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ABsrRAcr The pattern of nerve action potentials produced by unit permeability
changes (quantal inputs) occurning at random is considered analytically and by
computer simulation methods. The important parameters of a quantal input are
size and duration. Varying both the mean and the probability density function of
these parameters has calculable effects on the distribution of interspike intervals.
Particular attention is paid to the relation between the mean rate of excitatory in-
puts and the mean frequency of nerve action potentials (input-output curve) and
the relation between the coefficient of variation for the interval distribution and the
mean interval (variability curve). In the absence of action potentials one can deter-
mine the parameters of the voltage distribution including the autocorrelation
function and the power spectrum. These parameters can sometimes be used to ap-
proximate the variability of interspike intervals as a function of the threshold volt-
age. Different neuronal models are considered including one containing the
Hodgkin-Huxley membrane equations. The negative feedback inherent in the
Hodgkin-Huxley equations tends to produce a small negative serial correlation
between successive intervals. The results are discussed in relation to the interpreta-
tion of experimental results.

INTRODUCTION

Adrian and Zotterman (1926) first showed that single nerve cells often code the
intensity of sensory stimuli as a frequency of action potentials in a long train.
Variability in the intervals between successive nerve impulses has often been looked
upon as unwanted "noise," since, with fluctuations present, one must average over
a number of impulses to measure the mean frequency accurately. However, neuronal
variability has been attracting a growing amount of attention for three main reasons:

1. If the frequency of nerve impulses conveys information about stimulus intensity
to the central nervous system, the variability limits, not only the accuracy of
an experimenter's determination of mean frequency, but also the amount of
information a nerve cell can transmit about its environment.

2. In addition to information contained in the mean frequency, the exact timing of
nerve impulses is sometimes important (Barlow, 1963), so one must study the
whole impulse pattern.

3. Where intracellular recording is impossible, the sequence of nerve impulses may
be the only available data. What do the fluctuations in interval indicate about
the mechanism of nerve impulse generation?
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This paper deals with this last problem by considering simplified models and
deriving their statistical properties. By analyzing various models based on different
experimental results, one can begin to associate certain phenomena and certain
mechanisms with impulse patterns or other statistical quantities. Generally, no
unique solution exists; any number of mechanisms could generate a given pattern.
However, the range of common physiological phenomena severely limits the range
of possible mechanisms. In particular, the mechanisms will often be based on
permeability changes to one or more ions.

I shall assume that the variability arises from the random occurrence of unit
permeability changes. Much work in this field has started from another assumption,
namely that there is a source of Gaussian noise added to an otherwise determinate
neuronal model. The thermal noise associated with the resistance of the membrane
is a Gaussian noise source, but even in isolated axons thermal noise cannot account
for the amplitude (Verveen, 1962) or the frequency spectrum (Verveen and Derksen,
1965) of observed fluctuations in excitability and membrane voltage. These fluc-
tuations may result from the opening and closing of single permeability channels or
pores in the membrane (Derksen, 1965). In some receptors, e.g. visual receptors
(Adolph, 1964), and at synapses much larger unitary permeability changes occur,
associated with the spontaneous release of single packets of transmitter or the
discharge of a presynaptic nerve fiber.
Models based on the discrete nature of the permeability changes will be called

"quantal" models to distinguish them from Gaussian noise models. The term
"quantum" or "quantal input" will indicate a unit permeability change,' whether
it arises from the absorption of a light quantum by a photoreceptor, the release of
a packet of transmitter at a synapse, or the opening of a single membrane pore.
Even if different sized inputs are present together, one can make predictions from
the unit events. Only if the size of all inputs is small and the rate of occurrence high
will the predictions of Gaussian noise and quantal models agree (Geisler and Gold-
berg, 1966).
To predict neuronal variability, assumptions are also required about the be-

havior of the nerve cell in the absence of variability (the average time and voltage
dependence of the membrane properties). Previous work on variability (see Moore,
Perkel, and Segundo, 1965, for a review) assumed "classical" neuronal properties.
Models consisted of a linear current-voltage curve with a sharply defined threshold
voltage, although in some models the threshold varied with time due to accommoda-
tion of the Hill type (Hill, 1936) or the various phases of excitability that follow a
nerve impulse. I shall follow this tradition initially to extend previous work, but
will later consider a model based on the full Hodgkin-Huxley equations.
At a given time after a brief suprathreshold stimulus, one can determine the

Stein (1965) used the term "impulse" synonomously with quantal input, but this may be confused
with the nerve impulse or action potential and so will not be used here.
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threshold voltage to which the nerve membrane potential must be raised just to
elicit a second nerve impulse. A threshold voltage may not exist for a certain time
(absolute refractory period). It generally has a higher than normal value at some
later times (relative refractory period), but gradually returns toward its quiescent
value. Similarly, unless the membrane is spontaneously active, the membrane
potential will return to its quiescent value, generally with one or more oscillations.
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FIGURE 1 Schematic representation of some models of neuronal variability. With a short
acting transmitter (A) the random current inputs produce characteristic unit voltage changes
which sum to reach a threshold level, r(t). If the permeability changes produce longer,
weaker currents (B), the voltage changes more smoothly. Some current remains from before
the previous action potential (t < 0). The currents produced by single pores opening and
closing (C) may also have variable duration.

An added quantal input, such as the release of a packet of, transmitter at a synapse,
produces an extra voltage, which often decays approximately exponentially (with
time constant T) after the end of the permeability change. Fig. lA shows a random
series (Poisson process) of quantal inputs on a transformed plot. The voltage v is
the extra voltage change at any time and is reset to zero after each nerve impulse.
r(t) is the extra voltage change required to reach threshold at a given time (t) after
the first stimulus and thus includes changes in threshold and some effects of after-
potentials. This transformation is only strictly valid if the current-voltage curve is
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linear and independent of time, e.g., the conductance changes associated with the
afterpotentials are neglected. Also neglected is the decrease in the voltage change
produced by unit permeability changes as the excitatory equilibrium potential is
approached (Martin and Pilar, 1964).

In Fig. IA the quantal inputs, e.g. synaptic currents, were large, though short-
lasting. A smaller quantal input of longer duration could produce roughly the
same time to reach threshold (Fig.. iB). However, the voltage changes are smoother
and the discharge pattern of the cell is rather different. The average rate of quantal
inputs will be denoted pe and their duration t, ; both parameters are assumed to be
voltage independent. Fig. 1 shows rectangular current inputs for convenience since
the magnitude and duration are then clearly defined and the rise time of the voltage
change (time to peak) is also tp. If the quantal inputs are derived from a Poisson
process, the probability of an input in a short time at is pe6t, and the average number
active at any one time is Petp .
These detailed assumptions may seem restrictive, but the predictions of these

simplified models are more easily obtained analytically and provide a useful basis
for comparison. Later sections consider more realistic models with quanta of variable
size and shape and non-Poisson inputs.

NOTATION

The rapid growth of the subject of neuronal models has produced a large number of new
terms. I shall use wherever possible the same symbols as Moore et al. (1965) in their review
article. The main symbols used in this paper are:

V(t), the extra voltage at a time t after a nerve impulse resulting from quantal permeability
changes.

f(v, t), the probability that V(t) = v at time t assuming V(0) = 0. The mean voltage
level as a function of time is denoted ju= fvf(v, t) dv and the variance in voltage level is
denoted o,2 =_ f (v - Mi.)2f(v, t) dv. The autocovariance function y(h), the autocorrelation
function p(h), and the power spectrum P(w) will be introduced later.
v(t), the interval density function (Gerstein and Kiang, 1960), is the probability that the

voltage just reaches threshold at time t after the last impulse. I shall sometimes indicate that
the voltage started at a level v and reached a level r by using the form fv,r(t). In the sta-
tistical literature, f(t) would be the probability density function of first passage times to an
absorbing barrier. The following are important parameters of the interval density function
and will be used without subscripts: the mean interval, Iu; the variance of the interval density
function, o2; the coefficient of variation, u/lu; and the mean frequency of nerve impulses,
V = A.

