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Characterization of yeast U1 snRNP A protein:
Identification of the N-terminal RNA binding
domain (RBD) binding site and evidence

that the C-terminal RBD functions in splicing

JIE TANG and MICHAEL ROSBASH

Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA

ABSTRACT

The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved
RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site
on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl
sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal
RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its verte-
brate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other
U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast
U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether

the splicing-relevant C-terminal RBD to the snRNP.

Keywords: RNA binding domain; small nuclear RNA; U1 snRNP; splicing

INTRODUCTION

The removal of intervening sequences from pre-mRNA
takes place in a large, dynamic nucleoprotein complex
called the spliceosome. As a key spliceosomal compo-
nent, Ul snRNP plays an essential role in pre-mRNA
splicing. It is the first snRNP to enter the spliceosome
assembly pathway in vitro and undergoes a base pair-
ing interaction with the consensus sequence at the
5’ end of the intron. This pairing contributes to 5’ splice
site definition and may commit the pre-mRNA to the
splicing pathway (Rosbash & Séraphin, 1991; Lamond,
1993; Madhani & Guthrie, 1994).

In higher eukaryotes, Ul snRNP contains one small
nuclear RNA (U1 snRNA) with several well-defined re-
gions that are conserved among different metazoan
species (Hamm et al., 1990). In addition to the 5" arm,
which base pairs with 5" splice sites (Kramer et al.,
1984), its stem-loop A and B regions are targets of the
U1l 70K and U1A proteins, respectively (Query et al.,
1989a; Scherly et al., 1989). Its Sm site (a short consen-

Reprint requests to: Michael Rosbash, Howard Hughes Medical
Institute and Department of Biology, Brandeis University, Waltham,
Massachusetts 02254, USA; e-mail: rosbash@binah.cc.brandeis.edu.

sus sequence near the 3" end) is the principal binding
site of the Sm protein complex (Lithrmann et al., 1990).

There have been extensive studies in vertebrate sys-
tems on the three U1 snRNP-specific proteins (U1C, Ul
70K, U1lA). U1C is needed for an efficient interaction
between Ul snRNP and pre-mRNA 5’ splice sites, but
it probably does not bind to U1 snRNA directly (Hein-
richs et al., 1990; Nelissen et al., 1991, 1994). U1 70K
has an RNA binding domain (RBD) at its N-terminus,
which is required for binding to Ul stem-loop A (Query
et al., 1989b). At its C-terminus is an arginine-serine-
rich region, which may participate in the regulation of
spliceosome assembly (Romac & Keene, 1995). The
U1A protein has two RBDs, but only the N-terminal
RBD is essential for binding to its target, stem-loop B
of Ul snRNA (Lutz-Freyermuth et al., 1990). The struc-
ture of this RBD has been solved, most recently as a co-
crystal with stem-loop B (Nagai et al., 1990; Hoffman
etal., 1991; Qubridge et al., 1994). It contains four anti-
parallel -sheets and two a-helices connected by loops.
The B-sheets form a platform for RNA binding and
some of the loops are important for binding specific-
ity (Jessen et al., 1991; Oubridge et al., 1994). In con-
trast, the function and binding target of the C-terminal

1058



Yeast U1A protein

RBD remain elusive. There is no evidence linking this
domain to splicing, and it may not even bind to RNA
(Lu & Hall, 1995). The only evidence pertaining to
function indicates that it interacts with the upstream
efficiency element of the SV40 late polyadenylation sig-
nal (Lutz & Alwine, 1994).

Because the basic pre-mRNA splicing mechanism is
not changed from yeast to human, the general splicing
machinery is also substantially conserved. In the yeast
Saccharomyces cerevisine, Ul snRNA is five times larger
than its metazoan counterpart, yet several of its func-
tionally important regions are conserved, e.g., the
5" arm, the Sm site, and stem-loop A (Kretzner et al.,
1990). Yeast U1 has more than 300 nt of extra sequence
in the middle of the molecule, which is conserved in
primary and secondary structure among different yeast
species (Kretzner et al., 1990). Also, yeast Ul snRNA
has a longer stem IlI, and lacks the well-defined meta-
zoan stem-loop B, the ULA protein binding site.

