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ABSTRACT In a growing class of neurophysiological experiments, the train of
impulses (“spikes”) produced by a nerve cell is subjected to statistical treatment
involving the time intervals between spikes. The statistical techniques available for
the analysis of single spike trains are described and related to the underlying mathe-
matical theory, that of stochastic point processes, i.e., of stochastic processes whose
realizations may be described as series of point events occurring in time, separated
by random intervals. For single stationary spike trains, several orders of complexity
of statistical treatment are described; the major distinction is that between statistical
measures that depend in an essential way on the serial order of interspike intervals
and those that are order-independent. The interrelations among the several types of
calculations are shown, and an attempt is made to ameliorate the current nomen-
clatural confusion in this field. Applications, interpretations, and potential difficul-
ties of the statistical techniques are discussed, with special reference to types of spike
trains encountered experimentally. Next, the related types of analysis are described
for experiments which involve repeated presentations of a brief, isolated stimulus.
Finally, the effects of nonstationarity, e.g. long-term changes in firing rate, on the
various statistical measures are discussed. Several commonly observed patterns of
spike activity are shown to be differentially sensitive to such changes. A companion
paper covers the analysis of simultaneously observed spike trains.

INTRODUCTION

Motivation

A neuronal spike train is the sequence of nerve impulses, or action potentials, pro-
duced by a neuron, typically observed over a relatively long period of time. The
analysis of spike trains has been of increasing interest to neurophysiologists in recent
years, stimulated, no doubt, by wide availability of automatic data-processing
equipment. Spike-train analysis differs from ‘‘classical” electrophysiological methods
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in that the raw data of interest are not precise voltage measurements, but rather
precise measurements of times of occurrence of events. From these essentially tem-
poral data, statistical descriptions are obtained of the output behavior of neurons,
from which inferences may be made, in turn, with regard to certain specific types of
basic neurophysiological questions. It is not our intention to pursue the questions of
interpretation and inference in the present paper (for a recent review, see Moore,
Perkel, and Segundo, 1966), but rather to present in systematic fashion the statistical
techniques of spike-train analysis, and in particular to point out some of the relevant
mathematical assumptions and relationships underlying the computational tech-
niques.

Methodological considerations, however, must not be isolated from inferential
and interpretational questions; we have tried to discuss the computational techniques
within the larger context of neurophysiological investigation. Our principal working
assumptions, as stated in the study mentioned above (Moore, Perkel, and Segundo,
1966), are ““(a) that there is an enormous wealth of information about the structure
and function of the nervous system which can be derived from careful study of the
detailed timings of spike events; (b) that analysis of these signals can shed light on
mechanisms of spike production within the observed cell, on the presynaptic input
to the cell, and on the mechanisms by which the latter is transformed into a post-
synaptic output; and (c) that observation of multiple units can reveal details of
interconnections and functional interactions . . . [and] the appreciationthat neuronal
processes at all levels involve a probabilistic element which must be adequately
incorporated if quantitative hypotheses or models of neuronal functions are to be
valid. Finally, it is held that only the more detailed analyses of spike timings are
appropriate to any quantitative theory of information processing by the nervous
system.”

Spike-train analysis is applied at several different levels of interpretation, and it is
the level of interpretation that largely dictates the choice and depth of statistical
techniques for processing of the data. At one level, the statistical measures of the
spike train provide a relatively concise characterization of the output of the neuron,
which may be used for description, comparison, and classification of nerve cells. At
another level, spike-train statistics of a neuron may afford insight into the internal
mechanisms underlying spike production; of particular importance here is the com-
parison of models of spike-production mechanisms, which is typically effected
through comparison of the corresponding spike-train statistics. In inferneuronal
analysis, simultaneously recorded spike trains are compared statistically to reveal
information concerning possible connections between neurons, shared sources of
activity, responses to stimuli, and synaptic input-output relations. It is in the com-
parison of neuronal spike trains, however, that we believe the greatest promise of
these techniques to lie, despite the greater incursion of mathematical difficulties when
compared with single-train analysis.

In summarizing currently used techniques of spike-train analysis, we are further

392 BioPHYSICAL JOURNAL ; VOLUME 7 1967



prompted by our feeling that these computational techniques have lacked adequate
theoretical underpinning, which has resulted in (a) inconsistency of nomenclature
and notation in this field, (b) difficulties, not always well enough appreciated, in
assigning measures of statistical significance to experimental findings, (¢) presenta-
tions of experimental data in several forms that are in fact mathematically derivable
from each other, and (d) the risk of attributing particular physiological significance
to results that illustrate purely mathematical theorems or that are more plausibly
attributable to chance effects. With the advent of the high-speed electronic digital
computer, it has become feasible to perform on a routine basis the lengthy compu-
tations required for spike-train analysis; it is our feeling that in relating these com-
putations to the underlying mathematical, i.e. probabilistic and statistical, theory, the
potential usefulness of these techniques will be enhanced.

Basic Terminology and Scope

In every instance in which a detailed examination is made of the timing of neuronal
events, we are forced to realize that a certain degree of unpredictability or random-
ness is present in the underlying process. For some purposes we can afford to over-
look this aspect of the record, but for other purposes, and in particular those we
focus on here, the question of interest, and indeed the source of greatest informa-
tion about the process being observed, is the variability and randomness of the
spike train.

