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ABSTRACT

With the increase in the number of large, 3D,
high-resolution nucleic acid structures, particularly
of the 30S and 50S ribosomal subunits and the intact
bacterial ribosome, advancements in the visualiza-
tion of nucleic acid structural features are essential.
Large molecular structures are complicated and
detailed, and one goal of visualization software is to
allow the user to simplify the display of some features
and accent others. We describe an extension to the
UCSF Chimera molecular visualization system for
the purpose of displaying and highlighting nucleic
acid characteristics, including a new representation
of sugar pucker, several options for abstraction of
base geometries that emphasize stacking and base
pairing, and an adaptation of the ribbon backbone
to accommodate the nucleic acid backbone.
Molecules are displayed and manipulated interact-
ively, allowing the user to change the representations
as desired for small molecules, proteins and nucleic
acids. This software is available as part of the UCSF
Chimera molecular visualization system and thus is
integrated with a suite of existing tools for molecular
graphics.

INTRODUCTION

There has been an enormous increase in the size and number of
deposited structures of nucleic acids in recent years, including
high-resolution X-ray crystal structures of two riboswitches
(1,2), two ribonuclease P structures (3,4), several ribozymes
(5,6) and structures of multiple macromolecular-assemblages
that include nucleic acids, such as the 30S (7) and 50S (8,9)
ribosomal subunits, as well as the intact ribosome (10), and
the nucleosome core particle (11,12). This growth is reflected
in the increase of nucleic acid structures available from the
Nucleic Acid Database (NDB) (13) and structure-related
databases, such as the Structural Classification of RNA

(SCOR) database (14), a classification of 3D structural motifs,
with larger structures having many more motifs than smaller
structures. SCOR doubled in the number of structures char-
acterized between 2002 and 2004, and simultaneously
increased by nearly 20-fold in the number of structural features
characterized, from 423 internal and hairpin loops in version
1.1 to 8270 in version 2.0.3 (15).

The viewing of macromolecular structures is improved by
the use of tools that highlight, or if needed, abstract the details,
of molecular features. And while many visualization tools
exist and representations are standardized for protein struc-
tures, these tools are often inadequate for the structural fea-
tures of nucleic acids. It is a challenge of visualization methods
to display and emphasize key concepts and features without
overwhelming the viewer and while maintaining the accuracy
of the data. For proteins, abstractions exist such as stylized
ribbon representations of alpha helices and beta sheets accent-
ing the different secondary structures and displaying the dir-
ection of the chain, and for displaying the backbone and side
chains (16); however, these methods fall short for nucleic
acids, where the structural features are quite different from
proteins.

Here, we present a new tool for nucleic acid visualization
that highlights the features of nucleic acids. We present a
new representation to emphasize sugar pucker, a modification
to the backbone ribbon for the nucleic acid backbone, and
several options for displaying bases and their interactions,
emphasizing base pairing and base stacking.

MATERIALS AND METHODS

UCSF Chimera (17) (henceforth referred to as ‘Chimera’) is a
molecular graphics program designed to maximize interactive
visualization and collaboration, that also allows users to easily
write additional tools to extend its capabilities. Chimera is
available free of charge to academic and non-profit users
and is available on a wide array of platforms, including
Microsoft Windows, Apple OS X and Linux. The nucleic
acid visualization features presented here are an extension
to the basic Chimera visualization system, and are currently
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available within the Chimera package and available from the
Chimera web site (http://www.cgl.ucsf.edu/chimera/).

The new features available in the Nucleotides extension are
discussed below, and examples of the features can be seen in
Figures 2–7 and in the image gallery on the Chimera web site.
All features are easily accessible via a menu interface within
Chimera, as shown in Figure 1.

Representations of sugars

The furanose ring found in nucleic acids generally takes either
the envelope form, with four atoms in a plane, or the twist
form, with three atoms in a plane and two adjacent atoms on
either side of that plane (18). We have created a new repres-
entation to emphasize the plane and twist forms of the ring.
This representation is unique to the Chimera Nucleotides
extension.

In order to elucidate sugar pucker, we fill the furanose ring
by drawing either two or four planes. For the envelope form, a
single atom is out of the plane, so we draw two planes: one
defined by the four atoms in-plane, and a triangle that extends
to the outlying atom. For the twist form, we emphasize the
location of the twist by drawing one plane defined by the three
atoms in-plane together with a fourth point located towards the
twist of the ring and combine this with three triangles con-
necting the other atoms (Figure 2). The decision of when to
consider atoms coplanar and thus which form to use when
drawing a sugar is driven by geometric considerations only;
in the future we plan to add an option so that the user can adjust

the threshold for controlling this behavior. (Source code for
the representation of sugars is available in the Supplementary
Data.)

Another abstraction of the sugar is as a tube that connects
the base to the backbone (atoms or ribbon). The tube is drawn
from the C40 atom of the sugar to the N1 atom of the base
for pyrimidines or N9 for purines. If the user chooses to
display the glycosidic bond, then the tube terminates at the
sugar C10. Thus, the simplified connection of base to backbone
can either by shown as a single cylinder (as in the G–C pairs
in Figure 4) or as two cylinders broken at the C10 (as in
Figures 3 and 5).