Due to the low abundance of the yeast U1 snRNP,
its protein components have not been fully character-
ized. However, some evidence suggested that yeast U1
snRNP contains at least seven specific proteins in ad-
dition to the common Sm proteins (Fabrizio et al.,
1994). To date, four specific yeast Ul snRNP proteins
have been cloned (Smith & Barrell, 1991; Liao et al.,
1993; Lockhart & Rymond, 1994; Kao & Siliciano,
1996). Two are yeast homologues of human U1 70K
and U1A proteins; the others, Prp39p and Prp40p,
have no counterpart in human Ul snRNP.

MUDI, the gene encoding the yeast Ul snRNP A
protein, was cloned in an enhancer screen (Liao et al.,
1993); the mud1 mutant was lethal in combination with
the mutant U1 snRINA used in the screen. Surprisingly,
the UlA protein is nonessential in a wild-type Ul
snRNA background. Like its human counterpart, it has
two RBDs. Both RBDs are conserved between yeast
and humans, and the C-terminal RBD shows even
higher conservation than the N-terminal one. Epitope-
tagged yeast UTA protein can co-immunoprecipitate
U1l snRNA from a splicing extract, indicating that it is
indeed a U1 snRNP protein (Liao et al., 1993). In this
paper, we address two issues: the binding site of veast
U1A on yeast U1 snRNA, and the function of the U1A
C-terminal RBD. A combination of in vivo and in vitro
approaches identifies the UlA binding site, which is
considerably different from its metazoan counterpart.
We also provide the first evidence that the C-terminal
RBD functions in splicing.

RESULTS

In vivo chemical footprinting of U1 snRNA

Dimethyl sulfate (DMS) enters living cells and methyl-
ates nucleic acids (Climie & Friesen, 1988; Ares & lgel,
1990). Total RNA was extracted from the DMS-treated

1059

strains, and modification sites were detected by reverse
transcription with Ul-specific primers. Reverse tran-
scriptase stops before methylated N1-A and N3-C res-
idues (Inoue & Cech, 1985; Moazed et al., 1986). By
comparing the DMS modification pattern of the wild-
type and AMUDI strains, we noticed that only two re-
gions on Ul snRNA were modified in the knock out
strain, but protected in the wild-type strain (Fig. 1).
One is a large loop (loop Illc) on Ul snRNA stem III,
and the other is the single-stranded region opposite to
loop Illc (Fig. 2A). These represent the candidate loca-
tion for the UTA binding site.

S. cerevisiage Ul snRNA stem III is much larger than
its metazoan counterpart. However, loop Illc and its
opposite single-stranded region are reasonable U1A
binding-site candidates because their location relative
to the rest of the yeast molecule is similar to that of hu-
man stem-loop B relative to the rest of the human mol-
ecule (Fig. 2B). The yeast loop Illc is much larger than
the human U1 snRNA loop B (21 versus 10 residues),
but its size is conserved in another yeast species, Kluy-
veromyces lactis (Kretzner et al., 1990). One striking fea-
ture of this loop is its five tandem CA repeats. A similar
sequence pattern is found in K. lactis Ul snRNA loop
Illc (three CA pairs), but not in human loop B. When
part of the loop Illc sequence was changed to the cor-
responding K. lactis Ul snRNA sequence, or the Cs in
the CA repeats were changed to Gs (Fig. 3, KL and
GA, respectively), neither the loop nor the single-
stranded region opposite to it were protected from
DMS methylation (Fig. 4). This indicates that the pro-
tection is sequence specific.

To see if the in vivo DMS protection on loop Illc re-
quires the wild-type yeast ULA protein sequence, we
made a series of mutants. The crystal structure of the
human U1A N-terminal RBD and U1 stem-loop B com-
plex demonstrated that the four 3-sheets interact exten-
sively with RNA, and loop 3 protrudes through the
RNA loop (Wharton et al., 1994). Taking this structure
as a guide and to minimize structural perturbations, we
changed the sequences in the N-terminal RBD 31, 32,
and (3 regions into their corresponding human se-
quences (Fig. 5A: Ng1, N32, Nj33). Because the loop
3 sequence is identical between human and yeast UTA
(Liao et al., 1993), it was changed to the closely related
human U2B” N-terminal RBD loop 3 sequence (Bent-
ley & Keene, 1991; Fig. 5A: NL3). According to protein
secondary structure predictions (Chou and Fasman
method), yeast ULA has a much longer loop 1 than hu-
man U1A (see Fig. 5 and the Discussion). We made a
point mutation that recapitulates the mudI-4 mutant,
which occurs in the predicted loop 1 region (Fig. 5A:
NL1; see the Discussion).