F(t) = f,f(t) dt, the corresponding probability distribution function, will be called the
interval distribution function. It measures the cumulative probability of the voltage reaching
threshold at a time less than or equal to t. Both the interval density function and the interval
distribution can be estimated from an experimental interval histogram. The interval distribu-
tion is often more useful for comparing different experimental results or experiment with
theory since it always increases from zero to one as t changes from zero to o. Standard
nonparametric statistical tests for the homogeneity of different experimental samples or for
the significance of deviations of experiment from theory (Fisz, 1963, section 10.11) can then
be applied.
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(p(t) = f(t) /{1 - F(t)]; (p(t)at is the conditional probability that a nerve impulse will
occur between the times t and t +6t, given that an impulse has not occurred by time t.
Several names have been used for this function (see Moore et al., 1965, p. 497) including
the term conditionalprobability function (Goldberg, Adrian, and Smith, 1964). If the duration
of significant correlations in voltage level is short, (p(t) will contain information about the
recovery process governing the excitability of the cell after a nerve impulse. Therefore, the
peaks and troughs of this function (Poggio and Viernstein, 1964) may be more important
than those of the interval histogram. When the interval density function is exponential, p(t)
is a constant equal to the mean frequency of nerve impulses. I shall sometime plot In [1 - F(t)]
against t, (see also Smith and Smith, 1965) since the slope is

d d[-F(t)]/dr -f(t)-t ln [1 -F(t)]I = 1t-F(t)]d _f rdt t) 1-Ft

One can often determine ep(t) from small samples in this way, when a direct plot would show
considerable scatter.
More general input processes are considered in later sections. The mean voltage produced

by a quantal input at a time u after its occurrence will be some arbitrary function g(u). q(a)
will denote the amplitude density function of single voltage changes with mean a and second
moment a2 = f a2q(a) da. Also the probability that the next quantal input occurs at a time
u after the last input will be a function b(u). The mean time will be 1/p where p is the mean
rate of quantal inputs (both excitatory and inhibitory) and the variance in time will be
denoted a,2. Finally I shall consider the probability density function of stimulus current,
relative to the current produced by a unit permeability change. This density function will be
called y(i) with mean A.i and variance ai2.
Much of the work will center around two relationships, the "input-output curve" relating

the mean impulse frequency, v, to the rate of excitatory inputs, Pe , and the "variability curve"
relating the coefficient of variation, /,u, of the interval distribution to the mean interval.

RESULTS

1. Short-Duration Inputs

Let the duration of the currents produced by quantal inputs be much less than the
membrane time constant r and the average number active at any time be much less
than the threshold number. The reasons for the second assumption will become
clear in a later section (Longer Duration Inputs). The rise time of the voltage
changes will then be short and the exponential shape of the voltage change will be
little affected by the precise quantal shape or duration. Since a linear system has
been assumed initially, the peak voltage produced by a quantal input can be set
equal to one without loss of generality, i.e., voltage will be measured in multiples
of the extra voltage produced by a single quantum. This rather simple model will
be called the exponential decay model; its assumptions are summarized in Table I,
and Table II lists some results derived (Stein, 1965) for a constant threshold r.
Computer simulation studies can extend these analytical results and I shall consider
briefly two further properties of this model, its input-output characteristics and its
relative variability.
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Input-Output Relation. In the absence of variability the frequency of nerve
impulses produced by constant current stimuli (frequency-current curve) was
considered (Stein, 1967) for a number of models. This curve was generally only
linear over a limited middle range of impulse frequencies with negative deviations
from linearity at both high frequencies and low frequencies. The deviations at high
frequencies were due to refractory effects which will be considered later. The solid
line on the right of Fig. 2 shows the predicted deviation at low frequencies (neglec-
ting accommodation and the effects of a supernormal period of excitability). To
compare different conditions, v is multiplied by the time constant r and stimulus
strength is divided by the threshold value to give a dimensionless plot. A constant
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FIGuRE 2 Input-output relation for the exponential decay model. The mean frequency of
nerve impulses (v) and the rate of quantal permeability changes p. were multiplied by the
membrane time constant x, to give a dimensionless plot. p. was also divided by the minimum
number of quanta required to reach threshold so that different threshold levels (r) can be
readily compared.

current can be considered to result from a negligibly small quantal size and impulse
initiation will then just occur (Stein, 1965) when PeT = r. Hence, stimulus strength
is indicated as the ratiope/rf in Fig. 2.

With decay present, the next integral number of quanta beyond threshold must occur
before an impulse is initiated. With r = 2, or say 2.8, at least r = integral part of r + 1 =
3 quanta are needed.

The solid line on the left is the opposite extreme where every unit event produces
a nerve impulse (r < 1). The data points are simulated results for intermediate
values of the threshold r. Two effects of the random input are apparent: the input-
output relationship is more linear than that obtained with constant current stimuli

BIoPHYsIcAL JOURNAL VOLUME 7 196742



and the apparent threshold is reduced. Both these effects may be important, for
example, in preserving low-level intensity information in a multisynaptic afferent
pathway.

Coefficient of Variation. A useful quantity in discussing the relative vari-
ability of nerve discharges is the coefficient of variation (of/l) for the interval dis-
tribution and Table II gives its values in the limits ,u << r and p >> r. Intermediate
values are not easily calculable analytically except by an approximate method which
is described later and is only accurate for large r when 0- < r/4. The data points of
Fig. 3 show a wide range of values determined by computer simulation as described
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FIGURE 3 Variability curve for the exponential decay model (data points) and the variable
duration model (solid curves). The threshold levels (r) are indicated by the key on the right
for the exponential decay model and by the numbers to the left of the solid curves for the
exponential decay model. Log-log scale; mean interval in multiples of the time constant r.

previously (Stein, 1965) for thresholds from r = 2 to r = 1000. This log-log plot of
coefficient of variation against mean shows three distinct regions, labeled (A), (B),
and (C) in Fig. 3. At long mean intervals, the coefficient of variation approaches
one (the characteristic of an exponential density function) irrespective of the value
of the threshold r. As the input rate is increased, the mean interval decreases (Fig.
3, region B) and the firing pattern becomes more regular until at very short intervals
the coefficient of variation approaches a new constant value (region C).
The solid lines, calculated from a related (variable duration) model, suggest that

on this scale the variability curve is sigmoid. However, the computer simulated
points show a scatter similar to that of experimental data and can be usefully
approximated by three straight line segments. The two regions of constant coefficient
of variation (lines of zero slope at short and long mean intervals) are joined by a
transition region in which the slope of the best-fitting line varies systematically as a
function of the parameter r.
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A straight line of a log-log scale would indicate that the coefficient of variation (a/,u) in-
creased as a power function of the mean interval (,u); the slope on this scale gives the expo-
nent. If the model accurately describes the experimental situation, one can obtain estimates
for the threshold r and time constant Tr by comparing experimental curves in milliseconds
with simulated curves in time constants. Data from cat muscle spindle afferents (Stein and
Matthews, 1965) and cat chemoreceptors (Silk and Stein, 1966) were analyzed in this way.
Biederman-Thorson (1966) suggested that a gamma distribution model could not easily
explain the common experimental finding (Verveen and Derksen, 1965) of a standard devia-
tion increasing as the square of the mean interval, i.e., a coefficient of variation (01/u) in-
creasing linearly with mean. Her apparent "paradox" results from consideration only of
asymptotic values (region C). The experimental mean intervals (tens or hundreds of milli-
seconds in duration) were presumably from a transition region (region B) where the power
function exponent varies widely as a function of the threshold number r.

