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Recent work has highlighted two main levels of global organiza-
tion of the Escherichia coli chromosome. Macrodomains are large
domains inferred from structural data consisting of loci showing
the same intracellular positioning. Replichores, defined by base
composition skews, coincide with the replication arms in normal
cells. We used chromosome inversions to show that the dif site,
which resolves chromosome dimers, only functions when located
at the junction of the replichores, whatever their size. This is the
first evidence that replichore polarization has a role in chromo-
some segregation. We also show that disruption of the Ter
macrodomain provokes a cell-cycle defect independent from
dimer resolution. This confirms the existence of the Ter
macrodomain and suggests a role in chromosome dynamics.
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INTRODUCTION
The Escherichia coli chromosome shows two main levels of global
organization, macrodomains (Niki et al, 2000) and replichores
(Blattner et al, 1997). Both levels were discovered recently,
whereas the presence of topological domains, long thought to be
important players, now seems to be related to local organization
of chromosomal DNA and gene expression (Deng et al, 2004;
Postow et al, 2004; Moulin et al, 2005). Replication runs from the
origin, oriC, to the diametrically opposed terminus region, which
is flanked by two series of replication terminators that arrest
replication forks in a polar manner, thus defining a 330-kb-long
region where termination must occur (Louarn et al, 2005). A
number of elements show a biased orientation following the
origin–terminus axis. This has led to the definition of replichores

as accounting for this global organization (Blattner et al, 1997).
Numerous oligonucleotide motifs display a skewed orientation
following replichores, which in two cases has functional implica-
tions (Salzberg et al, 1998; Lobry & Louarn, 2003). The RecBCD
complexes, which process double-strand breaks during their
repair, recognize a skewed octamer termed Chi. This is thought
to favour recombinational repair of breaks occurring behind
replication forks (Kuzminov, 1999; Gruss & Michel, 2001). A
second function of replichore organization has been suggested in
the resolution of chromosome dimers (Corre et al, 2000; Pérals
et al, 2000; Lobry & Louarn, 2003). Chromosome dimers are
produced by homologous recombination and resolved at division
by the Xer site-specific recombination system (reviewed by
Lesterlin et al, 2004). In Xer recombination, XerC and XerD
recombine pairs of dif sites, a 28-base-pair (bp)-long sequence
located in the terminus. Recombination requires an interaction of
XerCD/dif with FtsK, a DNA translocase associated with the
division septum (Steiner et al, 1999; Aussel et al, 2002; Yates et al,
2003). Dimer resolution also depends on the orientation of the
sequences flanking dif (Pérals et al, 2000). The molecular basis of
this phenomenon involves sequence polarization, certainly by
short, repeated oligomeric motifs thought to orient FtsK trans-
location towards the dif sites (Pérals et al, 2000; Capiaux et al,
2002; Corre & Louarn, 2002; Lobry & Louarn, 2003; Bigot
et al, 2004).

Macrodomains (domains hereafter) were discovered by cyto-
logical studies (Niki et al, 2000). They contain loci showing the
same intracellular positioning and choreography during the cell
cycle. The Ori domain is about 1 Mb and contains oriC and migS,
a site involved in its bipolar migration after replication (Yamaichi
& Niki, 2004). The Ter domain (Ter hereafter) is also about 1 Mb,
roughly centred on dif and flanked by two ‘nondivisible zones’
that are regions containing a complex patchwork of segments in
which inversions are deleterious (Rebollo et al, 1988; Guijo et al,
2001). Domain organization has recently received further support,
as recombination between two sites in the same domain is much
more frequent than between two sites in different domains (Valens
et al, 2004). Domains thus seem to be structural entities insulated
from the rest of the chromosome. In addition to Ori and Ter,
Valens and co-workers defined Left and Right, two new domains
on either side of Ter (Fig 1).
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We report an analysis of the effects of large chromosomal
inversions between the dif region and other positions of the
chromosome. The data reveal that dif resolves chromosome
dimers if it lies at the junction of the replichores, whatever their
relative size. This strongly suggests that polarization signals are
present all along the replichores and oriented following the oriC–dif
axis and proves a role for replichore organization in chromosome
segregation. Inversions also confirm the existence of Ter and
highlight the importance of its integrity for chromosome segrega-
tion and cell division.

