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Synthetic lethal interactions with conditional
poly(A) polymerase alleles identify LCP5,
a gene involved in 18S rRNA maturation

THOMAS WIEDERKEHR, RENÉ F. PRÉTÔT, and LIONEL MINVIELLE-SEBASTIA
Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland

ABSTRACT

To identify new genes involved in 3 9-end formation of mRNAs in Saccharomyces cerevisiae , we carried out a screen
for synthetic lethal mutants with the conditional poly(A) polymerase allele, pap1-7. Five independent temperature-
sensitive mutations called lcp1 to lcp5 (for l ethal with c onditional pap1 allele) were isolated. Here, we describe the
characterization of the essential gene LCP5 which codes for a protein with a calculated molecular mass of 40.8 kD.
Unexpectedly, we found that mutations in LCP5 caused defects in pre-ribosomal RNA (pre-rRNA) processing, whereas
mRNA 39-end formation in vitro was comparable to wild-type. Early cleavage steps (denoted A 0 to A 2) that lead to the
production of mature 18S rRNA were impaired. In vivo depletion of Lcp5p also inhibited pre-rRNA processing. As a
consequence, mutant and depleted cells showed decreased levels of polysomes compared to wild-type cells. Indirect
immunofluorescence indicated a predominant localization of Lcp5p in the nucleolus. In addition, antibodies directed
against Lcp5p specifically immunoprecipitated the yeast U3 snoRNA snR17, suggesting that the protein is directly
involved in pre-rRNA processing.

Keywords: ribosome biogenesis; translation; U3 snoRNP

INTRODUCTION

The poly(A) tail found at the 39 end of eukaryotic
messenger RNAs (mRNAs) is an essential modifica-
tion that occurs at the posttranscriptional level (for
reviews, see Keller, 1995; Manley & Takagaki, 1996;
Wahle & Keller, 1996; Colgan & Manley, 1997; Keller
& Minvielle-Sebastia, 1997)+ Besides its probable in-
volvement in nucleocytoplasmic transport and RNA
localization, the poly(A) tail plays important roles in
mRNA stability and in translation (Gallie, 1991; Gallie
& Tanguay, 1994; Caponigro & Parker, 1995; for re-
views, see Sachs & Wahle, 1993; Jacobson & Peltz,
1996; Sachs et al+, 1997)+ The function of the poly(A)
tail in translation is mediated by Pab1p (Sachs & Da-
vis, 1989; Tarun & Sachs, 1995)+ Synthetic lethal in-
teraction and coimmunoprecipitation studies showed
that the eukaryotic translation initiation factor eIF4G
binds Pab1p and that this binding is required to stim-
ulate translation of polyadenylated mRNAs (Tarun &
Sachs, 1996; Tarun et al+, 1997)+ Because eIF4G also
interacts with the cap-binding protein eIF4E (Haghighat

& Sonenberg, 1997), a direct link between the 39 and
the 59 ends of the mRNA is likely to occur+ Consis-
tent with these observations, discrimination against
poly(A)-deficient mRNAs was observed during trans-
lation when synthesis of ribosomal subunits was im-
paired (Proweller & Butler, 1997)+

Synthetic lethality (Huffacker et al+, 1987; Guarente,
1993) has been shown to be an efficient genetic method
in the analysis of multisubunit complexes involved in
splicing, rRNA processing, or nucleopore assembly
(Frank et al+, 1992; Venema & Tollervey, 1996; Doye &
Hurt, 1997)+ In order to find new factors potentially in-
volved in mRNA 39-end formation, we have screened
for mutations that confer synthetic lethality with a poly(A)
polymerase temperature-sensitive mutant, pap1-7+We
have restricted our analysis to mutations that conferred
a temperature-sensitive phenotype because such mu-
tants would likely display a deficient 39-end processing
activity on their own+ We have isolated five synthetic
lethal, temperature-sensitive lcp mutations (for lethal
with conditional pap1 allele)+ Here we report the clon-
ing and characterization of LCP5+ Surprisingly, this
mutation impaired the processing of ribosomal RNA
precursors, but showed normal pre-mRNA 39-end pro-
cessing activity+
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Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-
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The maturation of rRNA involves a complex series of
modifications, notably pseudouridinylation,methylation,
and both exo- and endonucleolytic cleavage events
that lead to the formation of 18S, 5+8S, and 25S rRNAs+
18S maturation involves cleavage at three sites in the
primary transcript, denoted A0 to A2+ The pre-rRNA is
processed at sites A1 and A2, 59 and 39 of the mature
18S rRNA, respectively+ Cleavage at site A2 separates
the pathways for maturation of small and large ribo-
somal subunit rRNAs+