Variable Duration. Consider a model in which voltage changes are not
exponential, but rectangular with a random duration of mean r. The reason for
again using the symbol T is that on average the voltage still decays exponentially
with time constant T. Although rather more unrealistic, this variable duration model
with its limited number (r + 1) voltage levels offers certain analytical advantages.
This same model applies to telephone exchanges, (Palm, 1943) assuming calls occur
at random and have random durations, and to population statistics where it has
been called an "immigration-death" process (Cox and Miller, 1965). Table II lists
the limiting properties of the model. For strong stimuli (peT»> r) the results approach
those of the exponential decay model. For weak stimuli, the extra random feature
of the variable duration model increases the chance of the voltage reaching threshold
and hence increases the impulse frequency.

Iso (1965) showed that starting from a voltage v the Laplace transform of first
passage times (interval density function) to reach a voltage r is

f*7(s) =p7B.(s)/BB(s) (1.1)

where pe is the mean rate of events per time constant TX fv*,r(s)- f' etf,,r(t) dt,
and Bk(s) is a polynomial of s in degree k. Bo(s) = 1, Bi(s) = s + p. and in
general

Bk(s) =
k

() peS(k-j)

where (k) is a binomial coefficient and

S(m) = s(s+ 1)*** (s + m- 1) with s(O) = 1.

Starting from v = 0, the mean interval in units of the time constant r can be
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obtained by differentiating equation (1.1) with respect to s and evaluating at s = 0
(Fisz, 1963, p. 108).

afo,r(S) perBri(°) _ r!P rOs 80 - [Br(O)]2 = j ! (r(-.j)
The variance can be similarly obtained.

v2= fA>o.(s) 2_ __2 pe{2[Br (0)]2 _ Br(O)Br(0)} 2
= s2 s80 [Br(0)]3 1M

r-2 (1.3)-j-2 - 2 zr! P'e 2= --Br" (°)/pe - - E 1j(r- j) k- k

ten Hoopen (1966) using a different method obtained bulkier, though, I think, equivalent
expressions to equations (1.2) and (1.3). Iso (1965) calculated some interval density functions
and also the input-output relations corresponding to Fig. 2 for the exponential decay model.
Not only are negative deviations from linearity in the input-output curve at low frequencies
reduced, but positive deviations are also evident at very low frequencies. Including a re-
fractory period would make the input-output relation sigmoid.

The solid lines in Fig. 3 are calculated variability curves for the variable duration
model with the same values of threshold as in simulations of the exponential decay
model. The extra source of variability (duration) increases the coefficient of variation
somewhat at all mean intervals in the transition region, but the major effect is
simply to shift the variability curve to the left. In other words, introducing an
exponentially distributed mean duration reduces the apparent value of the time
constant x, since the mean interval in Fig. 3 is measured in units of the time con-
stant 7.

The smallest quantal numbers show an additional effect since r = integral part of r + 1
quanta must occur to reach threshold in the exponential decay model. With exponential
decay and r = 2, at least three unit excitations must occur while in the variable duration
model two quanta suffice. The variability at short intervals is reduced accordingly in the ex-
ponential decay model.

Variable Size. Experimentally, variation in quantal size arises in several
ways. First, the same synaptic or generator current has decreasing effects the greater
its distance from the site of impulse initiation. For a cable with a linear current-
voltage curve, the effect of a maintained current decreases exponentially with
distance (Hodgkin and Rushton, 1946). More complex geometries have also been
considered (Rail, 1960; Noble, 1966). Secondly, the size of individual synaptic
inputs varies with the very different areas of contact of different presynaptic fibers
and the statistical fluctuations in transmitter release (Katz and Miledi, 1963).
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Thirdly, the permeability changes may be specific for different ions (inhibitory or
excitatory). Finally, when the variability is largely due to the opening and closing
of single pores, the quantal duration is probably also random. Fig. 1C shows
examples of long and short quantal current inputs with the corresponding voltage
changes. If the mean quantal duration is much less than the time constant T, an
exponential density of durations will produce a roughly exponential density of

TABLE I

ASSUMPTIONS OF THE QUANTAL MODELS CONSIDERED IN TEXT
Excitatory inputs occur at random times with mean rate p. . The current-voltage curves
of models 1-4 are assumed linear with a sharply defined threshold voltage. Threshold
changes plus afterpotentials are included in a function r(t). Further explanation in
text.

Model Quantal effect Subthreshold decay Change upon
between inputs reaching threshold

1. Exponential Unit voltage Exponential with time con- Voltage reset
decay change stant r

2. Variable Unit voltage At discrete times; duration Voltage reset
duration change of unit voltage changes

variable with mean r
3. Variable size Voltage change Either model 1 or 2 above Voltage reset

having ampli-
tude density
function q(a)
with unit mean
and variance
0aa2

4. Single pore Unit current Current decay at discrete Voltage reset; cur-
change times; duration of unit rent unaffected

current changes random
with mean t, ; voltage
changes exponential with
time constant r

5. Modified Unit current Current decay as in model 4 Voltage changes
Hodgkin- change above with mean 1 msec; according to
Huxley voltage changes accord- Hodgkin-Huxley

ing to Hodgkin-Huxley equations; cur-
equations rent unaffected

sizes (though with a limited maximum size). A mean duration much longer than the
time constant will produce approximately rectangular voltage changes with constant
size and variable duration similar to those of the variable duration model, though
with important differences (see section on Single Pores).
What will be the effect on the nerve impulse pattern of these sources of variability

in quantal size? Before answering this question in detail, I shall turn to a much more
general consideration of voltage fluctuations in the absence of neuronal action
potentials.
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Voltage Fluctuations. Rice (1945) and others developed methods for
analyzing the "shot noise" that results from the random emission of electrons in
vacuum tubes, and much of this analysis is directly applicable to the voltage fluc-
tuations of quantal models. I shall consider transient as well as steady-state phenom-

TABLE II

COMPARISON OF RESULTS FROM FOUR QUANTAL MODELS
Explanation of notation in text. Most of the results for the exponential decay model
were derived by Stein (1965), for the variable duration model by Palm (1943) and the
others are considered in the text. Equation (1.18) or (1.19) applies depending whether
variability in size is added to the exponential decay or the variable duration model
respectively. The formulae for A << r in the variable size model were calculated as-
suming an exponential distribution of sizes. No refractory periods were included.
Coefficients of variation greater than one and more than one exponential segment
may arise in the variable size model when tp > r. Equations (2.3) and (2.4) assume
tp »> x.

1. Exponential 2. Variable 3. Variable 4. Single pore
decay duration size

Mean voltage p,r(l - etlr) p.r(l - e-t1) p,.r(l- e.tl) pstp(l -
Ov4)

Variance (o,.2) (pAT/2)(1 -e-e") p,r(l - e-tT) Equation (1.18) or (p.t,2) (1 -2)
(1.19) (tp + r)

Autocorrelation ehl e-hIT e-hIv tpe-hItp re-hbr
p(h) tp -T

Mean interval, J rip, rip, (r + 1)/p. Equation (2.3)
if ,u <K r

Variance, a2 if r/p.2 rip,2 (2r + I)/p,2 Equation (2.4)
,u << 7-

Coefficient of r"-6 r'.5 -V2r + 1/(r + 1) V,.A/rT
variation, ¢/Es,
if,u << x

Interval density Gamma (r, p.) Gamma (r, p.) Equation (1.35) Normal
function, f(t)
if,u <<«

Coefficient of 1 1 1 >1
variation, aI/,u
if,»>> T

Interval density Exponential Exponential Exponential One or two expo-
function, if nential
IA >> r segments

ena and calculate results for the models of previous sections. Let g(u) be the
voltage produced at a time u after the occurrence of a quantal input. The total
voltage V(t) at time t after the last nerve impulse will be a random variable and
will equal the sum of the voltages produced by individual quanta so

