from equation (32):

Py _ P
Py~ Ph.

~ 8,

a result which is also obtained from the constant field theory without assuming
coion exclusion. Although the permeability ratio is constant, the permeabilities
are evidently not constant and the calculations of the ionic currents at steady state
and at the peak of the action potential made by Hodgkin and Katz (1949) using
equations (37), are therefore uncertain. For this reason it would be of interest to
test the validity of more general treatments (e.g. the present treatment and the treat-
ment of Conti and Eisenman, 1965) on biological membranes. However, the meas-
urements must be carried out in the presence of impermeable coions. Another dis-
advantage is that measurements of the resistance in identical solutions must be
carried out over a wide range of solution compositions in which the cell membrane
is not likely to remain intact. Recent perfusion studies on squid axons, however,
(Tasaki, 1965; Tasaki et al., 1965), seem to indicate that with the proper choice of
internal and external anions the membrane can withstand changes in the ionic en-
vironment sufficiently well that it might be possible to measure the symmetric
resistance for various compositions of cations at least over a certain range.
Another alternative has been suggested in the text, namely to use the limiting
conductances for various solution compositions to calculate the ionic conductances
as functions of solution compositions without having to measure R.ymm directly.
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This method is not without difficulties since the cell membrane breaks down at high
fields (Rudolph and Stampfli, 1958). For certain ionic compositions, however, the
I-V curves seem to be sufficiently well characterized to calculate the limiting con-
ductances (Hodgkin et al., 1952) with them.

It is therefore suggested that a proper choice of perfusion composition combined
with measurements of limiting conductances might permit the complete charac-
terization of the steady-state fluxes of the cell membrane using the present method.
The criterion is that measurements of ¥, and Rsymm should permit an adequate
prediction of the I-V curves.
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