In lcp5-1 cells the early cleavage steps A0 to A2

were affected+ The mutant also showed reduced
amounts of polysomes and a strong increase in free
60S ribosomal subunits due to decreased 40S levels+
In addition, depletion of the protein in vivo inhibited
pre-rRNA processing that led to a depletion of 40S
subunits, a concomitant 60S accumulation, and de-
creased amounts of polysomes+ Consistent with its
role in pre-rRNA processing, we found that the Lcp5p
protein is located in the nucleolus and is associated
with snR17, the yeast homologue of snoRNA U3+

RESULTS

Synthetic lethal screen identifies a gene
with unknown function

To identify further components of the pre-mRNA 39-end
processing machinery, a screen for synthetic lethal
mutations with the poly(A) polymerase temperature-
sensitive allele pap1-7 was carried out (Fig+ 1A)+ Mu-
tant strains that did not grow in the absence of the
wild-type PAP1 gene were identified on plates contain-
ing 5-fluoroorotic acid [5-FOA; Figs+ 1B,C]+ We ob-
tained 26 temperature-sensitive mutants+ For five of
them, tetrad analysis demonstrated a genetic linkage
between the temperature- and 5-FOA-sensitive pheno-
types+ These mutations, termed lcp1 to lcp5, are not
linked to the plasmid-borne pap1-7 allele and define
five complementation groups (results not shown)+

lcp mutations were isolated by several outcrosses
with the W303 wild-type strain (see Table 1)+ Extracts
were prepared from each of the mutant strains and
tested for pre-mRNA 39-end processing in vitro accord-
ing to standard procedures (Minvielle-Sebastia et al+,
1994)+ We found that extracts from all five mutants
processed a 32P-labeled pre-mRNA substrate to an ex-
tent comparable to a wild-type extract, even at ele-
vated temperature (Fig+ 2A; data not shown)+ These
results suggested that the mutated genes were not cod-
ing for subunits of essential factors involved in mRNA
39-end formation+

Below,we describe the characterization of LCP5+Wild-
type LCP5 was cloned by complementation of the
temperature-sensitive phenotype of its corresponding
mutant+ Open reading frame YER127w (Mewes et al+,
1997) was sufficient to render the cells temperature-

resistant+ The gene has been previously characterized
by systematic Ty insertional analysis on chromosome
V+ Ty insertion in YER127w resulted in severe growth
defects on rich medium (Smith et al+, 1996)+ The pro-
tein has also been found to interact with Ngg1p in a
two-hybrid screen (Martens et al+, 1996)+ Ngg1p acts
as a transcriptional coactivator/repressor and is in-
volved in acetylation of nucleosomal histones+ How-
ever, to the best of our knowledge no function has been
assigned to YER127w so far+

LCP5 is a single copy gene+ It codes for a protein of
357 amino acids and has a calculated molecular
mass of 40+8 kD+ The predicted polypeptide has a high
content of charged residues (33% D 1 E 1 K 1 R)+
Computational analysis detected a putative nuclear lo-

FIGURE 1. Schematic representation of the synthetic lethal screen
with pap1-7+ A: The starting strain, containing the PAP1 disruption,
the wild-type PAP1 allele and the pap1-7 allele+ B: Genotype after
UV mutagenesis in the presence of the wild-type PAP1 gene+ C:
Resulting genotype after counterselection for the wild-type PAP1
gene on 5-FOA plates+ 1: interaction supporting cell viability+ 2:
aberrant interaction that fails to support cell viability+ LCP : wild-type
allele before UV mutagenesis, lcp2: mutated allele after UV muta-
genesis+ LEU2, ADE2, URA3: selectable marker genes+
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calization signal (Dingwall & Laskey, 1991) and a po-
tential coiled coil region (Fig+ 2B)+ The amino acid
sequence of the protein shows similarities to a putative
orthologue (accession No+ SWISS-PROT: Q09713) in
Schizosaccharomyces pombe (26+3% identity), and to
a CCAAT enhancer-binding-like protein of Caenorhab-
ditis elegans (Wilson et al+, 1994)+