When these mutagenized UlA proteins were ex-
pressed in the AMUDI strain, none of them could res-
cue the DMS phenotype completely (Fig. 6, lanes 2-6).
N2, NB3, NL1, and NL3 (lanes 3-6) are similar to the
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FIGURE 1. In vivo DMS footprinting of UT'snRNA. Wild-type strain
(lanes 3-6) or AMUDI strain (lanes 7-10) grown in 25 mL rich
medium was treated with 0 (lanes 3, 7), 50 gL (lanes 4, 8), 100 uL
(lanes 5, 9), and 200 pL (lanes 6, 10) of 1:2 diluted DMS. Total yeast
RNA was extracted from DMS-treated strains and DMS modification
patterns were assayed by reverse transcription with Ul-specific
primer DT 2502. Extra modification regions for the AMUDT strain are
indicated by arrows. Lower arrow: U1 snRNA loop lllc; upper arrow:
single-stranded region opposite to loop [llc. Lanes 1, 2, sequence lad-
der of Ul snRNA.

AMUDI phenotype (lane 8, vector only), whereas the
N@1 phenotype (lane 2) is in between that of AMUD1
and wild type (lanes 8 and 9). On the other hand, the
C-terminal RBD deletion generates a DMS protection
pattern indistinguishable from that of wild-type U1A
(Fig. 6, compare lane 7 with lane 9), consistent with the
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notion that the human UlA C-terminal RBD plays no
role in the binding of UlA to its Ul snRNA target
(Lutz-Freyermuth et al., 1990).

In vitro nuclease S1 protection

To confirm that ULA protein binds directly to Ul loop
Illc, we performed in vitro binding studies with puri-
fied protein and RNA. These assays require relatively
large amounts of soluble protein. We overexpressed
the UTA N-terminal RBD in several Escherichia coli ex-
pression systems, but the protein was not soluble (data
not shown). We finally succeeded with a thioredoxin
fusion system (Novagen), which has been used to ex-
press a number of mammalian cytokines and growth
factors (LaVallie et al., 1993).

Full-length Ul snRNA was incubated with TrxA-
U1A fusion protein and then subjected to partial diges-
tion by nuclease S1. Nuclease S1 specifically cuts
single-stranded RNA, and the cleavage sites can be as-
sayed by reverse transcription with U1 snRNA-specific
primers. As shown in Figure 7 (upper and lower ar-
rows), loop Illc and the opposite single-stranded re-
gion are protected by the ULA protein, consistent with
the in vivo DMS protection data. In addition, loop Illa
(Fig. 7) and loop VIII (data not shown) are also pro-
tected from digestion. We suspect that these latter two
sites may be due to nonspecific protein binding, be-
cause higher protein concentrations were required for
the protection of loops Illa and VIII than for loop Illc
and the single-stranded region opposite to it.

Nitrocellulose filter binding assay

The 122-nt U1 snRNA stem III and its derivatives (see
Fig. 3D,E,F) were synthesized in vitro and their bind-
ing to purified TrxA-U1A was assayed on nitrocellulose
paper. The K, for full-length Ul snRNA isin the 107°M
range, and the K, for Ul stem Il is even higher. In
contrast, binding between the human U1A N-terminal
RBD and human U1 stem-loop B is much tighter, with
a Ky of 107" M (Hall & Stump, 1992). But a 3-nt mu-
tation (mut3) or a 6-nt deletion (A6) in loop Illc weak-
ened U1A binding, and a 13-nt deletion (A13) almost
abolished the binding (Fig. 8A). In a parallel experi-
ment, protein binding was competed with various non-
radioactive RNAs (wild-type stem III, mut3, A6, and
A13). As expected, mut3 and A6 competed less well
with UlA/stem Il binding than the wild-type se-
quence, and A13 failed to compete (Fig. 8B). These re-
sults confirmed that U1 loop Illc is a major binding site
of yeast UTA.

In vivo splicing assay

A sensitive in vivo assay was applied to compare the
effects of the different ULA mutants on pre-mRNA
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splicing. An inefficiently spliced artificial intron se-
quence (Acc) was inserted into the CUP1 gene, which
encodes a copper chelator protein and allows cells to
grow on copper-containing media in a dose-dependent
manner (Lesser & Guthrie, 1993; Stutz & Rosbash,
1994; Fig. 9A). With this CUP1-ACC reporter, splicing

efficiency can be assayed quantitatively by the growth
of the strain on different copper concentrations.