This very property forces us to describe the spike train in statistical terms and to
view the processes underlying it either as inherently probabilistic or as sufficiently
complex that we can best and most simply treat them in probabilistic terms. Proces-
ses of this type are commonly referred to as stochastic processes. Indeed, the transfer
and processing of information in nervous systems may be viewed as a repeated
alternation, in time and space, of two different types of stochastic processes. The
first type is characteristic of the continuous intraneuronal fluctuations in significant
state variables of each neuron. Typically, a state variable might be the membrane
potential as observed at the primary spike-initiating locus, and a model of the
underlying process might be described as a complicated type of random walk, with
continuous time and “displacement’” variables. The second type of stochastic
process, which is the primary concern of this paper, arises in the study of the times
of occurrence of interneuronally transmitted action potentials, i.e. the spike train, as
commonly observed with either extracellular or intracellular microelectrodes. Be-
cause of our “all-or-none” conception of the nerve impulse, each spike is regarded
as indistinguishable from the others produced by the same neuron. Furthermore,
with each spike can be associated a unique instant of time, e.g. the time of maximum
excursion of electrical potential, which can be measured with a high degree of pre-
cision. By virtue of the assumed indistinguishability! and instantaneity of the

11e., they are distinguishable only by where they occur in time.
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individual spike events, the stochastic process characterizing the spike train can be
considered an example of a stochastic point process. This process occurs in one
dimension, corresponding to the time axis.

In any point process, in which all “events” (spikes, for example) are indistinguish-
able except for their times of occurrence, it is the elapsed times between events, e.g.
the interspike intervals, that exhibit the properties of random variables. These
intervals are regarded as being drawn (not necessarily independently) from an
‘underlying probability distribution; if that distribution, together with its param-
eters, does not vary with time of observation, the stochastic point process is
stationary.? A sample from a stationary point process might be approximated, for
example, by a spike train from a spontaneously firing neuron, or from a neuron well
adapted to a steady stimulus. A monotonic trend in the firing rate or other param-
eter is one of the many features of a spike train that may preclude its characteriza-
tion as stationary.

In most of this paper, spike trains will be considered as realizations of stationary
point processes (except for local effects due to stimulation). We cover first the
analysis of the spike train produced by a single neuron exhibiting spontaneous or
“steady-state” activity. After a presentation of basic concepts and nomenclature, we
describe the statistical measures that are independent of the serial order of intervals.
We then describe order-dependent statistical measures. Then we discuss some
problems of description and interpretation encountered with single spike trains.
Next we consider the effects on a spike train of isolated, repeated presentations of
a stimulus. Finally, we describe the effects of nonstationarity on the statistical
measures described for stationary processes. The presentation is illustrated with
examples drawn largely from digital computer simulations (Perkel, 1965).

A companion paper covers the analysis of simultaneously observed spike trains
(Perkel, Gerstein, and Moore, 1967).

THE SINGLE SPIKE TRAIN
Stochastic Point Processes: Basic Nomenclature

A stochastic point process, as mentioned above, is a stochastic process “whose
realizations consist of a series of point events” (Cox and Miller, 1965). The point
events are considered to be instantaneous and indistinguishable (except for posi-
tion in time); for neuronal spikes, therefore, we consider, for example, the time
corresponding to the maximum of the observed action potential to be the time of
occurrence, and we ignore all other characteristics of the spike, such as duration,
amplitude, undershoot, etc.

2 Strictly speaking, stationarity is defined in terms of the invariance under translation in time of the
joint distribution of numbers of events in fixed intervals of time (Cox and Miller, 1965, pp. 339-340;
Cox and Lewis, 1966, p. 59). An equivalent definition in terms of interval distributions is difficult to

formulate rigorously, mainly because of the complications introduced by the choice of the starting
point for describing the process.
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In a stationary point process, the underlying probability distributions governing
the times of occurrence of the point events do not vary with respect to an arbitrary
translation of the time axis.? Therefore, accelerations and decelerations in firing
rates and effects such as fatigue and adaptation disqualify spike trains from ac-
ceptance as realizations of stationary point processes. We consider the detection of
nonstationarity and its effects, if present, in the final section of this paper. For a
spike train observed in the absence of repetitive stimulation, the assumption of
stationarity means, in a practical sense, a neuron that does not display any ap-
parent trend in firing rate and whose ‘“mode” of firing does not exhibit any signifi-
cant shift from one portion of the record to another.

One important class of stationary point processes, known as renewal processes,
has the property that the lengths of intervals between events are statistically in-
dependent.* Neuronal spike trains rarely satisfy this requirement completely; even
those spike trains that can adequately be described as stationary often exhibit serial
dependence among interspike intervals.

Many results first established in renewal theory have subsequently been gen-
eralized to nonrenewal stationary point processes (McFadden, 1962), and in some
cases even to nonstationary processes. The terminology of renewal theory, however,
has been retained because of its intuitive appeal, and we use it here. Another set of
metaphors more appropriate to rieuron firings could easily be substituted.

The Poisson, the Erlang, and the Weibull processes are some of the most com-
monly encountered renewal processes with particularly simple properties. These are
discussed amply in the literature (Cox, 1962) and have been applied to the descrip-
tion of certain classes of neuronal spike trains. Most spike trains with independent
interval lengths, however, do not fall into any of these mathematically attractive
classes. .

In the following sections we describe some of the most important and useful
statistical measures of spike-train properties.

Order-Independent Statistical Measures

For both renewal and nonrenewal stationary point processes, the (marginal) dis-
tribution of intervals between successive events is of paramount importance in
characterizing the process. For a renewal process, in fact, the distribution of in-
tervals completely characterizes the process. For finite samples of data, such as an
observed neuronal spike train, the interspike-interval histogram serves as an esti-
mator of the “actual’”’ probability density function (pdf).