V t

V(t)= g(It-y) dN(y). (1.11)
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In a discrete approximation AN(y) would be the number of inputs occurring
between times y and y + Ay, and V(t) is thus the weighted sum of a large number
of random variables. For a Poisson process with mean input rate p. the variables
are also independent with mean pAy and variance pe(Ay)2. From the properties of
sums of independent random variables, the mean and variance in voltage as a
function of time are

l,v = pe g(t-y) dy =pe g(u) du (1.12)

t t
2= pe g2(t -_y) dy = pe fg2(U) du. (1.13)

Similarly the autocovariance function (Cox and Miller, 1965) is

t-h

Tv(h) = pe g(u)g(u+ h) du (1.14)

where
()= 2

The autocorrelation function will be defined as the ratio pv,(h) = y,(h)/y,e(O) as
t -+ (Cox and Miller, 1965, p. 276) though electrical engineers (Middleton,
1960) use somewhat different definitions. For the exponential decay model g(u) =
exp (-u/r); j,,, 0,,2, and p.(h) are easily calculable and are listed in Table II. M,
and ¢X2 can be calculated using a different method (Stein, 1965; see also Moyal,
1949, p. 190), and Keilson and Mermin (1959) gave a further statistical description,
but the more general equations (1.12) to (1.14) apply to any shaped input. Only if
there is exponential decay will s,u increase exponentially. For t--+ co, equations
(1.12) and (1.13) are known as Campbell's theorem. Rice (1945) generalized Camp-
bell's theorem to an arbitrary density of quantal sizes assuming that the shape was
independent of amplitude.

I shall denote the density function of amplitudes q(a) and consider negative
(inhibitory) as well as positive (excitatory) quanta. The total rate of quantal inputs
will then be denotedp without a subscript. If the mean amplitude is a and the second
moment about the origin is a2, then it follows directly from Rice's work that the
mean level is

D =paf g(u)du (1.15)
and the variance is

X2 pa fg2(U) dU. (1.16)

Higher moments can also be calculated as desired.
If the mean amplitude is unity, equation (1.15) reduces to (1.12) but the variance

in level will be increased since from the well-known relation between the second
moments about the origin and about the mean, a2 = 1 + aa2, where Ta2 is the
variance in quantal amplitude. For the exponential decay model with added vari-
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ability but unit mean quantal size

AV = PeT(l - et) (1.17)

independent of the variability, and

v2 = (pe'r/2) (I - e 2t17)(I + oa2) (1.18)

It follows from the definition of the autocorrelation function that it will not be
affected by variability in quantal size. Cox and Miller (1965, section 9.6) further
generalized equations (1.15) and (1.16) to any number of arbitrarily shaped popula-
tions and the results for the variable duration model (Table II) follow easily from
their analysis. If variability is added but the mean remains one, equation (1.17)
again holds, while the variance in level is

a 2 = peTr( - e t1)(1 + aa2). 1. 19)

When t << r, both equations (1.18) and (1.19) reduce to

¢V = p,t(I + a a2). (1.20)

Interval Distributions Assuming. Negligible Decay. From consideration of
the fluctuations of voltage in the absence of a threshold, I shall now return to the
fluctuations in time to reach a constant threshold. The interval density function can
be calculated for short mean intervals with an arbitrary density of quantal sizes
q(a), as long as decay is negligible (,u <<r). Let bn(t) be the distribution of times to
the nth input event. If the size of the kth event is Ak and a random variable V. =

A1 + A2 + * * * + An is introduced for the total voltage produced by n quanta,
then a probability distribution function Qn(v) = prob (Vn < v) can be defined.
For t << T (before decay is appreciable) the interval density function f(t) for a
threshold r is given by

00

f(t) = Ebn(t)[Qn-l(r) - Qn(r)] (1.21)
n1

where Qo(r) = 1; 0 < t < co. The expression in the brackets is the probability
that the nth event causes the voltage to surpass r for the first time. With negligible
decay and Poisson inputs, bn(t) is the density function of a gamma distribution
whose first two moments about the origin are n/p and (n + n2)/p2. Thus,

= f tf(t) dt = E [Qn_l(r) - Qn(r)] [f tbn(t) dt]

= n[Qn-l(r) - Qn(r)]
p n=1

1E Qn(r) (1.22)
p no0
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and

cO 00 10

o2 = t2f(t) dt - 2 = E[Qn-l(r) - Qn(r) I t2bn(t) dt _22
n=1

- -2E [n + 1 + (n + 1)2- -n ]Qn(r) - 2
p n=O

coo
2 = (2/p2) (n +1)Q (r) _,2 (1.23)

n=O

With negligible decay, this is a random walk model, though of a much more general kind
than that considered by Gerstein and Mandelbrot (1964) since the size and time distribution
of steps are random variables with an arbitrary distribution. Cox and Miller (1965) showed
that the moments of the interval distribution are finite [and hence the sums of equations
(1.22) and (1.23) converge] as long as the mean quantal size a is greater than zero. For a
less than zero (predominant inhibition) the assumption of negligible decay must break down
and the moments are then still finite (Stein, 1965).

Equation (1.21) is also valid for non-Poisson inputs, e.g., where the occurrence
of a quantum increases or decreases the probability of a second quantum for a
period of time. If the time u to release of the next quantum is independently and
identically distributed (renewal process, Cox, 1962) with density function b(u)
having mean I/p and variance 0fp2, then equation (1.22) for the mean interval still
holds and the variance in interval becomes

00

o = (2/p2) ZnQn (r) + (ju/p)(I + ap2p2) - A2 (1.24)
n=l

Laplace transforms are useful in evaluating the sums and transformed variables
will be indicated by an asterisk. Taking the Laplace transform with respect to t of
the interval density function of equation (1.21)

00

f*(s) = : [b*(s) ]n[QQn-(r)- Qn(r)]
n-1

where bn*(s) = fo e-b'bn(t) dt = [b*(s)In if the times of quantal inputs are assumed
to be identically and independently distributed (Cox, 1962) with density function
b(u) and Laplace transform b*(s). Then,

00

f*(s) = b*(s)Qo(r) + [b*(s) - 1] [b*(s)]nQn(r) (1.25)
n=1

and taking transforms again, this time with respect to r,

f** (s) = b*(s) + b (s) - 1 E [b*(S)]n[q*(O)In (1.26)
0 0 nI
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where Qn*(O) -=fo exp (-Or)Qn(r) dr = [q*(O)]n/O from the definition of Q.(r)
as the cumulative probability that the sum of n independent random variables [with
density function q(a) and transform q*(O)] is less than r.

(If inhibitory quanta are considered, the integral defining Qn*(O) must run from
- o to + o and the Laplace transform is replaced by a Fourier transform.)
Equation (1.26) simplifies to

f**(S) b*(s)[l - q*(O)I (1.27)
O[l - b*(s)q*(O)]1(.7

For a Poisson process with rate p, b(u) = p exp (-pu) and b*(s) = p/(s + p).
Equation (1.27) then becomes

-* p[l - q*(O)]
O[s + p - pq*(O)]

with inverse transform

f*(t) = [p/O] [ - q*(O) I exp {-pt[1 - q*(O)]}* (1.28)
This is of the form (x/O) exp (-xt) which has a mean (xO)-1 and second moment
about the origin 2/(x28) from which it follows that

* = {pO[l - q*(0)]}1 (1.29)

2)* = 2 ( _)] (2)*. (1.30)

These last expressions can also be obtained by transforming equations (1.22)
and (1.23) so equation (1.29) holds independently of b(u). Equation (1.24) would
become

(2)* = 2q*(O) + i( + Tpp ) - (2)* (1.31)
p[ - q*(O)12 p

Thus, when the quantal size varies but the mean interval is short, the interval
density function, the mean, and the variance can be calculated from equation (1.21)
to (1.24). Equations (1.27) to (1.31) give the Laplace transforms of these quantities
in terms of the Laplace transform of the density function of quantal sizes and input
times. The expressions for a Poisson process are easier to evaluate and will be illus-
trated by a couple of examples.