LCP5 is essential for cell viability

To determine whether LCP5 is an essential gene, a
linear fragment in which 90% of the open reading frame
(ORF) was replaced by the TRP1 marker was trans-
formed into the diploid BMA41 (see Materials and Meth-
ods)+ Integration at the correct locus was verified by
Southern blot analysis for three transformants+ Tetrad
dissection revealed that only two of the four spores
formed colonies on rich medium (results not shown)+
None of the viable spores could grow on minimal me-
dium (SC) lacking tryptophan+ To demonstrate that the

gene is essential for vegetative growth, the URA3-
marked centromeric plasmid pFLU-LCP5 (see Materi-
als and Methods) bearing the wild-type LCP5 gene was
transformed into the diploid YTW6 carrying a hetero-
zygous disruption of LCP5+ Meiosis led to four viable
spores on rich medium+ Two of the four spores could
grow on SC lacking tryptophan, but not on SC supple-
mented with 5-FOA+ Taken together these results dem-
onstrate that LCP5 is essential for cell viability+

The lcp5-1 mutation leads to 18S
rRNA underaccumulation

Because extracts from lcp5-1 cells showed wild-type
mRNA 39-end formation activity in vitro, we wanted to
test whether mutant cells would show decreased steady
state mRNA levels after a temperature shift (Minvielle-
Sebastia et al+, 1991)+ Total RNAs were isolated from
lcp5-1 mutant cells and from an isogenic wild-type
sister spore+ Remarkably, RNAs prepared from the

TABLE 1 + Strains used in this study+

Strain Relevant Genotype Source

BMA41 Mata/a, ade2-1/ade2-1, leu2-3,112/leu2-3,112, ura3-
1/ura3-1, trp1D/trp1D, his3-11,15/his3-11,15, can1-
100/can1-100

A+ Baudin-Baillieu (Baudin-Baillieu et al+, 1997)

JL17-3C Mata, ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15,
can1-100, pap1::LEU2, pHCp50 (CEN4 URA3 PAP1)

J+ Lingner (Lingner, 1992)

JL17-3A as JL17-3C, but Mata J+ Lingner (Lingner, 1992)
W303 ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15, can1-

100
R+ Rothstein (Columbia University, New York)

YTW1 ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15, can1-
100, lcp1-1

this work

YTW4 ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15, can1-
100, lcp4-1

this work

YTW5 ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15, can1-
100, lcp5-1

this work

YTW6 Mata/a ade2-1/ade2-1, leu2-3,112/leu2-3,112, ura3-1/
ura3-1, trp1D/trp1D, his3-11,15/his3-11,15, can1-100/
can1-100, LCP5/lcp5::TRP1

this work

YTW7 Mata, ade2-1, leu2-3,112, ura3-1, trp1D, his3-11,15,
can1-100, lcp5::TRP1, pFLH-lcp5-1 (CEN4 HIS3
lcp5-1)

this work

YTW10 Mata, ade2-1, leu2-3,112, ura3-1, trp1D, his3-11,15,
can1-100, lcp5::TRP1, pFLU-LCP5 (CEN4 URA3
LCP5)

this work

YTW11 ade2-1, leu2-3,112, ura3-1, trp1D, his3-11,15, can1-
100, lcp5::TRP1, pGUR1-LCP5 (CEN4 ADE2 Ubi-R-
LCP5)

this work

YTW12 Mata/a ade2-1/ade2-1, leu2-3,112/leu2-3,112, ura3-1/
ura3-1, trp1D/trp1D, his3-11,15/his3-11,15, can1-100/
can1-100, lcp5::TRP1/lcp5::TRP1, pHH2-LCP5
(CEN4 ADE2 HA-His12-LCP5)

this work

YDK2-7A Mata, ade2-1, leu2-3,112, ura3-1, trp1-1, his3-11,15,
fal1::HIS3MX6, pRS416 (FAL1, URA3)

P+ Linder (Kressler et al+, 1997)

Nop1-ProtA Mata, ade2, leu2, lys1, ura3, nop1::URA3 pUN100-
ProtA-Nop1p

D+ Tollervey (Jansen et al+, 1993)

Gar1-ProtA Mata, ade2, his3, lys2, trp1, ura3,
URA3::GAL10::gar1 pMCGZZ1-ProtA-Gar1p

M+ Caizergues-Ferrer (Ganot et al+, 1997)
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temperature-sensitive strain grown at room tempera-
ture (RT) showed a substantial reduction of 18S rRNA
compared to the wild-type control (Fig+ 2C, compare
lanes 1 and 4)+ After a temperature shift to 37 8C for up

to 2 h, the 18S rRNA content did not decrease further
(Fig+ 2C, compare lanes 5 and 6 to lane 4)+ The de-
crease of 18S rRNA was likely responsible for the en-
hanced generation time of the lcp5-1 mutant cells
(Table 2)+ This observation suggested that LCP5 could
be involved in rRNA metabolism+