To construct it, the range of observed interval lengths is customarily divided into

3 A more explicit definition is given by Cox and Lewis (1966), p. 59.

4 A renewal process is stationary only if observation begins at a random instant in time, in which case
the interval from that instant to the first event has a different distribution from that of subsequent
interevent intervals (Cox, 1962). We will assume this condition when discussing renewal processes.
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bins of equal width §; if the ith observed interspike interval T satisfies the inequali-
ties

(U—1Ds<T: <, ¢y

then that interval is placed in bin j of the histogram. The bins are thus numbered
1, 2, ---, J. Letting N; designate the number of intervals placed in bin j in an
observation of N intervals, i.e., N 4 1 spikes, then the ratios N;/N are a smoothed
estimate of the pdf f(7); i.e., they estimate the corresponding integrals

is
N~ f(z) dr. (2)

N (-1)8

This quantity is the probability that the duration of a randomly chosen interval
lies between (j — 1)& and j. The estimator for the average value of the pdf within
the bin is given by

fi = N;/(N9). 3

Although N interval measurements are used in estimating the usual population
parameters such as mean, variance, etc., it is only for a renewal process that the
N observations are independent. Measures of precision assigned to these estimates
by the standard formulas may be misleading if the process is not a renewal.

For both renewal and nonrenewal processes, there are several functions completely
equivalent mathematically to the pdf f(r) or its estimator f; (Cox, 1962, pp. 2-7).
These are illustrated in Fig. 1. One of these, the (cumulative) distribution function,

F(r) = ,,:f(t) dt = prob (T < 7), (4 a)

is estimated by

Fi=2.fi (4b)

and, in neurophysiological terms, measures the probability that a neuron will
have fired by time 7 from the last firing.
The survivor function, the complement of F(r), or

F(r) = 1 — F(r) = prob (T < 7), 5)

is the probability that the neuron will not have fired by time 7.
A third function, the hazard function, measures (in the terminology of renewals)
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the instantaneous risk of failure of a component known to be of age 7. It is given
by

o(r) = f(r)/5(r) = fr)/I1 — F(r)]. (6)

In the neurophysiological context, the quantity o(r)Ar is the probability that a
neuron will fire during the time interval Ar, given that it has not fired prior to the
time 7. This function is called the “age-specific failure rate’” by Cox (1962). In the
neurophysiological literature, it is denoted as c(x) by Poggio and Viernstein (1964)
and called by them the “postimpulse probability;”’ the same function is called
“conditional probability’’ by Goldberg et al. (1964). It is also denoted as \(x) by
McGill (1963), who points out some earlier synonyms for the same function:
“IRT/OPS,” “conditional density function,” and “hazard function.”

For a Poisson process the hazard function is a constant (Fig. 1 b, bottom).
Other processes display positive or negative “ageing’ accordingly as¢(r) increases
or decreases with r. Interspike-interval distributions from pacemaker neurons, for
example, characteristically display positive ageing, i.e. an increased ‘“hazard” of
firing as a function of time since the last spike (Fig. 1 a, bottom), whereas long-
tailed distributions, such as those obtained for some neurons in the auditory system
(Gerstein and Mandelbrot, 1964), display negative ageing (Fig. 1 ¢, bottom). Note
that the estimate of the hazard function loses precision for long intervals (Watson
and Leadbetter, 1964 a, 1964 b).

Summaries of the interspike-interval distribution are furnished by various scalar
quantities; estimation of these scalars from finite samples of spike-interval data
does not differ in any essential respect from estimation using sample data from any
other source. Useful quantities are the mean interval u, the interval variance o2,
the standard deviation o, and the coefficient of variation ¢/u. The mean firing
rate p is defined as the reciprocal of the mean interval. Standard measures of skew-
ness and kurtosis are often useful for describing and classifying interval distribu-
tions.

Order-Dependent Statistical Measures

It is of considerable neurophysiological interest to determine whether or not suc-
cessive interspike intervals are independent in the statistical sense, i.e., whether or
not the spike train can be described as a realization of a renewal process. Cox and
Lewis (1966, pp. 164-171) discuss two classes of tests for independence of intervals,
one based on sample serial correlation coefficients, and the other based on the
spectrum of intervals. These authors state that “this is a difficult problem because
the null hypothesis is very broad and the alternatives usually not at all clearly
specified, and also because the associated distribution problems are hard.” More-
over, if the intervals are not independent, such tests offer little information about
the type of dependence, and they have so far found little application in spike-
train analysis.
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Aside from their use in hypothesis testing, certain statistical measures have been
used to describe and quantify serial dependence among interspike intervals. We call
these measures order-dependent, in order to distinguish them from those based solely
on the interspike-interval distribution, discussed above. The methods of spectral
analysis, recommended by Cox and Lewis (1966; see also Bartlett, 1963), have not
been used for analyzing spike-interval data, but their potential utility deserves ex-
tensive investigation. Serial correlation coefficients are statistics based on joint
distributions of intervals, and another set of measures is based on intervals between
nonadjacent spikes. We describe here the latter two classes of techniques.