In this assay, the AMUDI strain showed much lower
copper resistance (0.2 mM) than the wild-type stain
(1.2 mM) (Fig. 9B), consistent with previous observa-
tions using an Acc intron-containing f-galactosidase
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FIGURE 4. DMS protection of U1 snRNA loop Illc is sensitive to se-
quence changes in the loop. Wild-type Ul snRNA was replaced by
mutant Ul snRNAs by plasmid shuffling in the mudI-3 strain. Strains
carrying KL mutant U1 (lane 4), GA mutant U1 (lane 3), and wild-
type U1 (lane 2) were treated with DMS. Total RNA was extracted
and assayed by reverse transcription with Ul snRNA specific primer
DT 2502. Lanes 5, 6, sequence ladder of wild-type Ul snRNA; lane 1,
negative control without DMS treatment. Lower arrow: loop Illc
region; upper arrow: single-stranded region opposite to loop Illc.

gene as a reporter (Liao et al., 1993). A UIA mutant
series was then assayed for its ability to rescue the low
copper resistance (i.e., the poor splicing efficiency) of
the AMUDI strain (see Fig. 5). None of the N-terminal
RBD mutants fully rescued the phenotype, consistent
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with their inability to rescue the DMS protection
phenotype (Fig. 6). Surprisingly, the C-terminal RBD
deletion mutant was indistinguishable from the AMUD]1
strain background, i.e., it showed no evidence of bio-
logical activity (Fig. 9B), in contrast to its complete res-
cue of the DMS protection phenotype. Moreover, Cj31
and Cg3, two site-specific mutants in the C-terminal
RBD (amino acid residues were changed to the corre-
sponding human U1A sequence in an attempt to min-
imize structural perturbations; see Fig. 5B legend for
details) showed a comparable copper resistance to the
C-terminal RBD deletion.

We tested several other inefficient introns in the
same assay, including a 5" splice site mutant, a branch
point mutant, and interruption of a base pairing region
within the intron (Libri et al., 1995). All showed simi-
lar splicing defects due to deletion or mutation of the
C-terminal RBD (data not shown), suggesting that the
C-terminal RBD's contribution to splicing is not limited
to certain intron types. Taken together, the data sug-
gest that the C-terminal RBD as well as the N-terminal
RBD is important for splicing.

Synthetic lethal between mutant U1 snRNAs
and mutant U1A proteins

To test further the in vivo function of the yeast UTA
protein, we made several additional alterations to the
MUD1 gene and assayed their genetic interactions with
mutant Ul snRNAs. We reported previously that the
mud1-1 allele, which only encodes (the first) 84 amino
acids of yeast U1A protein, is synthetic lethal with two
Ul snRNA mutants, U1-4U and AYC (Liao et al., 1993).
Figure 10 reports the growth phenotypes of U1-4U or
AYC strains transformed with different mud]1 mutants.
Three phenotypic classes were observed. First, neither
human U1A (the veast ULA coding sequence replaced
by the human sequence) ar a H-Y chimera (the yeast
N-terminal RBD replaced by the human N-terminal
RBD) shows biological activity in this assay; this pre-
sumably reflects the limited conservation between
human and veast UTA N-terminal RBDs. Second, the
ACRBD gene (deletion of the C-terminal RBD) was
lethal in combination with Ul-4U, but grew slowly
with AYC. The Y-H chimera (the yeast C-terminal RBD
replaced by the human C-terminal RBD) had the same
phenotype as ACRBD, suggesting that even the more
closely related human UlA C-terminal RBD shows no
biological activity in yeast. Third, Cf3 (a 3-amino acid
change in the C-terminal RBD (3 region) was lethal
with Ul-4U, but grew normally with AYC. This allele-
specific effect could be due to the quantitative differ-
ence between the AYC and U1-4U mutants, i.e., AYC
may be a weaker mutant than U1-4U. Alternatively, be-
cause the Ul-4U mutant has an altered Ul snRNA/5’
splice site base pairing interaction, one can speculate
that the U1A C-terminal RBD also contributes, directly
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FIGURE 5. Site-specific mutagenesis of yeast ULA protein. A: Yeast U1A N-terminal RBD sequence with -sheets, a-helices,
and loops indicated below (mutagenized regions are underlined). Mutations made in N31, NL1, N32, NL3, and Ng3 re-
gions are shown above the sequence line. B: Yeast UTA C-terminal RBD sequence with 3-sheets, a-helices, and loops in-
dicated below (mutagenized regions are underlined). Mutations made in C81, CL3, C33, and Cf34 regions are shown above

the sequence line.

or indirectly, to some feature of this base pairing
interaction.