LCP5 is required for pre-rRNA processing

To verify that the mutant allele of the cloned gene was
responsible for the observed phenotype, the gene was
isolated by gap repair and its sequence was deter-
mined+ The mutant Lcp5-1p exhibited a G197E muta-
tion and a stop codon at position 209+ The mutant allele
was introduced in a strain bearing an lcp5 null allele,
rescued by pFLU-LCP5 (YTW10)+ The wild-type allele
was counterselected on medium containing 5-FOA+ The
resulting strain, YTW7, was temperature sensitive and
exhibited a decrease in the steady state 18S rRNA
level comparable to the mutant isolated from the screen
(results not shown)+ This experiment also confirmed
that we actually isolated the wild-type allele LCP5 from
the genomic library by complementation of the lcp5-1
mutant, and not a suppressor+ In addition, a ubiquitin-
Lcp5p fusion protein was cloned downstream of a re-
pressible PGAL10/CYC1 hybrid promoter (Jenny et al+,
1996)+ In this construct, a ubiquitin moiety precedes an
arginine, a haemagglutinin tag, a histidine tag and the
ORF of LCP5+ In vivo, the ubiquitin is cleaved off, ex-
posing the arginine at the N-terminus of the polypep-
tide (hence called R-Lcp5p)+ According to the N-end
rule, this confers instability to the polypeptide (Var-
shavsky, 1996)+ The construct was transformed into
YTW10 cells, containing the lcp5::TRP1 deletion res-
cued by pFLU-LCP5+ After URA3 counterselection on
5-FOA plates, the strain expressing R-Lcp5p (YTW11)
grew on plates containing rich medium with 2% galac-
tose, but not on plates containing 5% glucose (data not
shown)+ In liquid cultures, a shift to glucose dramati-
cally slowed down the cell growth after 10–12 h of
incubation+ RNAs extracted from glucose-shifted cells
showed that in vivo depletion of Lcp5p decreased the
18S rRNA level to an extent similar to that of lcp5-1
mutant cells (results not shown)+

Several cleavage steps are required to generate ma-
ture 18S rRNA (see Fig+ 3A)+ The primary transcript
(35S) is cleaved at the site A0 in vitro by the homologue
of bacterial RNase III, Rnt1p (Elela et al+, 1996)+ The
pre-rRNA is processed at the 59 end of the mature 18S
rRNA and at the 39 end in the internal transcribed spacer
1 (ITS1)+ Cleavage at site A3 can be carried out in vitro
by MRP RNase (Lygerou et al+, 1996)+ Recent evi-
dence suggests that processing steps A0 to A3 occur in
a common complex in vivo (Allmang et al+, 1996)+ It has
previously been shown that inhibition of cleavage at
sites A0 to A2 results in the accumulation of a 23S
species (reviewed in Venema & Tollervey, 1995)+ Sim-

FIGURE 2. lcp5-1 mutant is not affected in pre-mRNA 39-end pro-
cessing but shows underaccumulation of 18S rRNA+ A: Cleavage
and polyadenylation of the CYC1 precursor RNA in vitro+ The 39-end
processing activity of the wild-type (WT; lanes 2, 5), and the mutant
extracts lcp5-1 (lanes 3, 6) and lcp4-1 (lanes 4, 7) were assayed
under standard conditions (see Materials and Methods)+ The reac-
tions proceeded for 70 min at 30 8C (lanes 1–4) and 31+5 8C (lanes 5–
7)+ The positions of the CYC1 precursor, the 59 cleavage fragment,
and polyadenylated species are indicated+ B: Primary structure of
Lcp5p+ The predicted coiled coil region is boxed+ Predicted, bipartite
nuclear localization signals (NLSs) are underlined C: Electrophoretic
separation of total RNA, isolated from wild-type (LCP5, lanes 1 to 3)
and mutant lcp5-1 cells (lanes 4 to 6)+ The cells were grown at room
temperature and shifted to 37 8C for 0, 60, and 120 min (time indi-
cated at the top)+ The position of mature 18S and 25S rRNA species
is indicated+
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ilarly, deletion of snR10 leads to the production of a
21S species (Tollervey, 1987; Morrissey & Tollervey,
1993)+ To determine why the 18S rRNA production was
affected in lcp5 mutants, RNAs were isolated from
strains bearing a null allele of lcp5 rescued either by
the wild-type allele LCP5, or the temperature-sensitive
allele lcp5-1 isolated by gap repair, and also from the
YTW11 strain expressing R-Lcp5p cultured for 8 h in
glucose+ We analyzed pre-rRNA processing inter-
mediates by Northern blotting+An oligonucleotide com-
plementary to a sequence upstream of the cleavage
site A0 (oligo 59A0) was used as a probe (Fig+ 3B,
panel A)+ In both the depleted (designated Glc) and the
temperature-sensitive strains (lcp5-1) an aberrant RNA
species comparable in size to the aforementioned 23S
molecule was observed+ Concomitantly, the 35S pre-
rRNA precursor accumulated+ The stronger accumula-
tion of the 23S and 35S species in the depleted R-Lcp5p
expressing strain was due to a more severe phenotype
of this strain compared to the temperature-sensitive
mutant+ We then probed the same membrane with an
oligonucleotide complementary to sequences between
cleavage sites D and A2 (oligo D/A2)+ The 20S pre-
rRNA processing intermediate was strongly reduced in
the temperature-sensitive mutant, as well as in the strain
depleted for Lcp5p (Fig+ 3B, panel B)+ In addition, an-
other aberrant RNA comparable in size to the 21S spe-
cies was detected+When the same blot was hybridized
with an oligonucleotide complementary to sequences
between the cleavage sites A2 and A3 (oligo A2/A3), we
found that the 27SA2 intermediate was severely re-
duced upon depletion of Lcp5p or in the temperature-
sensitive mutant lcp5-1 (Fig+ 3B, panel C)+ Finally, an
oligonucleotide complementary to sequences between
cleavage sites E and C2 (oligo E/C2) detected compa-
rable amounts of 27S pre-rRNAs in the mutant, the