Use of the joint interval density for spike-train analysis was introduced by Rodieck,
Kiang and Gerstein (1962). The data are displayed in the form of a scatter diagram,
in which the length of an interspike interval is represented by the abscissa, and the
length of the next interval in the record by the ordinate. Each point on the diagram
then represents a pair of adjacent intervals. An alternate form is the matrix equiva-
lent of Smith and Smith (1965). If successive intervals are independently distributed,
then the normalized frequency distribution along the ordinate is the same for each
abscissa value, and vice versa. This implies that the corresponding row and column
means in the corresponding joint interval histogram have a constant expected value.
An observed constancy of row and column means, which is a necessary condition for
independence of adjacent intervals, has in practice been used as a sufficient test.
Departures from independence are reflected not only in these means but also in
the symmetries of the scatter diagram itself. For example, an over-all “upward”
trend in the joint-interval scatter diagram (as illustrated in Fig. 7 of Rodieck et al.,
1962, units 261-1, R-4-10, and 240-1) indicates positive correlations between suc-
cessive intervals. This means, loosely, that short intervals tend to be followed by
short ones, and long intervals by long ones. A “downward” trend would imply
negative serial correlation. The uncorrelated case is illustrated by unit 259-2 in the
same figure. The corresponding row and column means are shown in Fig. 8 of the
same work.

A quantitative measure of such correlation is furnished by the serial correlation
coefficient of interval lengths, which is defined as follows: We define the covariance
of interval lengths, of lag j, by

Ci=E(T: — p)(Tir; =)l =+---,—-1,0,1, --+), @)
where T; is the ith interspike interval in an (infinite) stationary train of spikes, with

mean interval p and variance o2, Then the serial correlation coefficient p; of order j
is the ratio of the corresponding covariance to the interval variance:

p; = Cj/a (8

In a finite sample, the mean u and the variance o2 must be estimated from the
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sample data. To avoid the slight bias introduced by use of sample mean and vari-
ance to estimate the corresponding population parameters, more complicated
formulas are suggested by Cox and Lewis (1966, pp. 89-92).

The serial correlation coefficient of lag 1 furnishes a single scalar quantity as a
summary of the entire diagram of the joint interval distribution of lag 1. Joint
interval distributions of larger lags, i.e., for nonadjacent intervals, have not been
used in the analysis of spike trains; the corresponding serial correlation coefficients,
however, have been used extensively. The set of serial correlation coefficients is
usually called the serial correlogram; it has sometimes (Hagiwara, 1954) been called
the “autocorrelogram” or “autocorrelation,” terms that we reserve for a different
function (see below).

The expected value of the serial correlation coefficients of all orders (lags) is
approximately zero if the intervals arise from a (stationary) renewal process, i.e., if the
intervals are drawn independently from a common distribution. For large N, for
a renewal process, the quantity p;/(N — 1)12 has a unit normal distribution. How-
ever, the distribution of the sample serial correlation coefficient is not known for
small samples, and the sample coefficients of various lags are correlated for mod-
erately sized samples (Cox and Lewis, 1966, p. 165). No test of independence of
intervals is known which is based jointly on several serial correlation coefficients
(P. A. W. Lewis, private communication).

One useful expedient, however, is to subject the sample of interspike intervals to
random shuffling, which destroys serial dependence but preserves the order-in-
dependent statistics of the sample. Shuffling thus converts the sample to one from
the corresponding renewal process. The recomputed serial correlogram for the
shuffled train provides a control case, in which the departures from O of the serial
correlation coefficients are in fact those due to random fluctuations. The net de-
parture may be measured, for example, by the sum of squares of the coefficients.
In principle, the shuffling and recomputation can be repeated at length to provide
an empirical sampling distribution of the sum of squares under the null hypothesis
of serial independence. From this distribution, tests of the independence hypothesis
for the unshuffied data can readily be constructed. This kind of procedure is dis-
cussed by Cox and Lewis (1966, p. 165) as a permutation test of serial correlation.
A refinement discussed there is to replace the observed interval values by ranks or
exponential scores. In this way the sampling distribution can be computed once and
for all for a given sample size.

The most frequently encountered source of positive contributions to the serial
correlation coefficients is a long-term trend in the data; a sufficiently great mono-
tonic increase or decrease in the firing rate over the time of observation will con-
tribute a positive component to each serial correlation coefficient, out to lags of
arbitrarily high order. Monotonic trends, of course, are a form of nonstationarity;
they are discussed further in a subsequent section.

In a stationary point process that is not a renewal process, the serial correlogram
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furnishes indications as to the nature of departure from independence among in-
tervals. Local trends in firing rate will introduce positive contributions to the serial
correlation coefficients, primarily to the lower lag values (Hagiwara, 1949; Junge
and Moore, 1966). Cyclic variations in firing rate, for example, produce a damped
oscillation in the serial correlogram, which starts at positive values. Somewhat
similar oscillations are produced by fairly regular occurring bursts of spikes, as
exemplified by medullary respiratory neurons. Irregular bursts of spikes, such as
have been described by Smith and Smith (1965), are characterized by negative
serial correlations for low lags, followed by slightly positive and then O correlation
coefficients. Alternation between long and short intervals, as commoanly seen in
certain cells in the dorsal column nuclei (Amassian et al., 1962) or in locust wing-
muscle motor neurons (Wilson, 1964), gives a strongly negative first serial correla-
tion coefficient with subsequent alternation in sign of the coefficients of higher
order. Other types of patterned activity have corresponding signatures in the serial
correlogram. Some examples, from computer simulations, are illustrated in Fig. 2.