DISCUSSION

DMS has been used to probe RNA structure both in
vitro (Krol & Carbon, 1989) and in vivo (Ares & Igel,
1990; Zaug & Cech, 1995). However, there has been
only limited use of DMS in detecting protein-RNA in-
teractions (Powers et al., 1988) because only a subset
of protein-RNA interactions protect the RNA from
DMS modification (Muralikrishna & Wickstrom, 1989;
Moazed et al., 1995). This is due, in turn, to the fact
that the DMS molecule is small so that access to the
RNA is often not occluded by protein binding. For ex-
ample, yeast U1 snRNA loop Il was modified by DMS
in vivo (data not shown), in spite of the binding of
yeast U1 70K protein (Kao & Siliciano, 1992). Presum-
ably, U1 70K protein does not protect the methylation
sites on adenines and cytosines of loop II. In our study,
most residues in loop Illc are protected in vivo as well
as in splicing extracts (data not shown). We cannot rule
out the possibility that a protein complex rather than
U1A alone is binding to this loop and protecting it from
DMS modification. However, we suspect that there are
direct interactions between UTA protein and loop Illc,
based on the in vitro experiments and the observation
that DMS protection is sensitive to modest sequence
changes in both UTA N-terminal RBD and U1 loop Illc.

The deletion of the C-terminal RBD has no effect on
the DMS protection pattern, i.e., the truncated UTA
functions as well as the wild-type protein in protecting
loop Illc from modification. This is consistent with
studies on human UTA that the C-terminal RBD is not
required for U1 snRNA binding (Scherly et al., 1989;
Lutz-Freyermuth et al., 1990). There has been consid-
erable speculation on the roles of proteins with multi-
ple RBDs. In several cases, in vitro binding assays have
shown that multiple RBDs worked in cis to achieve spe-
cific or high-affinity binding to single target RNAs
(e.g., U2AF [Zamore & Green, 1991], hnRNP A1 [Sha-
moo et al., 1994], and sex-lethal [Kanaar et al., 1995]).
Based on the studies on yeast and human UIA, we
favor an “in trans” model for U1A, i.e., the N-terminal
RBD tethers the protein to Ul snRNA, whereas the
C-terminal RBD touches other RNAs or proteins.

With a soluble thioredoxin fusion protein, we were
able to demonstrate in vitro binding to full-length U1
snRNA or Ul stem III. Although several changes in
loop Illc affect yeast ULA N-terminal RBD in vitro bind-
ing (Fig. 8), more modest changes have little or no ef-
fect, e.g., there was no detectable binding defect when
all the Cs in the five tandem CA repeats were changed
to Gs (data not shown). Because the GA mutant elim-
inates in vivo protection, it is possible that the UTA
protein binds to its target in two steps. The first is an
interaction, perhaps with the RNA backbone, that is
not tight enough to prevent DMS modification. The
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second is sequence-specific and results in a tight inter-
action with the loop. The fusion protein or the in vitro-
transcribed RNA may not be in an optimal or proper
conformation, so the in vitro assays may detect only
the first step, which is relatively loose and insensitive
to modest sequence changes. (The fusion protein could
not protect loop Illc from DMS modification in vitro;
data not shown.) This hypothesis is consistent with
recent structural studies on the complex between the
human UlA N-terminal RBD and the ULA mRNA 3’
untranslated region, which revealed a two-step recog-
nition mechanism. First, the human U1A N-RBD con-
tacts its RNA target with loop 1 and loop 3, inducing
conformational changes in both the protein and RNA.
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FIGURE 6. DMS protection of U1 snRNA loop Illc is
sensitive to sequence change in the UTA protein.
AMUDYI strains carrying different mutagenized UTA
proteins were treated with DMS and modification pat-
terns were assayed as described previously. Lane 1,
negative control without DMS treatment; lanes 2-6, dif-
ferent site-specific mutants within the N-terminal RBD
(as shown above the gel and see Fig. 5 for detail); lane 7,
C-terminal RBD deletion; lane 8, vector only; lane 9,
wild-type U1A; lanes 10, 11, sequence ladders of Ul
snRNA. Lower arrow: loop lllc region; upper arrow:
single-stranded region opposite to loop Illc.