wild-type, and the depleted strains, indicating that pro-
cessing at site A3 is not influenced by Lcp5p (Fig+ 3B,
panel D)+

To determine whether the decrease in the steady
state amount of 18S rRNA was a primary conse-
quence of LCP5 inactivation, RNAs were isolated after
a short glucose shift of R-Lcp5p expressing cells
and subjected to Northern blot analysis with probe
A2/A3 (Fig+ 4A)+After only 35 min, 21S and 23S species
accumulated in the RNAs of the culture grown in glu-
cose (Fig+ 4A, compare lanes 1 and 3)+ A decrease of
the 27SA2 intermediate was observed as well+ Fig-
ure 4B shows that the reduction of Lcp5p protein con-
centration correlated with the pre-rRNA processing
defects, as assessed by Western blot analysis+ These
results showed that depletion of Lcp5p or mutations
in LCP5 lead to predominant processing at site A3,
skipping the early cleavage steps at A0 and A2+ The
fast effects on pre-rRNA processing after glucose shift
suggested that Lcp5p is directly involved in pre-rRNA
maturation+

Efficient A 0 and A 2 cleavages
are dependent on Lcp5p

Cleavage at individual sites was analyzed by primer
extension+ RNAs were isolated from strains express-
ing R-Lcp5p following growth in YP-Galactose (Gal)
or YP-Glucose (Glc)+ Figure 5A shows the primer ex-
tension carried out with oligo E/C2+ Equal amounts of
extension products up to cleavage sites B1L, B1S and
A3 were obtained (compare Fig+ 5A, lanes 1–3 with
lanes 4–6)+ In contrast, RNAs terminating at A2 were
strongly reduced after depletion of Lcp5p+ Longer ex-
tension products were visible in all lanes demonstrat-
ing that the reduction was not due to artifactual

TABLE 2 + In vivo phenotypes of strains+

Strain
Generation timea

(YPAD) in min
Generation timea

(SC) in min

%40S subunits of
wild-type strain

(RT)

%40S subunits
of wild-type strain

(37 8C)

YTW10 156 219 100b 100b

LCP5
YTW7 381 700 23 17
lcp5-1
YTW11 n+d+ 360 82 n+d+
R-Lcp5p
(GAL)
YTW11c — — 10 n+d+
R-Lcp5p
(GLC)

Generation times and 40S small ribosomal subunit content of strains used in this study+ For analysis of ribosomal subunits
at 37 8C, lcp5-1 cells were grown at RT, harvested, and cultured overnight at the nonpermissive temperature+

aDoubling times were determined at 23 8C+
bThe amount of 40S subunits in the wild-type strain was set to 100%+
cR-Lcp5p expressing cells were cultured overnight in YPAD, containing 5% glucose+ Ratios were determined by calcu-

lating areas of subunit peaks after “run off” ribosomal subunit analysis as described in Materials and Methods+
n+d+: not determined+
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inhibition of the reverse transcriptase+ An oligonucle-
otide hybridizing immediately upstream of the A1 cleav-
age site (Elela et al+, 1996) was used in the primer
extension shown in Figure 5B+ We observed a re-
duced amount of A0-cleaved RNAs, as well as accu-

mulation of products extending to the transcription start
site (compare Fig+ 5B, lanes 1–3 with lanes 4–6)+
These results and those obtained from the Northern
blot analyses demonstrated that the cleavage effi-
ciency at sites A0 and A2 is reduced when Lcp5p is