It must be emphasized that both the joint interval histogram and the serial cor-
relogram must be interpreted with caution and in conjunction with other statistical
measures. The positive contribution to low-order correlation coefficients due to
local or global trends in firing rate may mask any negative correlation between
adjacent intervals that would otherwise be apparent. Segmentation of the data may
clarify this situation, but at the expense, of course, of statistical reliability. A gap
in the record, which introduces an exceptionally long interval, may grossly affect
the interval variance and seriously distort the serial correlogram; this effect is most
pronounced in pacemaker neurons (small coefficient of variation of intervals).
On the other hand, effects of trends and gaps on the serial correlogram are much
less pronounced in data with a large inherent variability (large coefficient of vari-
ation), such as a Poisson process with a time-varying rate parameter or neurons
with highly irregular firing times. It is important to measure and correct for these
distorting effects since significant information about the physiology of the neuron,
such as refractory effects, persistence of synaptic effects, etc., may be uncovered
through correlational analysis of successive intervals (Firth, 1966; Junge and Moore,
1966; Geisler and Goldberg, 1966).

The use of ranks or exponential scores greatly alleviates the effects of gaps in the
record. The use of the estimated spectrum of intervals overcomes some of the
effects of trends. The tests for independence of intervals based upon the spectrum .
of intervals, as described by Cox and Lewis (1966, pp. 67 et seq.), appear to have
been neglected by investigators of spike trains. The estimated spectrum gives a
single test for independence based on all of the data and thereby overcomes the
obstacles mentioned above to the interpretation of the serial correlogram. Compu-
tation of the spectrum has been greatly facilitated by a recently devised algorithm
(Cooley and Tukey, 1965), which has been incorporated in a set of computer
programs by P. A. W. Lewis (1966) for the statistical analysis of series of events.
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Serial correlation coefficients

Serial correlation coefficients
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Ficure 2 Typical serial correlograms. a, independent intervals drawn from a Weibull distri-
bution, with pdf ap(px)=! exp —(px)*; p = 15 sec!, « = 0.6, 2161 spikes. b, simulated
neuron producing irregular bursts. Resting level of membrane potential —70 mv, reset to
—100 mv after a spike; exponential recovery with decay constant of 6.93 sec~1. Asymptotic
threshold —40 mv, reset to —20 mv after a spike; exponential recovery with decay constant
3.47 sec™. Two input channels producing 18.5-mv EPSP’s: one channel with mean firing rate
2.0/sec, the other with mean firing rate 2.1/sec; standard deviation of intervals 3%, of mean.
Cell fires with mean interval 2.6 sec, standard deviation 2.9 sec, with sample of 389 spikes. c,
simulated neuron producing more regular bursts. Similar to case b, but with standard
deviation of intervals in input channels 0.6%, of respective means. Cell fires in bursts of four
or five spikes; interspike intervals within bursts 0.5-1.0 sec; bursts start at intervals of ap-
proximately 10 sec. Sample of 424 spikes has mean interval 2.4 sec, standard deviation 2.8
sec. d, decelerating train. Intervals drawn from a time-dependent normal distribution with
u(®) = 0.1 — 0.02¢—% sec, ¢ = 0.01 sec. Sample of 2447 spikes. e, alternation between long
and short interval lengths. Intervals drawn alternately from distribution with mean 0.11 sec
and from distribution with mean 0.09 sec, each with standard deviation 0.015 sec. 5000 spikes.

Joint interval distributions and the corresponding serial correlation coefficients
involve time intervals that are defined by two successive spikes. The second class of
order-dependent statistical measures that we discuss involves time intervals be-
tween nonsuccessive events. Denoting as a first-order interval the elapsed time from
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an event to the next following event, we may define a second-order interval as the
elapsed time between an event and the second following event, etc. An nth-order
interval is the sum of n consecutive first-order intervals and is spanned by (n + 1)
consecutive spikes (see Fig. 3).

The probability density of the nth-order interval is designated f,(7). The interval
density for successive events is thus the first-order density: fi(r) = f(7).

In the special case of a renewal process, the higher-order densities may be ob-
tained by successive convolutions of the first-order density because the intervals are
independent. Thus, the second-order interval density is given by the convolution
integral

o) = [ rose = o a, 9 a)
T
T e e — }'First-order intervals

}Second-order intervals

}Third-order intervals

FIGURE 3 Higher-order interspike intervals. A first-order interval is the time difference be-
tween adjacent spikes. A second-order interval lies between a spike and the second spike
following, etc. Note that an interval of order n spans n + 1 spikes. See text.

and in general we have the recursion

funtr) = [ " LOf (= 1) dr. 9 b)

These equations do not apply when successive interval durations are not indepen-
dent.

A related function is the renewal density, h(r), which specifies the probability of
encountering any event as a function of time after a given event; i.e.,

h(r) = }.ir? prob {an event in (r, r + Ar) | an event at 0} /Ar. 10

Since any event encountered must be either the first, second, . . ., etc., event after
the event at time O, it is evident that the renewal density is the sum of the interval
densities of all orders:

0

h(r) = 3 filr). (1

k=1
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FiGure 4 Composition of the autocorrelation (renewal density). Computer-simulated
noisy pacemaker with inhibitory synaptic input. Mean interspike interval without inhibition
0.47 sec; Poisson arrivals of IPSP’s at mean rate of 4/sec; maximum hyperpolarization of
IPSP’s normally distributed with mean 5 mv, standard deviation 1 mv. Mean interspike
interval 0.54 sec, standard deviation 0.09 sec, 2000 spikes. a, autocorrelation histogram. b,
interspike-interval histogram. c—f, second- through fifth-order interval histograms. See text.

This is illustrated in Fig. 4, in which is shown the renewal density (as estimated
by a histogram) from a sample of spike activity of a computer-simulated neuron;
together with it are displayed the corresponding interval densities of the first four
orders.