RESULTS AND DISCUSSION
dif only acts at the replichore junction
Inversions of chromosome segments were constructed by site-
specific recombination catalysed by the bacteriophage l integrase
(Int), using a previously described system (Valens et al, 2004;
Methods). Briefly, an attP site and a lacZ::attB gene are inserted
into the chromosome as the two end points of the inversion (Fig 2).
The lacZ::attB gene encodes an active b-galactosidase, and
recombination between attP and attB splits lacZ::attB in two
inactive parts. This allows the screening of inversion-carrying
bacteria on X-gal-containing plates (Methods). The expression of
Int is controlled by temperature, which allows a precise control of
the level of recombination.

Starting from a strain deleted for the natural attB site, a pair of
strains was constructed by insertion of lacZ::attB on either side of

dif (positions zdd346 and zdd347, located at �696 and þ 994 bp,
respectively; Fig 2; Pérals et al, 2000). Appropriately oriented attP
sites were introduced into these strains (Methods; Fig 1). Every attP
insertion was combined with the two lacZ::attB constructs,
resulting in two strains that differ only by the position of dif with
respect to the inverted fragment (Fig 2). For clarity, inversions are
designated Plrþ (polarizationþ ) when the relative orientation of
dif and the inverted fragment are conserved (e.g. inversions
encompassing dif), and Plr� in the opposite case (Fig 2).

For all positions of attP assayed, both Plrþ and Plr� inversions
were obtained, the largest pair of inversions inverting half the
chromosome (2.27 Mb; metE in Fig 1). Inversions with attP sites
located inside Ter (intra-Ter inversions) were frequent and
obtained at low levels of Int expression. A temperature shift at
42 1C for 8 min was sufficient to yield 10–100% inverted clones.
In contrast, inversions with attP sites outside Ter (interdomain
inversions) were infrequent and required higher levels of Int
(30 min at 42 1C yielded less than 1% inversion). This is consistent
with data obtained using the same system and fixed att sites at
other positions inside Ter and strongly suggests that the Ter
domain is a structural unit spatially insulated from the rest of the
chromosome (Valens et al, 2004).

The growth rate, plating efficiency and cell morphology of
inversion-carrying strains were analysed (Figs 3–5; supplementary
Tables 1,2 online). Quantification of the growth defect provoked
by intra-Ter inversions was performed using a co-culture assay as
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described previously (Pérals et al, 2000). Inverted strains were co-
cultivated with their wild-type (noninverted) counterpart and the
ratio of the two strains was measured over 80 generations
(Methods). This provides a measure of the relative growth rate of
the two strains, which, in the case of dif inactivation, may be
expressed as a frequency of abortive division due to unresolved
dimers (Fig 3). Plr� inversions induced more severe viability
defects than their Plrþ counterpart, which suggests that dimer
resolution is at least partially inactivated by Plr� inversions.
Consistent with this hypothesis, inactivation of XerC—which
inactivates dimer resolution—and of RecA—which prevents dimer
formation—in both the Plrþ and Plr� strains abolished their
phenotypic difference (not shown). This confirms that dif needs to
lie at the junction of inversely polarized sequences to resolve
dimers and shows that sequences from different parts of Ter can
activate or inhibit dif activity depending on their orientation.

Interdomain inversions were obtained only in certain condi-
tions and reverted frequently (see below). This complicated the
viability analysis and made the use of the co-culture assay
unreliable. Nonetheless, it was always clear that strains carrying
Plrþ inversion show lower frequencies of abortive division and
grow faster than their Plr� counterparts (Fig 4; supplementary
Table 2 online). In each case, the Plrþ /Plr� difference was
abolished when both strains were rendered xerC�. Thus, whatever
the viability defect provoked by the Plrþ inversions, it was always
enhanced in its Plr� counterpart due to less efficient dimer
resolution. Interestingly, for both intra-Ter and interdomain
inversions, the Plrþ /Plr� difference varied for the different attP
positions (Figs 3,4; supplementary Tables 1 and 2 online). This
suggests that the different parts of the chromosome show different
density and/or quality of polarization. We conclude that DNA
sequences located at every position tested around the chromo-
some have the capacity to support or to inhibit dif activity
depending on their orientation with respect to dif. This strongly
suggests that the polarization signals at work in the dif region are

present all around the chromosome and oriented following the
oriC–dif axis. From this, it seems that replichores run precisely
from oriC to dif and have an important role in chromosome
organization and segregation.