11

Second, the 3-sheets interact extensively with the RNA
bases (Allain et al., 1996). This “induced fit” mecha-
nism may also apply to yeast UTA binding. Yet, it is
equally likely that additional protein factors contribute
to high-affinity UTA binding in vivo, e.g., human U2A’
helps U2B” bind to its target (Scherly et al., 1990; Boe-
lens et al., 1991).

The combination of the binding and protection re-
sults indicates that Ul snRNA loop Illc is the major
binding site of the yeast ULA N-terminal RBD. Its lo-
cation relative to the 70K binding site, the 5 arm, and
the Sm site is comparable to that of the human U1A
binding site. We interpret this as an indication that the
relationship of yeast U1A to the rest of the snRNP (i.e.,
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the protein-protein interactions it undergoes), as well
as its contribution to U1 snRNP function, is conserved
between yeast and humans.

Another yeast protein in the UTA-U2B” protein fam-
ily, yeast U2B”, has been cloned recently, and its bind-
ing site has been defined as yeast U2 snRNA loop IV
(Polycarpou-Schwarz et al., 1996; Tang et al., 1996).
Yeast U2B” is highly conserved with human U1A and
U2B”, consistent with the phylogenetic conservation
among their binding sites, i.e., all three binding sites
are well-defined stem-loops with several key conserved

. Tang and M. Rosbash

FIGURE 7. U1A protein protects Ul snRNA loop Illc and
other regions from nuclease 51 digestion. In vitro-transcribed
U1 snRNA was incubated with increasing amounts of puri-
fied TrxA-U1A fusion protein and digested by nuclease 51.
Digestion patterns were assayed by reverse transcription with
UT snRNA-specific primer DT 2502. Lane 1, negative control
without nuclease 51 treatment; lanes 2-6, nuclease S1 diges-
tion of U1 snRNA bound by TrxA-U1A fusion protein; lanes
7, 8, sequence ladders of Ul snRNA. Protein concentrations
are shown above the gel. Regions protected by protein are in-
dicated by arrows. Lower arrow: loop Illc; middle arrow: loop
[lla; upper arrow: single-stranded region opposite loop Illc.

nucleotides. In contrast, yeast UTA has an unusual
N-terminal RBD with relatively poor conservation with
other UTA-U2 B” family members. A unique feature of
this RBD is its extra 34 residues, which we have placed
in loop 1, between the 1 and a1 regions. Based on a
sequence alignment between human and yeast U1A,
these extra sequences were assigned originally to
loop 2 (between «1 and 52; Liao et al., 1993). However,
secondary structure prediction suggests that the extra
sequences are more likely part of loop 1 (between 51
and «1). A much larger loop 1 may coevolve with the



Yeast U1A protein

A 125 =
100
—o— WT
757 ———  mut3
0T A6
50 -
& A1}
25 =
0 1 1 T T 1
El v b ) = protein (ng/pl)
o~ ~
B 150 —
100 —— WT
—— mu3
—— a6
50 =
—F A13
01 T T T T
= = % E § Competitor

apparently much larger binding site in UT snRNA, i.e.,
the loop Illc. Three arguments support the importance
of this extra protein region in binding: (1) the NL1
point mutant failed to protect loop lllc from DMS mod-
ification in vivo (Figs. 5, 6); (2) the mud1-4 mutant is
synthetic lethal with mutant Ul snRNA (Liao et al.,
1993); and (3) this point mutation has an in vivo splic-
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FIGURE 8. U1A protein binds to Ul snRNA stem III specifically.
A: In vitro-transcribed, *P-labeled U1 stem III and its mutant
versions were incubated with increasing amounts of purified
TrxA-U1A fusion protein and bindings was assayed on a nitro-
cellulose filter. Relative counts retained on the filter were plot-
ted against protein concentration. The highest binding point was
arbitrarily set to 100 and the other points were determined accord-
ingly. Two independent experiments were averaged with the bars
showing the actual values from these two experiments. At some
points, the results from two experiments are so close that the bars
may not be seen. B: Binding of UTA protein to **P-labeled U1
snRNA stem I1T was competed with a 4-, 20-, or 100-fold times
excess of cold RNA. Relative counts retained on the filter were
plotted against the amount of cold competitor. Two independent
experiments were averaged and plotted as in A.

ing phenotype (Fig. 9). Based on the cocrystal struc-
tures of human UlA (Oubridge et al., 1994; Allain
et al., 1996), we speculate that the yeast UlA loop 1
may form extensive contacts with loop Illc to strengthen
the binding interaction.