In spike-train analysis, the renewal density is often called the autocorrelation
(Gerstein and Kiang, 1960), since if the spike train is regarded as a signal of 0 am-
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plitude everywhere except where a spike is present, and if each spike is represented
as a Dirac delta function, then the renewal density corresponds to the autocorrela-
tion as ordinarily defined for continuous signals. In the usage of Cox and Lewis
(1966), the renewal density is one of a class of ‘“‘intensity functions.” Another
synonym that has gained some currency is ‘“expectation density;” it is used by
Poggio and Viernstein (1964) and others, following a usage introduced by Huggins
(1957). Yet another synonym is ‘“post-firing interval distribution,” introduced by
Lamarre and Raynauld (1965).

Another property of the autocorrelation is that it “flattens out” to a constant
value; i.e.,

Lim h(r) = 1/u. (12)

In general, this limit is approached slowly for pacemaker neurons (narrow inter-
spike-interval densities), and more rapidly for spike trains with greater variation in
interval length. The limiting value is attained for all values of = for a Poisson pro-
cess; it can be shown, in fact, that a Poisson process is the renewal process having a
constant renewal density.

The representation of higher-order interval densities as corresponding convolu-
tions of the first-order density (Equation 9) holds only for independent intervals.
If there is serial dependence (as measured by the serial correlogram), more compli-
cated expressions are required, as given by McFadden (1962). Thus, the sum of the
interval densities of various orders (the autocorrelation) for two spike-train se-
quences having identical interval distributions will be different if in one train the
intervals are independent, i.e. a renewal process, and in the other they are dependent.
Hence, it is possible to compare the observed autocorrelation with that predicted
under the independence hypothesis as a test of that hypothesis. One convenient
computer method is that of prolonged random shuffling of the intervals, as discussed
above. The autocorrelation of the shuffled train then represents a control case of
serial independence. Discrepancies between the unshuffied and shuffled auto-
correlation not only furnish a test of serial dependence, but may also indicate the
nature of that dependence.

state 2 (medium), 0.10 sec; state 3 (long), 0.11 sec. All intervals normally distributed with
standard deviation 0.01 sec. Transition matrix

070 020 0.10

045 0.10 0.45>

010 020 0.70
is such that a long interval is most likely to be followed by a long interval, and a short by a
short. Mean interval 0.10 sec, standard deviation 0.014 sec, in sample of 2000 spikes; first five
serial correlation coefficients: 0.251, 0.184, 0.085, 0.071, 0.040. After shuffling of intervals,
first five serial correlation coefficients were —0.018, 0.017, 0.021, —0.041, —0.004. a, auto-
correlation histogram, unshuffled data. b, autocorrelation histogram of reconstructed
spike train after shuffling of interspike intervals. Note sharpening of peaks. See text.
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Shuffling may either enhance or flatten peaks in the autocorrelation. For ex-
ample, if interspike-interval lengths exhibit negative serial correlation, peaks in the
autocorrelation are generally broadened by shuffling. On the other hand, if interval
lengths are positively correlated, shuffling of intervals may sharpen peaks in the
autocorrelation. An example of the latter effect is shown in Fig. 5, in which the
original interval sequence was generated by a three-stage semi-Markov process
(Cox and Lewis, 1966, p. 82), according to which relatively long intervals were
more likely to be followed by long intervals than by short ones, and vice versa.

To avoid confusion it should be emphasized that the autocorrelation is a function
of time; the serial correlogram [Hagiwara’s (1954) “autocorrelation’] is a function
of the serial position of the interval, an integer. The two functions need not corre-
spond at all. For example, a pacemaker cell that fires at nearly uniform intervals
will have a strongly oscillating autocorrelation, whereas the serial correlogram may
be positive, negative, oscillatory, or zero.

Long-term trends or slow oscillations in firing rates are ordinarily not obvious
in the autocorrelation, but are more typically revealed in the serial correlogram.
These and other effects of relatively long-term rate variations are discussed below, -
in the section dealing with the effects of nonstationarity.

Description, Prediction, and Information

Having presented certain statistical measures that can be applied to individual
spike trains, we now introduce briefly some considerations about the adequacy
and utility of statistical descriptions of the train. These considerations bear on the
use of statistical descriptions both in characterizing and classifying neurons and in
comparing observed spike data with those predicted by models.

The simplicity of statistical description of a spike train differs widely from case
to case. A single parameter suffices to describe a Poisson process, whereas two are
required for an Erlang or Weibull process. If a spike train fits into one of these
categories, not only is the characterization of the particular spike train extremely
simple, but also the pdf of the interval distribution (and therefore the hazard
function, autocorrelation, etc.) may be written as an explicit equation. For less
easily described renewal processes, the entire interspike-interval histogram is re-
quired to characterize its properties. When successive intervals are not independent,
then much more complicated descriptions are needed, except in special cases of
highly patterned spike configurations. When higher-order joint interval densities
or similarly elaborate statistical measures are required to effect a reasonably com-
plete description, the statistical description itself is unmanageable, and its practical
utility is highly questionable. The limit is reached, of course, when the number of
parameters in the statistical model equals (or exceeds!) the number of spikes in
the sample, at which point statistical analysis loses all justification.

The relationship between the statistical properties of a spike train and the in-
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formation-handling capability of the neuron is generally complex. Estimates of
channel capacity depend strongly upon the particular choice of encoding scheme
imputed to the neural structure. Once a choice of encoding scheme has been made,
then estimates of channel capacity can be obtained on the basis of interval statistics.
For example, if a parameter is thought to be encoded in terms of mean firing rate,
then a smaller coefficient of variation of intervals gives rise to a higher channel
capacity, etc. Interval statistics, however, cannot of themselves provide a choice of
coding scheme. Facile “derivations” of information-handling characteristics of
neurons based solely or primarily on spike-interval statistics are usually misleading
or worse. For a more extended discussion of these problems, the reader is referred
to Moore et al. (1966) and to Segundo et al. (1966).