Exponential Density of Quantal Sizes. Assume that the density of quantal
sizes is an exponential and that inhibition does not occur. In other words, assume

q(a)= e- a > 0

=0 a<0
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which has a mean of one, a variance of one, and a Laplace transform 1/(1 + 0).
Then, from equation (1.29)

= (1 + 0)/(p.02)

and the inverse transform gives

= (r + 1)/pP. (1.32)

Comparing equation (1.32) with the corresponding formulas for no variaton in
quantal size, Table II indicates that introducing an exponential density of quantal
sizes increases the mean interval by l/p.. Similarly, from equation (1.30)

(a2)* = 2(1 + 0)/(pe2O3) + 24*/pe -(,2)*
with inverse transform

J2= r(r + 2)/pe2 + 2/2p/e -,2 = (2r + l)/pe2 (1.33)
The coefficient of variation will therefore have the value

al, = (2r + 1)"12/(r + 1). (1.34)

An extra source of variability generally increases the relative variability of the
interval distribution and at large values of r, there is a constant factor increase of
V2. Alternatively, the apparent quantal number is halved, since r is replaced by
r/2. However, the extra source of variability actually decreases the coefficient of
variation when r < 1.6; the right-hand side of equation (1.34) does not approach
one until r 0.
From equation (1.28) for the interval density function

f*(t) = [pe exp (-pet)][(I + 0)'I exp {pet/(l + 0) I.
The inverse transform is (Hodgman, 1957, p. 320)

f(t) = Pe exp (-p.t - r)Io(2Vp7t) (1.35)

where

Io[2Vp-it) = E(petr)Zn/(n!)2
n=O

is a modified zero order Bessel function of the first kind.

An Approximation Method. Asymptotic result for large values of r can be
derived more easily by a useful approximate method. Fig. 4 indicates an average
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growth of depolarization v in the absence of neuronal firing. With a threshold level
r(t), the voltage distribution will project onto the time axis at the level r(t) if three
conditions are met: (a) the voltage distribution increases without spreading out or
changing shape considerably near the level r; (b) there is not sufficient time for
substantial redistribution to take place (a <<T); (c) r(t) is nearly linear over the
appropriate range of times (within a few standard deviation units of the mean
interval). Then, the mean interval A will occur at the time when 1p, = r(t) and one
can write two equations for the standard deviation of the interval distribution from
Fig. 4.

dM,/dt=c= a

V - - -

FiGuRE 4 An approximation method for obtaining - -
the mean (¢) and standard deviation (a) of the interval It
density function from the corresponding parameters - (J -o
(jr,, or) of the voltage fluctuations in the absence of a
threshold, r(t). Applications and limitations of the
method are discussed in the text. The voltage and time r (t)
regions of interest are greatly magnified in the interests -
of clarity.

t

and

- dr(t)/dt = (a, - c)/a.

Rearranging and eliminating the constant c, it follows that

a. = o,V/(di,/dt - dr(t)/dt). (1.40)
Time varying thresholds will be considered shortly (Refractoriness). If r is constant,
equation (1.40) reduces to

a = uv/(dgv/dt) (1.41)

and conditions (a) and (b) listed above require that r is large andp.r >> r, so the
growth of depolarization (Table II) reduces to tu, = p,t. Hence, dg,u/dt = pe,
,u = rip,, and substituting from equations (1.20) and (1.41)

= Vr(l + oa2)/pe . (1.42)

For large values of r the interval distribution will be approximately normal so a

R. B. STEiN Neuronal Variability 53



and ,u will completely specify the interval distribution. The coefficient of variation is

a- /=V(l + cra2)/r. (1.43)

For the exponential density considered above, aa2 = 1 and equation (1.43) agrees
with equation (1.34) for large values of r.

This approximation method is not limited to negligible decay. Equation (1.41) can be
used, for example, to calculate a (and the coefficient of variation) for the exponential decay
model, and the values agree well with computer simulated results if a, < r/4.

Two Populations. If two different quantal populations exist and say one-
third of the quanta are of size 2.5 and the other two-thirds are 0.25, the mean size
is one, the variance is 1.21, and the coefficient of variation for large r from equation
(1.43) is (2.21/r)1/2. The coefficient of variation in the absence of the small quanta
would be (2.5/r)l12 so the small quanta have little effect, though they are twice as
abundant. Experimentally, only the largest amplitude population of quanta may
warrant consideration.

Refractoriness. Varying the quantal size and duration in previous sections
shifted the variability curve, but had relatively little effect on its shape. The addition
of refractory periods changes the shape of the variability curve considerably. An
absolute refractory period to will simply shift a linear plot of oa against ,u to the
right, but the coefficient of variation will be decreased, particularly at high stimulus
strengths. If previously o/uIs approached a constant, /(u + to) will approach zero.
A relative refactory period will further decrease the variability as can be analyzed
quantitatively from equation (1.40) if the function r(t) is known. In the relative re-
fractory period, r(t) decreases with time so dr(t)/dt is negative and a wiU be de-
creased. Thus, two of the assumptions on which the method was based, a <<K and
r large, will hold over a wider range of conditions in the relative refractory period.
However, r(t) must be fairly linear over the region of interest.

2. Longer Duration Inputs

Previously I assumed that the quantal inputs were short-lasting and that the average
number of quanta active at any one time was much less than threshold (pet, << r).
Release of a single packet of a long-lasting transmitter often produces a similarly
shaped voltage change with a relatively short rising phase preceding a longer, nearly
exponential decay as the transmitter is slowly inactivated or diffuses away. However,
frequent long-lasting quantal inputs yield a different response. Voltage changes are
much smoother (Fig. 1B) and an action potential will not normally affect the pro-
longed conductance changes producing the synaptic or generator currents. Indeed,
a new nerve impulse may arise without any new quantal inputs. It is more convenient
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to consider current changes here rather than voltage changes; the symbol i will
represent the number of quanta active relative to the peak current of a single input
and r will be the threshold number (rheobasic current) for maintained discharge.

Intense Stimuli. For a long conductance change, t, >> ,u, the current will
be almost constant over a single interval and the interval density functionf(t) can
be obtained from the frequency-current curve v(i) by change of variables.

f(t) dt = y(i)w(i) dt di (2.0)

where y(i) is the density function of current strengths and w(i) is a weighting factor
needed because higher current strength produces more impulses in a given period
of time. In other words, short intervals occur more often than otherwise predicted.
dt/di is the rate of change of interval with change in current.

Braitenberg (1965) described a related graphical method, but neglected to include a weight-
ing factor. He also interpreted changes as threshold potential changes and neglected the local
potential changes following an action potential which may be important.

The interval is the inverse of frequency so

t= l/v(i)

dt/di (i) (2.1)v2(i)
and

w(i) = Mv(i)

where M is a normalization factor chosen so that the integral of equation (2.0) over
all i is one. Then, equation (2.0) becomes

f(t) dt - My(i) dv(i) di. (2.2)P(i) di(2)

The mean interval will be

A l My(i) dv(i) di (2.3)2(i) di

and the variance

2 fMy(i) dv(i) di- .A2 (2.4)
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y(i) and v(i) can be determined from experimental data or from a suitable model.
Then, equations (2.3) and (2.4) can be integrated analytically or numerically, de-
pending on the functions involved. For large i and t, >> I,u one can use graphical
methods similar to those of Fig. 4 on a plot of the strength (i) against the duration
(t) of a just-threshold stimulus (strength-duration) curve. Then,

di/dt = -a i/a. (2.5)

Under quite general conditions Noble and Stein (1966) showed that there is a
constant charge relationship for strong stimuli (i >> r), namely

it = constant = rT (2.6)

where r is the rheobasic number and r the strength-duration time constant of the
cell.