Because MUD1 is a nonessential gene, it is not sur-
prising that its absence does not cause any detectable

FIGURE 9. In vivo splicing assays. A: CUPI-ACC re-
porter gene. CUP1 gene is interrupted by an artificial
intron {Acc) so that only spliced mRNA can encode
functional CUP1 product. B: Different yeast ULA mu-
tants were introduced into the 72A/ACUPT strain car-
ryving the CLIPT-ACC reporter gene. Splicing efficiency
of each strain was assayed by its ability to grow on
copper-containing medium.
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splicing defect with wild-type introns that have been
spliced efficiently. Only with inefficiently spliced in-
trons can we detect a further splicing decrease in the
AMUDI strain. With this assay, it appears that both
RBDs are important for splicing. Knowing that all the
N-terminal RBD mutants used in this assay failed to
protect loop Illc from DMS modification (Fig. 6), we as-
sume that the effects of N-terminal RBD mutants in
splicing reflect their poor binding to U1 snRNA and
concomitant effects on Ul snRNP function. On the
other hand, deletion of the C-terminal RBD has no
effect on binding, so effects of C-terminal RBD mu-
tants on splicing probably reflect a different functional
contribution of this domain. We suggest that the
N-terminal RBD serves to tether the splicing-relevant
C-terminal RBD to the snRNP. In any case, this is the
first evidence that the UTA C-terminal RBD functions
in pre-mRNA splicing.

AYC and Ul-4U are the mutant Ul snRNAs that
were used for genetic screening and the subsequent
cloning of the MUDT gene (Liao et al., 1993). AYC,
with a large deletion in the middle of the Ul molecule,

J. Tang and M. Rosbash

AYC

FIGURE 10. Synthetic lethality between mutant
U1 snRNAs and mutant UTA proteins. The
- mitd1-1 host strain carries wild-type and mutant
; U1 snRNAs (U1-4U or AYC) on URA3 and TRP1
plasmids, respectively. A series of UTA mutants
was introduced into the host strain and synthetic
lethality between mutant Ul snRNAs and mu-
tant UTA proteins was assayed on 5-FOA plates,
= on which the wild-type Ul snRNA was de-
pleted. +, strain lives without wild-type U1
snRNA; —, strain dies; +/-, strain grows slowly.

may change the overall conformation of the snRNA
and weaken the integrity of the snRNP (Liao et al.,
1990). On the other hand, Ul-4U is a point mutation
within the 5 arm. It affects base pairing with the
5’ splice site, but may have little effect on U1 snRNP in-
tegrity (Séraphin & Rosbash, 1990). Yeast UTA protein
is required when AYC or U1-4U is the only functional
U1 RNA in the strain. An optimistic interpretation is
that the synthetic lethal assays with AYC and U1-4U
reflect UTA’s role in, respectively, the structure and
function of the snRNP. Because of the poor conserva-
tion between the human and yeast U1A N-terminal
RBDs, as well as the large differences in their binding
sites, it is perhaps not surprising that the human U1A
N-terminal RBD cannot replace its yeast counterpart to
rescue the synthetic lethal phenotype. However, the
more extensive conservation between the C-terminal
RBDs makes it more surprising that this region of
the human protein shows no evidence of biological
activity. The synthetic lethality between U1-4U and
U1A C-terminal RBD mutants suggests that the UTA
C-terminal RBD may affect the UT snRNP-pre-mRNA
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interaction. Identifying its binding site, either on RNA
or on other proteins, is a major goal in further charac-
terization of UTA C-terminal RBD function.