SINGLE SPIKE TRAINS IN THE PRESENCE OF STIMULATION

In many neurophysiological experiments a controlled series of changes in the physi-
cal environment is introduced. We consider here the case of a repeated, relatively
short stimulus. In order to detect and evaluate the effect of such a stimulus train
on the train of spikes, it is now common to compute a post-stimulus-time (PST)
histogram (Gerstein and Kiang, 1960). Specifically, the PST histogram shows the
probability of firing as a function of time after the stimulus onset. As shown below,
this measure is equivalent to a cross correlation between the train of stimulus presen-
tations and the train of spikes. If the stimulus has no effect on the pattern of the
spike train, the PST histogram will be flat (subject to the usual statistical fluctua-
tions). On the other hand, if the stimulus does produce a timelocked “evoked re-
sponse” in the spike-train pattern, the PST histogram will show deviations from
flatness. A peak in a PST histogram indicates a higher probability of firing at that
particular time after stimulation and can presumably be associated with an excita-
tory process. Dips in a PST histogram indicate a lower timelocked probability of
firing and often are associated with inhibitory or refractory processes.

In interpreting a PST histogram it is obviously necessary to decide on the sta-
tistical significance of the observed deviations from flatness. A simple method that
has been used (Weiss, 1964) is to compute the mean square deviation of all bins from
the mean level of the histogram. Some criterion value for this number can be chosen
to distinguish a “flat” PST histogram from one that shows a weak timelocked
response pattern.

There is some difficulty in this type of significance test, however, since successive
bins in the histogram may not represent independent quantities. For example, since
each firing of the neuron is followed by a refractory period, there is always a tend-
ency toward a negative correlation between adjacent bins in the histogram. An
empirical control case can be constructed by randomly shuffling the intervals of
the spike train and computing the corresponding “flat” PST histogram. The dis-
tribution of mean square deviations from mean bin level can be obtained from a
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set of replications of this procedure, and the criterion value can then be chosen as
usual to satisfy a specified error probability. A control case can also be constructed
using fictitious times of stimulus presentation in a portion of record where no actual
stimulations were presented (Gerstein, 1960; Burns and Smith, 1962).

Because of such correlation effects, it is necessary to verify that features in a
PST (or similar) histogram that are suspected of having significance are not simply
artifacts of the choice of bin width. Two techniques that may be helpful are (a)
recomputing the histogram with a different bin width that is not a simple fraction
of the original bin width and (b) calculating the autocorrelation of the PST histo-
gram. Meaningful features should have a width of several bins. The existence of
“wide” features in the PST histogram will be shown by large values near the origin
of its autocorrelation function.

Another way of analyzing stimulus effects on a single spike train is to measure
the elapsed times or “latencies’ between stimulus presentations and the earliest en-
countered subsequent spikes. Latency and PST studies are discussed in the review
paper by Moore et al. (1966).

THE PROBLEM OF NONSTATIONARITY
Basic Concepts

All the statistical measures discussed above, with and without stimulation, carry the
implicit assumption that the data are stationary. Specifically, this means that in the
absence of stimulation, the spike trains represent realizations of stationary point
processes. In the presence of stimulation, it is assumed that the point processes are
time dependent, but that the time variation is the same after each stimulus presenta-
tion, i.e., that each stimulus presentation represents a new, independent trial. Thus
the stimulated cases are ‘“‘stationary” in a larger sense.

It should be kept in mind that the phrases “stationary data” and “nonstationary
data” are, strictly speaking, misnomers. The experimental data are samples, i.e.,
realizations over finite durations of stochastic point processes; only the (hypotheti-
cal) underlying point processes possess the properties of being stationary or non-
stationary. In testing data for “stationarity,” we are in fact testing whether the as-
sumption of a stationary underlying process is a reasonable one for the body of data
in question.

One of the difficulties commonly encountered in neurophysiological investigation
is the fact that the behavior of a neuron under study may change significantly during
the course of observation, and therefore cannot validly be assumed to arise from a
stationary process. Such changes may be exhibited in a gross way, or may be subtle
and difficult to detect. The problems of detecting nonstationarity and assessing its
effects are vexatious. The very meaning of stationarity depends on the context of
the experiment. If, for example, a neuron undergoes a diurnal cycle of activity, a
sample of a few minutes’ activity may well be accepted as “stationary,” whereas a
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sample of a few hours’ activity may show marked trends, and hence be classified as
nonstationary. In operational terms, therefore, it may be impossible to distinguish
nonstationarity from inadequate sampling.

The most direct, straightforward, and recommended way of dealing with sus-
pected nonstationarity is to segment the data, analyze each segment separately, and
apply standard techniques for testing that the several samples were drawn from the
same population. In practice, this is often impossible because of an insufficiently
long sample.’ A related technique, which is useful when data processing is accom-
plished “on line,” is to observe the temporal order in which a histogram is built up.
For a stationary process, the fractional mean rate of accumulation should be uni-
form for all portions of the histogram (over a time period that is long with respect
to any known periodic variation); any conspicuous systematic departures from this
uniformity strongly suggest nonstationarity in the data.

Although the strict definition of stationarity implies that all parameters of the
stochastic process are invariant with respect to a random displacement in time, de-
tection and measurement of nonstationarity in spike trains has centered almost
exclusively upon one parameter, the firing rate. In the following discussion we re-
strict ourselves to nonstationarities in firing rates, after pointing out the utility of
statistical techniques for investigating nonstationarities in, for example, the variance

“of intervals, such as Bartlett’s test for homogeneity of variance (see Kendall and
Stuart, 1961).