Noble and Stein's analysis assumed that the cells were quiescent, and is only strictly valid
when refractory effects can be neglected. Qualitatively, refractoriness reduces the coefficient
of variation at short mean intervals and will enhance the effect demonstrated below. Equation
(2.5) should also include a weighting factor, but its effect will be secondary where variability
is small.

Under these conditions it folllows from equation (2.6) that

IA = rT/4i (2.7)

di/dt = -r-r/t2

and with equation (2.5)

Of = raroaiI2 = ai/(rr,lA2) (2.8)

o/,u = 0i/i. (2.9)

The ratio a /,ui can often be derived simply; rectangular quantal current inputs of
random duration would yield a Poisson distribution of currents (analogous to the
distribution of voltages in the variable duration model) with mean petp and variance
p6tp. If the current produced by single quantal inputs decayed exponentially,
analogy with the exponential decay model would indicate that/Ai = petp and 2 =
p.tp/2, i.e., half as large as above. For either model

a/,U= (bpetp)-112 = (bi )-112 = (li/C)112 (2.10)

where b and c are constants and c = rr or 2rr respectively. Equation (2.10) demon-
strates the important point that with increasing stimuli the coefficient of variation
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continues to change as the square root of the mean interval, instead of approaching
a constant value.

Near-Threshold Stimuli. The previous analysis assumed that the current
strength was always well above threshold, and that the quantal durations were much
longer than the mean interval. The interval distribution and its parameters were then
determined from the frequency-current curve or the strength-duration curve. With
weaker stimuli the current strength will drop below the threshold for generating a
repetitive discharge during a substantial part of the time and the nerve cell will re-
main quiescent until the current again rises to a suprathreshold level. The interval
density function will then show a "tail" of very long intervals. If correlations in
membrane potential only extend over a finite period of time, then the interval density
function will be approximately exponential at intervals long compared to the corre-

5- Atp10
xtp=
tp= 0.1

2 LAAFiouRE 5 The effect of the mean quanta 0 AA

0~~~~~~~~~~~~~~~duration (ta) on the variability curve. At A A x
Xshort mean intervals the results approach the x ,-

dashed line which represents the predictions 0.5 x --
of equation (2.10). The mean interval and 0 Xx ,
mean quantal duration are in units of the z
time constant r; further explanation in text. 0.2G-

o0.1 ,-U_

0.05
0.1 0.2 0.5 2 5 10 20

MEAN INTERVAL

lation time. As the stimulus strength is lowered, the "tail" comprises more and more
of the interval density function until the function becomes entirely exponential and
the coefficient of variation approaches one. However, the "two-part" density func-
tions at intermediate values may have a standard deviation greater than the mean
or a coefficient of variation greater than one. More quantitative results can be
obtained with particular models.

Single Pores. Table I lists the assumptions of the single pore model and
Fig. IC illustrates the current and voltage changes produced by the opening and
closing of single permeability channels through the membrane. There are two inde-
pendent time parameters: single pores stay open for a random time with mean t,
while the voltage changes exponentially with a time constant r. Fig. 5 shows com-
puter simulated variability curves for three different quantal durations (tp equal to
1Or, r, or 0.lr) with the same rheobasic number (r = 20) of quantal currents. The
variability at high intensities (short mean intervals) is proportional to the square
root of the mean and approaches the prediction of equation (2.10). The coefficient
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of variation for t, = lOr exceeds one at long mean intervals, also as predicted above.
Finally, when t, = 0.1x and t, <<( , the predictions of the section on short-acting
quanta are followed. To reach threshold requires on average 20 X 10 = 200 quantal
voltage changes. The variable duration of open pores is evident as a variation in size
and halves the apparent threshold number (see section on Variable Size). Thus, the
variability curve is similar to that found for the exponential decay model with
r = 100 (Fig. 3) as long as u >> t, , but for short mean intervals the variability con-
tinues to decrease according to equation (2.10).

Interval distributions with two approximately exponential regions (Fig. 6) are
found near threshold when t, > r. Although no refractory periods were included in
the computations, virtually no impulses occurred for intervals less than x, due to the
slow increase of voltage with near threshold stimuli. Between r and 3r there is a

FIGuRE 6 Interval distributions for near
threshold stimuli. 1 - F(t) is the probabil-
ity that the interval between two impulses is
longer than t. On a semilog scale one can
see that the distributions consist oftwo near-
exponential segments. The "tail" (long
interval segment) is much more sensitive to
changes in input rate pe and represents an
increasing fraction of the distribution as
p. is lowered. t, = 10 x, and the values ofp.
represent the average number of inputs in a
time tp .

5 l0 15 20
t

region (on a semilog scale) of high slope when the common suprathreshold values
of current cause the voltage to reach threshold. If the current drops below the rheo-
basic value, threshold is not reached until the current again rises above rheobase.
This time depends very critically on the value of pe . Decreasing p. from 20 to 15
per t, increased the time constant of the tail of the density function (as determined
from the slope of the solid lines in Fig. 6) from 9r to 37r.

In the single pore model, current fluctuates with mean t, in the same way as

voltage does in the variable duration model with mean r. If current drops to the
rheobasic level r, excitation would take an infinitely long time. In fact the current
will fluctuate and one can calculate the mean time (,gr+s) for the level to rise again
to r + 1 and so estimate the "time constant of the tail" of the interval density
function. From equation (1.1)

fr*,r+(s) = p.B,(s)/B,+i(s) (2.11)
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and

-Ofr.+i(s)
=P

[Br+1(O)Br(O) - Br+1(O)Br'(O)]
-4+1=O-S =- [Br+i(0)]

where as before Qk(0) = P.k; Qk'(0) = EZo1 (k!/j!)(p,'/(k - j)). After some
algebra, one finds

Ar+1 = (r!/pe1)Z)=o pel/j! (2.12)

(r/p.)Y+'-\V2ir/r exp (p,/r).

it,+1 in equation (2.12) is in units of tp,, and p. in terms of events/tp . To convert
to other units, one must multiply by the value of t,p. The approximation follows
from substituting Stirling's formula for factorials and noting that the sum in equa-
tion (2.12) is the first r + 1 terms for the power series expansion of exp (p.).

The fractional error in Stirling's formula is less than (12r - 1)-i which for r = 20 is
less than 0.5%. However, for p. greater than or about equal to r, higher order terms in the
expansion of exp (p.) may cause substantial errors.

The values of ;,r+1 calculated from equation (2.12) are 3.15r and 14.6r for p. equal
to 20 and 15 per t, respectively and they underestimate the values measured above
from computer simulations. This will generally be true since there remains the
probability that the current will not remain at r + 1 long enough for excitation to
occur, but the simulated values would approach those calculated from equation
(2.12) if t, were further increased.

Current Changes and Voltage Changes. For a linear circuit, the transfer
function,, or its inverse Laplace transform, the impulsive response (Schwartz, 1963)
specifies the relation between current and voltage. In the simple linear membrane
considered so far, the applied current I(t) is divided between a capacitative and an
ionic current

l(t) = C dV(t)/dt + V(t)/R (2.21)

where C is the membrane capacity and R the membrane resistance. Taking Laplace
transforms,

I*(s) = V*(s)[l + sT]/R (2.22)

where r = RC. The transfer function L*(s) is then

L*(s) V*(s)/I*(s) = R/[1 + srI (2.23)

and the impulsive response L(t) = (1/C) exp (- tir). The voltage is then obtained
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from the superposition integral

V(t) = j L(y)I(t - y) dy. (2.24)

To derive the mean and other statistics of V(t), consider the expected values or
ensemble average (denoted E{X} where X is a random variable) produced by a
fluctuating current applied a large number of times for a duration t.