Backbone ribbon

In order to more accurately represent the backbone of the
nucleic acid, we modified the ribbon representation that is
used for proteins. For proteins, we draw a ribbon with the
backbone oxygen as the orientation atom, and the backbone
alpha carbon as the guide atom, with the resulting ribbon
perpendicular to the side chain. For nucleic acids, we choose
C10 as the orientation atom and C50 as the guide atom, both
located in the sugar. Similar to the method first described by
Carson and Bugg (19), our ribbon representations are based on
B-splines (20) with the coordinates of the guide atoms used as
spline control points and the orientation atom used to deter-
mine the plane of the ribbon. But with the default approach
used for proteins, the resulting ribbon was parallel to the base
rather than perpendicular. We created a new option for ribbon
representations for nucleic acids such that the ribbon axis is
rotated by 90�, and the resulting backbone ribbon is perpen-
dicular to the bases (Figure 3). The original representation of
the ribbon remains available as the ‘classic ribbon’ option in
the Nucleotides menu. Additional options to the ribbon, such
as changing the cross-section of the ribbon, are available as a
standard option within Chimera’s Ribbon Style Editor menu

Figure 1. The Nucleotides menu for the nucleic acid visualization tool, showing
the many options for the display of the backbone, sugars and bases. Chimera has
separate menus for controlling the parameters used for coloring and for drawing
ribbons. See http://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/
nucleotides/nucleotides.html for a detailed description.

Figure 2. Sugar pucker, in the envelope form (red) and twist form (yellow). The
envelope form is highlighted using two planes, while the twist form is accented
by the drawing of four planes, achieved by the introduction of a non-atom
vertex.
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and the color of the backbone ribbon is customizable by
the user.

Bases

Base stacking is a key structural feature and is important
for the stabilization of nucleic acids (18). Visual emphasis
of this feature was one of the motivating factors for building
the Nucleotides extension to Chimera. Four representations
of bases are available: filled, box slab (or box), elliptical
tube slab and ellipsoid slab. Examples are shown in
Figure 4. In order to display the orientation of the base,
each base is drawn with a rounded protuberance (a dot) at
the center of each ring on the positive face [as described in
Olson et al. (21)] of the base. The positive face of the base
is defined by a coordinate frame such that, in an idealized
right-handed A-form or B-form helix, the X-axis points toward
the major groove, the Y-axis is parallel to a C10–C10 vector
within paired bases, and the Z-axis points along the 50–30

direction. In the case of A- or B-form helices, dots appear
on the 50 side of the bases.

The filled base option simply fills the rings of the pyrimi-
dines and purines. By selecting this option, the user preserves
the purine versus pyrimidine identity of the base, but also
emphasizes the position of the base by simply making the
rings much more visible.

The slab options are designed to emphasize base pairing
and stacking. With bases displayed in the box formation
the ‘spiral stair case’ quality of a helix is much more
prominent than with the filled or atom/bond representation
(as shown in Figure 4). Several options for the position
and size of the slab with respect to the base are available,
as well as a custom setting, and these settings are easily
obtained by the user through a simple interface. The default
setting for the slab option draws the slab as a box, with
the purine box anchored at the base N9 and the pyrimidine
box anchored at the base N1. The default slab covers most
of the base, and extends slightly beyond the base rings to

emphasize base pairing. The user can also adjust the thickness
of the box.

Additional representations of bases are displayed in
Figure 4. These include the platter-like ellipsoid and the
elliptical tube, which is elliptical in cross-section, along
the axis of the p-orbitals of the base, but with the rings abstrac-
ted as squares or rectangles, much like the slab representation.

In addition to multiple representation of the bases, the
Nucleotides extension also offers a quick way to color
bases by the NDB convention (22) by selecting the ‘NDB
Colors’ button, with yellow for C, red for A, green for G,
cyan for U, and blue for T. Bases may also be colored
using the Rainbow tool, varying in color from blue at the
50 end to red at the 30 end of a chain, and may be colored
in numerous other ways, all standard within Chimera, includ-
ing by atom, by residue and by chain. The backbone ribbon
color can differ from the color of the base.

RESULTS

Several examples of our new representations of nucleic acids
can be seen in Figures 5–7, for both DNA and RNA molecules
and their complexes. (Refer to the figure captions for explan-
atory details.) The representations described here are easily
created from menu- and command-line options within Chi-
mera and the representations are drawn on-demand, quickly
and interactively, and publication-quality figures can be
generated from the interactive sessions.

DISCUSSION

This report describes a new set of tools for nucleic acid visu-
alization that are packaged as extensions to the UCSF Chimera
molecular visualization suite. The original goals of the exten-
sions were to emphasize base stacking, rearrange the ribbon
and attempt to create and extend the kinds of representations
often seen in textbooks (23). The new representations for
nucleic acids include filled bases, alternate representations

Figure 4. Base representations, including, from top to bottom, filled rings,
boxes, ellipsoids and elliptical tubes.

Figure 3. Backbone ribbon representations of B-form DNA (PDB identifier
1bna) (27). In the image on the left, the ribbon is drawn with the C10 atom,
located in the sugar, as the orientation atom and the plane of the ribbon along the
sugar. The image on the right shows the new nucleic acid ribbon representation,
with the ribbon axis rotated by 90�.
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of bases as slabs and ellipsoids, a modified ribbon backbone
and a new representation of sugar geometry. While other
approaches provide beautiful representations, e.g. the ribbon
representations of nucleic acids available in the Ribbons (24)
and DRAWNA (25) programs, and are integrated into existing,
interactive software packages, such as the nuccyl extension
(http://www.biosci.ki.se/groups/ljo/software/nuccyl.html) to
PyMol (http://pymol.sourceforge.net/), our tools are unique
in their representations of sugar pucker, base sidedness and

ease of changing between alternative conventions. As part of
UCSF Chimera, the Nucleotides extension is integrated with
a mature, well-supported software suite and can easily be
used in conjunction with Chimera’s chemical knowledge
(e.g. hydrogen bonding and atom typing) and multi-scale
models (26) for large molecules (i.e. ribosomes, viruses,
nucleosome core).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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