There are three principal aspects to the analysis of rate nonstationarities in spike
data. The first is the detection of nonstationarity. ‘“We may wish to test the reality
of any apparent trends and this is done by testing the hypothesis of no trend”” (Cox
and Lewis, 1966, p. 37); to this end the reader is referred to a chapter by Cox and
Lewis (1966, chapter 3) devoted to the analysis of trends. The second aspect deals
with the characterization and measurement of the variations in rate when they have
been found to occur. The third aspect refers to the assessment of the effects of rate
variations on other statistical measures; we consider below the effects of rate varia-
tions on the autocorrelation and the serial correlogram.

Measurement of Rate Variations

In spike trains exhibiting rate variation together with a relatively high degree of
variability in interspike intervals, special techniques are necessary to observe the rate
variations themselves, unobscured by the ‘“local” fluctuations in interval length. One

s Some classes of spike trains, which arise from certain random-walk models of neurons, correspond
to renewal processes which do not have finite moments (Gerstein and Mandelbrot, 1964). A renewal
process with an infinite mean would correspond to a nerve cell which has a finite probability of re-
maining silent indefinitely long after a spike. A nonpacemaker cell with wholly inhibitory synaptic in-
put would remain permanently silent; some mixture of inhibitory and excitatory input could result
in the cell’s firing sporadically, with a long-tailed distribution of interspike intervals, which might not
have a finite mean. Finite samples of such a process cannot adequately establish this possibility.
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common technique for examining rate variations in a spike train is to plot each
interval length as a function of time (usually taken to be the time of the second spike
determining the interval) or of serial number of the interval. If the cell fires fairly
regularly, such a plot will clearly reveal the structure of rate variations. If, on the
other hand, the interval variance is large, trends are hidden in the “noise.”

Moving-average techniques have often been used for smoothing purposes. They
are typically based on either a fixed number of intervals or a fixed length of time
over which an average rate is computed. A more meaningful type of moving average
would be one in which the contribution of each spike to the rate estimate is a de-
creasing exponential function of the time interval between the occurrence of the
spike and the time referred to by the estimate. A “ratemeter’’ approach of this sort
corresponds more closely to the response of an integrating neuron than do the more
rigid moving-average techniques. The time constant for the exponential function can
be chosen to correspond to the integration period of a neuron known or postulated
to receive the output from the observed neuron (Segundo et al., 1966).

If trends are monotonic, estimation methods based on regression analysis are use-
ful; these are described by Cox and Lewis (1966, chapter 3).

Effects of Trends

One important effect of rate changes on a spike train is to increase the variation of
the interspike intervals. This effect will be conspicuous, and therefore detectable in
the statistics, only if this additional variability of intervals is significantly large as
compared with the ““intrinsic’’ variability of the intervals. We illustrate this with two
classes of examples: a “noisy pacemaker,” with an intrinsic coefficient of variation
of 10%, and a Poisson process (intrinsic coefficient of variation 100%), in each of
which the mean interval is a function of time.

The pacemaker results are shown in Fig. 6, in which the autocorrelation and serial
correlograms are shown for a linearly accelerating train, a linearly decelerating train,
and a train with sinusoidally varying mean intervals. In each of these examples, the
maximum deviation of mean interval, due to rate changes, was +=10% of the mean
interval. The effects on the autocorrelation and on the interval histograms (not
shown) are not conspicuous; there is some broadening of the peaks, but this effect
is apparent only upon detailed comparison with the exactly corresponding null case
of no trend. Given the autocorrelations as observed experimentally, there is no
reason for suspecting a trend in the data. The serial correlograms, on the other
hand, clearly indicate the rate variations. An elevated serial correlogram, extending
more or less uniformly out to high orders, is a specific indicator of monotonic trend.
It is to be noted that the effects of monotonic acceleration are indistinguishable from
those of monotonic deceleration. The undamped oscillatory nature of the third
serial correlogram shown is due to the imposed constancy of period of rate varia-
tion; if that period had varied during the observation, the oscillations in the serial
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correlogram would have exhibited damping. An ingenious method is described by
Firth (1966) for separating the effects of trend on the serial correlogram from its
“inherent” features. His technique, involving successive differences, is in essence a
form of analysis of variance and is applied to cells that fire at extremely regular
intervals.

The time-varying Poisson process, on the other hand, requires a rate variation of
+50% before some effects are noticeable, and only at +=70 % rate variation do the
effects become conspicuous (Fig. 7). The only effect on the autocorrelation of a
monotonic trend is to increase its level; the shape remains flat, as in the absence of
trend. The predicted asymptotic level for the autocorrelation depends only on the
mean observed interval (Equation 12); therefore, the observed autocorrelation histo-
gram, together with this predicted level, can indicate a trend. For the monotonically
time-varying Poisson processes illustrated (Fig. 7), this is the only conspicuous effect
of the large rate variations, since the corresponding serial correlograms depart only
slightly from 0. At these intensities of cyclic rate variation, oscillations are visible in
the autocorrelation, but not in the serial correlogram; this is in contrast to the
opposite situation observed in the case of a pacemaker with weak oscillations in
rate. A monotonically declining autocorrelation histogram, such as the early por-
tions of Figs. 7 c and 7 d, is strongly suggestive of rather severe rate changes in the
data, and some detailed statistical features of the spike train may be masked or
distorted thereby.
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