M,t) = E{V(t)} = E{f L(y)I(t - y) dy}
g ~~~(2.25)

= f L(y) dyE{I(t -y)} = Ai IfL(y) dy.

Also,

2(t)= E{[V(t) - j(t)]2} = E{(f L(y)[I(t-y) - pi] dy)}

- j f L(y)L(z) dy dz E{[I(t - y) - lAj] [I(t - z) - ui

2(t) L(y)L(z)yi(y - z) dy dz (2.26)

where the last step follows from or serves as a definition of an autocovariance func-
tion for applied current. Similarly the steady-state voltage autocovariance function
will be

'yt(= f f L(y)L(z)'yi(y + h - z) dy dz (2.27)

and the autocorrelation function p,(h) = 7,(h)/7,,(O). Voltage changes were as-
sumed not to affect the current in the single pore model and thus the current levels
at all times are distributed according to a Poisson distribution (Palm, 1943) with
mean and variance both p.tp and autocorrelation function exp (- h I/t,). The
absolute value sign is included in the last expression because h may have negative
values. The expressions for j.v, ci,2, and p,(h) listed in Table II for the single pore
model follow from equations (2.25) and (2.27). However, these expressions will not
be exact when there is strong correlation between successive intervals, because inter-
vals will begin more often when I(t) is high while the expected values assume random
sampling of I(t).

Excitatory and Inhibitory Conductance Changes. In practice, the ionic cur-
rents will depend on voltage, although the conductances (or permeabilities) may
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not. If both excitatory, Ge(t), and inhibitory, Gi(t), permeability changes are present
and vary as a function of time, but not voltage, equation (2.21) becomes

CdV(t)/dt + GoV(t) + Ge(t)[V(t) - Ve] + Gi(t)[V(t) - Vi] = 0 (2.28)

where the following are constants: V., the excitatory equilibrium potential; Vi, the
inhibitory equilibrium potential; and Go, the resting membrane conductance. Equa-
tion (2.28) is still a linear differential equation whose general solution is known (see
for example Sokolnikoff and Redheffer, 1958, section 1.10). However, the statistics
of V(t) are not easily calculable in closed form.

Point-Polarized Cable. Finally, consider a nerve fiber stimulated at one
point. An extra term must be added to equation (2.21) to account for the spread of
current and if the fiber approximates to a linear electrical cable, the well-known
equation (2.31) results (Hodgkin and Rushton, 1946' Noble and Stein, 1966).

S(x)I(t) = COV(x, t)/Ot + V(x, t)/R - KO2V(x, t)/Cx2 (2.31)

where x is the distance along the cable and the point nature of the stimulus is speci-
fied by 5(x), the Dirac delta function. K is a constant depending on the cable di-
ameter and the axoplasmic resistivity. Taking Laplace transforms over t,

5(x)RI*(s) = (1 + Sr)V*(X, s) - X202V*(x, s)/ax2 (2.32)

where r = RC and X = -vRK is the length constant of the fiber. At points other
than x = 0, equation (2.32) is a homogeneous partial differential with solution

V*(x, s) = A* exp (-V1l + Sr X/X)

and from the boundary condition at x = 0, it can be shown (Noble and Stein,
1966) that A* X I*(s)/V1l + sr. (For the remaining results of this section I shall
only be concerned with the functional form of the relationships, so that constant
factors will not be important.) Then the transfer function is

L*(s) 3 V*(s)/I*(s) cc exp [-x/l + Sr x/X]/V/l + Sr (2.33'

and the impulsive response (see also Noble and Stein, 1966, equation A13)

L(t) CC (t/r)-05 exp [- (X/X)2/(4t/r) - t/r]. (2.34)

By inserting (2.34) into (2.25) to (2.27) one can obtain the statistics of the voltage
fluctuations as a function of distance, but the more complicated form of equation
(2.34) makes analytical solutions much more difficult. However, certain results
follow immediately. According to the Wiener-Khintchine theorem, the power spec-
trum and the autocorrelation function are a Fourier transform pair. An exponential
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autocorrelation function with time constant r leads to a power spectrum, P(w),
which falls off at high sinusoidal frequencies, co, as 1/X2.

2

P(w) = T2 (2.35)

If the input current and the output voltage are related by a transfer function L*(s),
the power spectrum of voltage fluctuations is (Schwartz, 1963)

P,(c) = PL(jco) J 2P,(O) (2.36)

where j is the square root of -1. At the origin the power spectrum of the current
will be multiplied by a factor [1 + (wr)21F 5 and in the range l/r << 27rw << l/tp,
the power spectrum will decrease as I/co. Away from the origin the power spectrum
will decrease much more rapidly because of the exponential in equation (2.33). If
one integrates over the entire cable (either to consider total charge movements or
because the current sources may be distributed uniformly over the length of the
cable), equation (2.33) reduces to the same form as equation (2.23) and the spec-
trum will contain a factor equal to the right-hand side of equation (2.35). The pres-
ence of a region where the power spectrum may fall as I/co is of interest because of
the experimental results of Verveen and Derksen (1965), Derksen (1965), and
Derksen and Verveen (1966). There are, however, important differences that must
be taken into account in interpreting the experimental data. First, Verveen and
Derksen experimented on a nodal membrane whose properties are different from
the linear cable. Secondly, the I/co region began at co - 0.0001/r if r is the mem-
brane time constant which is a much lower frequency than predicted here. Thirdly,
the effects of the three terminal recording arrangement with feedback isolation
(Derksen, 1965) must be taken into account.

3. Hodgkin-Huxley Equations

The Hodgkin-Huxley equations (Hodgkin and Huxley, 1952) contain a much more
complete and complicated description of neuronal activity than the models con-
sidered previously. A number of oscillatory systems are contained in their formula-
tion and by suitably altering parameters, Lewis (1965) produced a wide variety of
interval density functions (exponential, multimodal) from interactions among these
systems even without a variable input source. However, with the standard constants
of the Hodgkin-Huxley equations an applied current produces a completely regular
train of nerve impulses (Fitzhugh and Antosiewicz, 1959) and a source of variability
must be introduced to obtain variation in successive intervals. For comparison with
simpler models the stimulus current was assumed to change randomly by unit
amounts as in the single pore model (Table I). The rheobasic number (r) of quantal
current changes was again 20 and the mean duration (tp) was I msec. Noble and
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Stein (1966) calculated a "strength-duration time constant" of 2.9 msec for the
Hodgkin-Huxley membrane equations and gave details of the equations and com-
puting methods (see also Fitzhugh and Antosiewicz, 1959, and Cooley, Dodge, and
Cohen, 1965).

Input-Output Relation. With a constant applied current there are definite
minimum and maximum impulse frequencies for the Hodgkin-Huxley equations
(Stein, 1967). The minimum impulse frequency at 6.3°C is surprisingly high (>50
impulses/sec) and rather resistant to some simple changes of parameters. This re-
sults from the strong accommodation of the Hodgkin-Huxley equations and its dual
nature; a constant current must excite in a rather short time if Na inactivation and
K activation are not to prevent excitation. With an added source of variability, the

100.C)

Q oE

i 50 .

aJCY *
10 20 30 40 50
MEAN CURRENT DENSITY (/xA/cm2)

FiGuRE 7 Input-output relation for Hodgkin-Huxley equations without variability (lines)
and with a fluctuating current source (data points). In the absence of variability the main-
tained frequency changes discontinuously from 0 to over 50 impulses/sec (dashed vertical
line) at about 6.5 ,A/cm'.

minimum steady frequency is no longer apparent in the input-output relation
(Fig. 7). Near the rheobasic value for a constant current, however, the mean fre-
quency is substantially reduced because the current may drop to subthreshold values
temporarily and produce much longer intervals. Similar results apply to the con-
ducted action potentials (Stein, 1967) obtained when the membrane equations are
solved together with the equations for spread of voltage along a cable (Hodgkin
and Rushton, 1946).