Inversions reveal the domain organization
Inverted strains show different phenotypes that highlight the
domain organization of the chromosome. Intra-Ter inversions are
obtained in rich medium at 37 1C. They provoke little or no growth
defect and filamentation, which is largely due to dif inactivation in
Plr� inversions (Fig 3). In contrast, interdomain inversions are
only obtained in synthetic medium and at a low temperature
(30 1C). At a high temperature (37 or 42 1C), or in rich medium,
they provoke growth defects ranging from a significant increase in
generation time to an inability to form colonies, and they revert
frequently (Fig 4B). No simple correlation between the size of the
inverted fragment and the growth defect provoked was found.
However, it is interesting to note that the two inversions with attP
sites inside Ori (purA and metE; Fig 1) provoked noticeably strong
phenotypes (Fig 4).

To further separate the phenotypes due to unresolved dimers
from other effects, a new lacZ::attB construct was inserted at
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position zdd370, 23.2 kb from dif. Inversions from this position
should have no effect because this leaves enough polarized DNA
around dif to support its activity (Pérals et al, 2000). This construct
was combined with three attP insertions outside Ter (Fig 1).
Consistent with our prediction, strains with inversions from
zdd370 do not form filaments, which strongly suggests a full
efficiency in dimer resolution. However, like inversions from the
dif position, they are severely impaired for growth in rich medium
at high temperature, showing that this phenotype is not primarily
due to dif inactivation (not shown). Notably, a strain carrying
a large interdomain inversion from Ter, the Inv(29–78) inversion
(Fig 1), was previously reported to show a similar rich medium
sensitivity, and chromosome dimer resolution was shown to be
unaffected by this inversion (Louarn et al, 1985; Cornet et al,
1996). The growth defect provoked by interdomain inversions thus
seems to be due to disruption of the integrity of Ter or to the

abutting of Ter and non-Ter sequences. The borders of Ter as
defined here agree with those proposed in previous studies (Niki
et al, 2000; Valens et al, 2004).

Interdomain inversions delay cell division
Strikingly, strains with interdomain inversions all seem to show
the same cell-cycle defect. Exponentially growing cultures are
enriched in cells harbouring two partially segregated nucleoids,
generally separated by a constricting division septum (Fig 5).
These represent more than half of the cells carrying interdomain
inversions, whereas only 21% of wild-type cells are at this stage in
the same growth conditions. In permissive conditions, the vast
majority of cells carrying interdomain inversions eventually divide
and produce viable cells. In nonpermissive conditions, blocked
cells increase to 80%, division is more delayed and frequently
produces dead cells (not shown). The percentage of double cells
does not increase in Plr� conditions, which shows that the
phenotype is not due to unresolved dimers (Fig 5). Interdomain
inversions from zdd370 also provoked this phenotype (not
shown) as well as the Inv(29–78) inversion (Fig 5; Louarn et al,
1985; Cornet et al, 1996). Importantly, inactivation of Tus in the
Inv(29–78)-carrying strain only moderately lowered the over-
representation of cells in division (Fig 5). This phenotype is thus
not primarily due to the inversion of replication terminators.

The phenotype of division delay provoked by interdomain
inversions is unusual. Previously reported division blockage
usually occurs at the early steps of septum constriction: for
instance, during nucleoid occlusion or SOS induction (Wu &
Errington, 2004). Conversely, septum constriction on incompletely
segregated nucleoids leads to chromosome breaks: for instance, in
the case of unresolved dimers (Hendricks et al, 2000). We suggest
that a factor in chromosome segregation/cell division needs more
time to complete its role due to chromosome rearrangement and
acts as a checkpoint. Preliminary data show that this checkpoint
does not depend on FtsK (not shown).