FIGURE 3. Aberrant pre-rRNA processing in lcp5 mutants+A: Simplified overview of 35S pre-rRNA processing in yeast+Pro-
cessing intermediates are designated with their respective sedimentation coefficient+ Processing sites are indicated+.: exo-
nucleolytic digestion up to the indicated site (adapted from Venema & Tollervey (1995))+ B: Northern blots of RNA extracted
from R-Lcp5p expressing cells shifted to 5% glucose for 8 h (Glc), wild-type cells grown in 5% glucose at 24 8C (LCP5) and
lcp5-1 mutant cells grown in 5% glucose at RT (lcp5-1)+ The labeled oligonucleotide used to probe the blot were: Panel A:
oligonucleotide 59 A0; Panel B: oligonucleotide D/A2; Panel C: oligonucleotide A2/A3; Panel D: oligonucleotide E/C2+ The po-
sitions of sequences recognized by the probes are indicated on the top+Processing intermediates and products are indicated+
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inactivated, whereas processing at downstream sites
remains largely unaffected+

Translation is affected in lcp5 mutants

The reduction of 18S rRNA caused by lcp5-1 mutations
suggested an impairment in 40S ribosomal subunit bio-

genesis+ The content of ribosomal subunits of mutant
and wild-type cells was compared (see Materials and
Methods)+ As predicted, the amount of 40S subunits
relative to 60S subunits was reduced to 23% in lcp5-1
cells (Table 2)+ To test whether this imbalance would
lead to a defect in translation, lcp5-1 mutant and wild-
type strains were assayed for growth on rich medium
containing the translation inhibitors paromomycin, neo-
mycin and cycloheximide+ Growth of mutant cells was
inhibited at a neomycin concentration of 1 mg/ml, at a
paromomycin concentration of 1 mg/ml, and at a cy-
cloheximide concentration of 0+04 mg/ml, whereas the
wild-type strain could still grow (T+Wiederkehr, unpubl+
data)+ This suggested that translation is affected in the
lcp5-1 mutant strain+

The reduction of 40S subunit concentration sug-
gested a defect in polysome formation+ The polysome
profiles of mutant and wild-type cells were determined
in low-salt buffer (Fig+ 6)+ In the mutant, polysome peaks
were strongly reduced+ Because of the depletion of
40S ribosomal subunits, a large peak of free 60S sub-
units overlapped with the monosome peak (compare
Fig+ 6A with 6B)+ To demonstrate that depletion of 40S
ribosomal subunits was a direct consequence of mu-
tations in lcp5, R-Lcp5p expressing cells were grown
on YP-Galactose and transferred to YP-Glucose for
three hours+ The polysome profile of the Lcp5p-depleted
cells showed a decrease in 40S ribosomal subunits, as
a consequence an increase in free 60S ribosomal sub-
units and a decrease in polysomes (compare Fig+ 6C
with 6D)+ The strength of the observed phenotype was
in good agreement with the levels of 18S rRNA as
judged by ethidium–bromide staining of denaturing aga-
rose gels (results not shown)+ These results support
the conclusion that due to defective pre-rRNA process-
ing, assembly of 40S ribosomal subunits and transla-
tion are affected by lcp5-1 mutations+

Lcp5p is predominantly located
in the nucleolus

The subcellular localization of Lcp5p was assessed
by indirect immunofluorescence on wild-type cells+ A
strong signal was observed in the nucleus (Fig+ 7A;
see Fig+ 7D for phase contrast), as well as a weak
background of cytoplasmic staining+ When the same
cells were stained with DAPI (Fig+ 7B), it became clear
that the signal of Lcp5p antibodies was confined to part
of the nucleus where DAPI staining was less intense
(see Fig+ 7C for an overlay of Figs+ 7A and 7B), sug-
gesting that the Lcp5p antibodies decorated the nuc-
leolus+ To confirm this observation, a diploid strain
expressing HA-tagged Lcp5p was prepared for immu-
nofluorescence, as described in Materials and Meth-
ods+ As a control for nucleolar staining, monoclonal
antibody (mAb) A66 directed against Nop1p, the yeast
homologue of fibrillarin (Schimmang et al+, 1989),