MATERIALS AND METHODS

Strains and plasmids

The MUD1 knock out strain 72A (MATa, leu2-112, trp1-289,
ura3-52, argd, ade2, MUD1D::ADE2) was obtained by replac-
ing the MUD1 coding sequence with the ADE2 gene in strain
MGD353-13D (Séraphin et al., 1988). The MUD1 knock out,
copper-sensitive strain 72A/ACUP1 was derived from strain
72A with the deletion of the endogenous CUPT gene as de-
scribed previously (Stutz & Rosbash, 1994).

All MUDT mutants were made by site-specific mutagenesis
from plasmid pXL78, which carries the wild-type MUD1 gene
on a LEU2-CEN plasmid vector (p366).

All U1 snRNA mutants were made by site-specific muta-
genesis from plasmid pXL8 (Liao et al., 1990).

The DNA sequence coding for the first 136 amino acids of
the yeast U1A protein was PCR amplified and cloned into the
pET-32b vector (Novagen), giving rise to pTrx-U1A plasmid
for overexpressing thioredoxin-UTA N-RBD (TrxA-U1A) fu-
sion protein in E. coli.

The copper reporter gene CUP1-ACC was carried by yeast
vector pG-1 (TRP1, 2-micron).

In vivo DMS modification

In vivo DMS modifications were done as described previ-
ously (Ares & Igel, 1990), except 50, 100, or 200 uL of DMS
(diluted 1:2 with ethanol) were added to 25-mL yeast cultures
(ODgoo = 1) and incubated for 4 min at 30 °C. RNA was ex-
tracted from DMS-treated cells by hot phenol extraction (Ares
& Igel, 1990). Ten micrograms of total yeast RNA from each
sample were analyzed by reverse transcription with ¥P-
labeled Ul-specific primers and the products were separated
by electrophoresis on 5% denaturing polyacrylamide gels.
Four UT specific primers were used to scan 95% of the Ul
snRNA molecule and only reactions with primer DT 2502 (nt
266-287) are shown in this paper.

In vitro nuclease S1 protection

TrxA-UIA fusion protein was induced at 25 °C in E. coli host
strain BL21. The soluble portion of the fusion protein was pu-
rified through a nickel affinity column. Full-length yeast U’
snRNA was in vitro transcribed with T7 RNA polymerase and
gel purified. In 50 pL S1 buffer (10 mM Tris-HCl, pH 5.5,
10 mM MgCl,, 200 mM KCI, TmM ZnCl,, 0.1 ug/ulL tRNA,
and 0.1 pg/ul BSA), increasing amounts of purified protein
were incubated with about 1 pmol U1l snRNA for 15 min at
room temperature. Nuclease S1 (5 units) was added subse-
quently to the reaction and incubated for 15 min. The nuclease
51 digestion was stopped by phenol-chloroform extraction
and ethanol precipitation. RNA samples were assayed by re-
verse transcription with Ul-specific primers and the products
were analyzed on 5% denaturing polyacrylamide gels. Four
Ul-specific primers were used to scan 95% of the Ul molecule,
and only reactions with DT 2502 are shown in this paper.
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Nitrocellulose filter binding assays

Ul snRNA stem III and its mutant versions were in vitro tran-
scribed by T7 RNA polymerase and labeled with *2P-oUTP.
I[ncreasing amounts of purified TrxA-U1A protein were in-
cubated with **P-labeled RNA (10% cpm) in 50 uL buffer A
(10 mM Tris-HCI, pH 6.8, 2 mM MgCl,, 200 mM KCl, 0.1 mM
EDTA, 0.1 pg/uL tRNA, and 0.1 pg/pL BSA) at room temper-
ature for 30 min. The reactions were filtered through nitro-
cellulose under vacuum and the membrane was washed once
with buffer A prior to exposure on a phosphor-imager screen,
The signals were quantitated in a Bio-Rad molecular imager
system.

The competition assay was done as described above except
that TrxA-U1A protein (15 ng/uL) was mixed with 10° cpm
of #P-labeled wild-type Ul stem I1T RNA in the presence of
increasing amounts of different cold RNA competitors.

In vivo splicing and synthetic lethal assays

The copper growth assays were performed as described pre-
viously (Stutz & Rosbash, 1994). A MUD1 and CUP1 double
knock out strain (72A/ACUP1) was used as host strain.

The synthetic lethal assays were performed as described
previously (Liao et al., 1993). The host strain was mud1-1 with
GAL-UT (on a URA3 vector) and U1-4U or AYC (on a TRP1
vector),
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