Interval Distributions. When the mean stimulus strength is high, there is
relatively little variability in interval and the interval distribution is approximately
normal (see Fig. 8A which uses graph paper designed so that a normal distribution
plots as a straight line). With near threshold stimuli (Fig. 8B) a more complex curve
results. In Fig. 8B, as in Fig. 6, log [1 - F(t) ] has been plotted as a function of time
since the conditional probability function, Sp(t), is proportional to the slope on this
plot (as explained.under Notation). For the first 15 msec few impulses occur, but
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from 15 to 20 msec the conditional probability is high. From 20 to 30 msec o(t) is
again low, but rises to a roughly constant value after 30 msec. Significantly, the
transition from high to low conditional probability occurs at about the interval
corresponding to the minimum firing frequency with steady currents. Although the
maintained discharge no longer cuts off sharply at a particular current strength,
accommodation still affects the conditional probability function. The membrane
voltage and excitability tend to show similar damped oscillations as long as no action
potential is produced and experimentally the conditional probability function can
provide a useful indirect measure of these excitability changes.

(A) (B)
F (t) i-F(t)ju =8.06 .0 jj26.1

005 ~~~~~~~~~0.5~ '

0.5 0.2-

0.8

0.95

0.99 7.5 8.0 8.5 0.05 20 40 bO t

FIGuRE 8 Interval distributions for Hodgkin-Huxley equations with strong (A) and weak
(B) fluctuating current stimuli. In (A) the distribution is nearly normal as indicated by
plotting the data points on graph paper constructed so that a normal distribution plots as
a straight line. The solid line is the normal distribution with the sample mean and standard
deviation. With weak stimuli (B) the distribution is more complex as indicated by plotting
log [1 - F(t)I against time t. The slope on this plot is related to the conditional probability
of firing at time t if an impulse had not occurred before t.

Coefficient of Variation. The variability of this modified Hodgkin-Huxley
model is plotted as a function of mean interval in Fig. 9 (filled circles). Although
showing similarities to the variability of simpler models (Fig. 5), there are certain
quantitative differences. Accommodation causes a sharper increase in variability at
mean intervals around 20 msec while refractoriness reduces the variability at short
mean intervals. A cable whose membrane properties obey the Hodgkin-Huxley
equations cannot conduct two action potentials at 6.3°C unless separated by more
than 5 msec (Stein, 1967). If 5 msec is subtracted from the mean interval as a re-
fractory period, the variability curve (the open circles in Fig. 9) agrees more closely
with those of simpler models (Figs. 3 and 6).
Although the threshold voltage is also increased at separations beyond 5 msec

(relative refractory period) in the Hodgkin-Huxley equations, another factor op-
poses its effect on the variability curve. The maintained stimulus current prevents a
full repolarization after an action potential, so depolarization begins again from a
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potential nearer threshold. Indeed, with strong enough currents the membrane
remains so depolarized that it becomes inactive and the discharge blocks.

Serial Correlation. An interesting difference between the Hodgkin-Huxley
equations and the simpler models considered here is the dependence of one interval
on the length of the previous interval. The current fluctuations of the single pore
model have an autocorrelation exp (-t/tp) and when t, is of the order of the

1.0 00 0
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0 . 0 :

0.5 0 0
* ~~~~00

FIGURE 9 Relative variability as a function of mean g O
interval for the Hodgkin-Huxley membrane equations u0 0.20
with fluctuating currents. The open circles are ob- - 0 0
tained by applying a correction for refractory period _ 0.1 8
to the original data (filled circles). Log-log scale. U
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FIGURE 10 Correlation between successive intervals as a function of mean interval for the
Hodgkin-Huxley membrane equations. At long means successive intervals tend to be
negatively correlated.

neuronal impulse intervals, stimuli during successive intervals are positively corre-
lated. However, with the Hodgkin-Huxley calculations and tp = 1 msec, successive
intervals tended to be negatively correlated at the longer intervals (Fig. 10). This is
presumably due to accumulation of refractoriness if two action potentials are close
together, so a longer than average interval tends to follow a shorter than average
interval.

DISCUSSION

Predictions for several models of neuronal variability have been derived, ana-
lytically where possible, or by computer simulation studies. The experimenter is often
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interested in the opposite process of trying to infer from his data the models or
mechanisms responsible and I shall try now to draw together some important results
for this task. With no variability the relation between the rate of excitatory inputs
and the mean nerve impulse frequency (input-output curve) may be fairly linear at
middle frequencies, but negative deviations from linearity occur both at high and
low frequencies. The addition of variability has little effect on the negative deviations
at high frequencies due to refractoriness (Fig. 7), but greatly reduces or even re-
verses the negative deviations at low frequencies (Fig. 2). Accommodation or a
supernormal period of increased excitability following a nerve impulse set a maxi-
mum interval (minimum frequency) for impulse initiation with constant currents
(Stein, 1967). A source of variability removes this limit from the input-output curve,
but the conditional probability function (see Notation) may still decrease sharply
at this maximum interval (Fig. 8B).
The models considered here (Table I) all assume that variability arises from the

random occurrence of quantal inputs. As a measure of relative variability, the co-
efficient of variation (-/o) of the interval distribution was plotted against mean
interval on a log-log scale. For the exponential decay model (Fig. 3) this "variability
curve" shows three regions. At long mean intervals the coefficient of variation is one
(exponential density function); at short mean intervals it is a constant which de-
pends on the minimum number of quantal inputs needed to reach the threshold
voltage. A transition region in which the rate of change of the coefficient of varia-
tion was also a function of the threshold number joins the two extremes. Variability
in the size of quantal inputs decreases the apparent threshold number [see for ex-
ample equation (1.34)] while variability in their duration mainly shifts the varia-
bility curve toward shorter mean intervals (Fig. 3). Refractoriness or the persistence
of a long-acting transmitter will decrease the variability selectively at short mean
intervals. Instead of approaching a constant, the variability will continue to fall as
the mean interval is decreased (Fig. 5). With near threshold stimuli, the coefficient
of variation tends to exceed one if the quantal duration is long. This was associated
with an interval density function having two distinct, near-exponential regions,
reminiscent of interval histograms found experimentally by Smith and Smith (1965).
Although the model Smith and Smith proposed, in which switching occurred be-
tween two separate random processes, may be appropriate for cortical cells under
their experimental conditions, other models with slowly fluctuating random inputs
can produce a similar distribution.
A prolonged transmitter action will tend to produce positive correlations between

successive intervals. Distributions with long "tails" can also be produced by mem-
brane accommodation or inhibitory inputs (Stein, 1965) without the presence of
positive serial correlations. Small negative serial correlations may be most easily ex-
plained by the negative feedback inherent in the Hodgkin-Huxley equations (Fig.
10). The oscillatory nature of these equations can produce more complex distribu-
tions with suitable modifications (Lewis, 1965) including multimodal distributions
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such as those reported by Bishop, Levick, and Williams (1964) and others. Such
distributions could also arise from a patterned input to the cell though this possi-
bility might be distinguished by testing whether an interjected impulse resets the
rhythm of the cell (Jansen, Nicolayson, and Rudjord, 1966).

Detailed comparison of the statistical properties of experimental data with the
predictions of neuronal models such as discussed here can greatly narrow the range
of possible mechanisms. A great deal of information can be obtained beyond that
available from visual inspection of records or an interval histogram (see for example
the recent paper of Hyvarinen, 1966) and a careful analysis may suggest further
experiments to distinguish between the remaining possible mechanisms.
This investigation was supported in part by a U.S. Public Health Service Fellowship 1-FZ-GM-
29, 201-01.
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