FIGURE 4. Pre-rRNA processing defects following in vivo depletion
of Lcp5p+ A: YTW11 cells expressing R-Lcp5p were grown in rich me-
dium containing galactose and were transferred to rich medium con-
taining either galactose (Gal; lanes 1 and 2) or glucose (Glc; lanes 3
and 4) for 35 and 70 min+ Northern blot hybridization was performed
with probe A2/A3+Arrowheads indicate processing intermediates and
products+ B: YTW11 cells expressing R-Lcp5p were grown on galac-
tose and shifted to glucose+At the indicated times (in min after the glu-
cose shift; top), total protein was extracted by heating in sample buffer,
separated by SDS-PAGE, and Lcp5p was visualized by Western blot
analysis+ Affinity-purified anti-Lcp5p-antibody was used at a 1:5,000
dilution+ Lane M: molecular weight markers in kDa+
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was used at the same time as affinity-purified anti-
bodies directed against Lcp5p+ Confocal microscopy
showed that the signals of Nop1p and Lcp5p over-
lapped (Fig+ 7E,F; see Fig+ 7G for an overlay) and dem-
onstrates that Lcp5p resides in the nucleolus+ In addition,
antibodies directed against the HA epitope were used

in combination with antibodies against a bona fide
nucleoplasmic protein, poly(A) polymerase (Pap1p)+
Whereas antibodies against Pap1p uniformly stained
the nucleus, the antibodies directed against the HA
epitope localized Lcp5p in a more restricted, crescent-
shaped region of the nucleus (Fig+ 7I; see Fig+ 7J for an

FIGURE 5. Lcp5p depletion affects pre-rRNA processing at sites A0 and A2+ A: R-Lcp5p expressing cells were grown on
YP-Galactose and transferred to either YP-Galactose (Gal, lanes 1 to 3) or YP-Glucose (Glc, lanes 4 to 6) for the indicated
times (in hours, top)+ RNA was extracted and subjected to primer extension with oligonucleotide E/C2+ Extensions to sites
B1L, B1S, A2 and A3 are indicated+ B: As in A except that oligonucleotide 59A1 was used to detect A0-cleaved species+
Extension up to the transcription start (11) and extension up to site A0 are indicated+ The products were separated on
denaturing 6% polyacrylamide/8+3 M urea gels+ Labeled Hpa II-restricted pBR322 fragments were used as size markers
(lane M, in nucleotides)+
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overlay)+ The absence of nucleoplasmic and cytoplas-
mic staining with the antibodies directed against the HA
epitope suggested that the signal obtained with affinity-
purified polyclonal antibodies may be due to a cross-
reactivity with an unrelated polypeptide+ These results
showed that Lcp5p is predominantly located in the
nucleolus+

Lcp5p is associated with U3 snoRNA

In addition to protein factors, formation of 18S rRNA
requires snoRNAs snR10, snR17 (U3), snR30 and
snR128 (U14)+ To determine whether Lcp5p is associ-
ated with snoRNAs, we carried out immunoprecipita-
tion with antibodies directed against Lcp5p and extracted
potentially associated RNAs (see Materials and Meth-
ods)+As positive controls, extracts from strains express-
ing protein A-tagged fusions of Gar1p and Nop1p were
prepared+ The precipitates from both control polypep-
tides contained snR10, U3, snR30 and U14 (Fig+ 8,
lanes 2,3)+ Interestingly, antibodies directed against
Lcp5p precipitated exclusively U3, whereas none of
the tested snoRNAs precipitated with the pre-immune
serum (Fig+ 8, compare lanes 4 and 6 with lanes 5 and

7)+ The interaction between Lcp5p and U3 is likely to be
specific because significant amounts of U3 could be
recovered even after extensive washes with 300 mM
NaCl (Fig+ 8, lane 6)+ In the same conditions, an un-
related protein A-tagged fusion (Nsp1p) did not precip-
itate any RNA (data not shown)+

fal1 and lcp5-1 mutant alleles
are synthetic lethal

Recently, Kressler et al+ (1997) have shown that FAL1
is required for 18S rRNA processing+We crossed a de-
letion mutant of fal1, rescued by the wild-type allele on
a centromeric plasmid (containing the URA3 gene) with
a strain harboring an lcp5 deletion, rescued by the plas-
mid borne mutant lcp5-1+ After meiosis, we isolated a
strain that contained both chromosomal disruptions res-
cued by the wild-type FAL1 gene and the mutant allele
lcp5-1+The cells were transformed with centromeric plas-
mids containing either fal1-1 or fal1-9 mutant alleles
(Kressler et al+, 1997;D+Kressler, J+ de la Cruz,M+Rojo,
& P+ Linder, pers+ comm+)+ Independent transformants
were streaked on minimal medium supplemented with
5-FOA or on medium lacking the drug (Fig+ 9)+ None of
the double mutants fal1-1 lcp5-1 nor fal1-9 lcp5-1 could
grow in the presence of the drug, whereas the growth
rates of the mutant fal1 strains by themselves were not
significantly reduced (results not shown)+ This synthetic
lethality provides additional evidence that Lcp5p par-
ticipates in the processing of pre-rRNAs+