Speculation
We have provided two important insights: (i) The functional
polarization detected around dif concerns the whole chromosome
and may therefore have roles in addition to dimer resolution: for
instance, in replication or rebuilding of structured chromosomes
after replication. It may also control chromosome plasticity, for
instance, by imposing a correct orientation of the incoming
DNA during horizontal transfer. (ii) Disruption of Ter disrupts the
coordination of late steps of the cell cycle, providing the first
example of the importance of domain organization in the cell
cycle. Our favourite view is that Ter, or a central subdomain, is the
preferred zone for final chromosome separation, decatenation and
dimer resolution. This could be controlled by sister chromosome
cohesion specific to this region. Delocalization or disruption of
the cohesive zone could slow chromosome separation and disrupt
its coordination with cell division.

METHODS
Strains and plasmids. Strains carrying Inv(28–78) were previously
described (Cornet et al, 1996). Other strains were derived from
XL13, a spontaneous StR derivative of MG1657 (MG1655
DlacMluI, DattB::Sp/Sm; Valens et al, 2004). lacZ::attB was cloned
from pOM5-attB (Valens et al, 2004) into the zdd346, zdd347 and
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zdd370 positions carried by plasmids pLN156, pFC40 and pFC89
(Cornet et al, 1996; Pérals et al, 2000), to yield plasmids pCL5,
pCL6 and pCL17, respectively. attP-Kn was cloned from
pNKBOR-attP (Valens et al, 2004) into the TcR determinant of

pFC68 (Cornet et al, 1996) to yield pCL14. These constructs were
introduced into the chromosome by the method described for this
family of plasmid (Cornet et al, 1994). attP-Kn was introduced into
the pre-existing insertion of Tn10 transposons or Tc fragments
(Rebollo et al, 1988; Guijo et al, 2001), using pCL14 or by P1
transduction from strains from the collection of Valens et al
(2004). The xerC::Gm allele (Aussel et al, 2002) was introduced
into strains by P1 transduction. Plasmid pTSA29-AK (Valens et al,
2004) carries a cI857-PR-int construct.
General procedures. Strains were grown in Luria broth or M9
broth (0.2% casamino acids; 0.4% glucose; Miller, 1992) and,
when required, ampicillin (25 mg/ml), kanamycin (50 mg/ml),
streptomycin (200mg/ml), gentamycin (7.5 mg/ml), chlor-
amphenicol (20 mg/ml) and 5-bromo-4-chloro-3-indolyl-b-D-
galactoside (X-gal; 80mg/ml). For microscopic observations,
bacteria were grown to optical density (OD)600¼ 0.6, incubated
for 30 mn at 30 1C in the presence of 5 mg/ml of 4,6-diamino-2-
phenylindol (DAPI), recovered in M9 broth and observed using a
Leica DMRB microscope.
Inversion procedure. Strains carrying the lacZ::attB and attP-Kn
cassettes (Lacþ ) were transformed with pTSA29-CXI-AK. Trans-
formants were grown overnight in liquid broth at 30 1C, diluted
100-fold, grown at 30 1C to OD600¼ 0.3, incubated at 42 1C to
induce Int expression, returned at 30 1C for 3 h to allow
segregation of recombinant chromosomes and plated on Xgal-
containing medium. After growth, white clones (Lac�) were
checked for the absence of attP and attB and the presence of attL
and attR by PCR.
Co-culture assay, generation time and plating efficiency. Gen-
eration times were deduced from growth curves OD600¼ f (t ) in
permissive growth conditions. Plating efficiencies were estimated
by growth at different temperatures on L- or M9-containing plates
of 10 ml spots of serial dilution of liquid overnight cultures (Fig 4).
For co-culture assay, Lac� inverted strains were co-cultivated
with XL13 (wt, Lacþ ), following the general procedure des-
cribed previously (Pérals et al, 2000). The viability index was
deduced from the slope of Lacþ /Lac�¼ f (generation) curves
(Fig 3). Frequencies of abortive division were calculated from
viability indexes.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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