Cumulatively, the experiments described above
strongly support the conclusion that Lcp5p is a new
essential component of the nucleolar pre-rRNA pro-
cessing machinery+

DISCUSSION

We have identified a new protein (Lcp5p) involved in
pre-rRNA processing+ The LCP5 gene has been found
in a screen for synthetic lethal mutations with the
temperature-sensitive allele of poly(A) polymerase,
pap1-7+ Several experiments showed that Lcp5p is not
essential for pre-mRNA 39-end processing+ First, ex-
tracts prepared from the lcp5-1 mutant were active in
vitro for cleavage and polyadenylation+ Second, im-
munodepletion of wild-type extracts with antibodies di-
rected against Lcp5p did not lead to inactivation of the
39-end processing activity (results not shown)+ In addi-
tion, a temperature shift of lcp5-1 cells to 37 8C for 2 h
did not cause a strong reduction of the steady state
level of ACT1 mRNA (results not shown)+ In contrast,
temperature-sensitive mutations in genes coding for
the 39-end processing components Rna14p, Rna15p
and Fip1p (Minvielle-Sebastia et al+, 1991; Minvielle-
Sebastia et al+, 1994; Preker et al+, 1995) did not allow
accumulation of the ACT1 mRNA after shifting the mu-
tant cells to the nonpermissive temperature+ Finally,

FIGURE 6. Aberrant polysome formation in lcp5 mutants+ Polysome
profiles recorded from deletion strains rescued by LCP5 (A) or lcp5-1
(B) grown at permissive temperature+ Polysome profiles from R-Lcp5p
expressing cells grown on YP-Galactose and transferred either to
YP-Galactose (C) or YP-Glucose (D) for three hours+ The positions
of 40S and 60S ribosomal subunit peaks, as well as the position of
the 80S monosome peak are indicated+

LCP5 is required for pre-rRNA processing 1365

 on February 14, 2006 www.rnajournal.orgDownloaded from 

http://www.rnajournal.org


FIGURE 7. Nucleolar localization of Lcp5p by indirect immunofluorescence+ Lcp5p was localized in the wild-type strain
BMA41 (A–D) and with confocal microscopy in the strain YTW12 expressing an HA-histidine-tagged fusion of Lcp5p (E–J)+
A: Cells were decorated with affinity-purified antibodies directed against Lcp5p+ B: DAPI staining (see Materials and
Methods)+ C: Overlay of DAPI staining (red) and Lcp5p staining (green)+ Red color was assigned to the DAPI signal+ D:
Nomarski phase contrast+ E,H: Affinity-purified antibodies directed against Lcp5p and Pap1p, respectively+ F,I: Monoclonal
antibodies directed against Nop1p and the HA epitope, respectively+ G: Overlay of Nop1p (red) and Lcp5p (green) staining+
J: overlay of Pap1p (green) and Lcp5p (red) staining+ The outline of the cells and a scale bar (5 mm, E and H) are depicted
for the confocal panels+
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Lcp5p has not been found among the polypeptides that
copurify with the essential 39-end processing factors
(Kessler et al+, 1996; Kessler et al+, 1997; Minvielle-
Sebastia et al+, 1997; Preker et al+, 1997; Zhao et al+,
1997)+

Instead, our results showed that the LCP5 gene prod-
uct is required for ribosomal RNA maturation+ This con-
clusion was supported by the observation that rRNA
isolated from the strain expressing R-Lcp5p under the
control of a repressible promoter accumulated aberrant
processing species after a shift to glucose compared to
a control grown in galactose+ Upon glucose shift, pre-
rRNA processing was rapidly affected leading to an
inhibition of cleavage at processing sites A0 to A2, as
indicated by the accumulation of 23S and 21S aberrant
processing species+ Similar effects have been observed
by depletion of snoRNP components that are required
for 18S rRNA maturation (Li et al+, 1990; Hughes &
Ares, 1991; Morrissey & Tollervey, 1993; Beltrame &
Tollervey, 1995; Venema & Tollervey, 1996)+ An over-
night glucose shift of R-Lcp5p-expressing cells re-
sulted in a depletion of 18S rRNA comparable to the
level observed with the temperature-sensitive lcp5-1
strain (results not shown)+ Furthermore, the inhibition
of pre-rRNA processing seems to be a direct effect of

the depletion of the protein, because aberrant process-
ing intermediates already accumulated above the con-
trol levels after about half an hour of glucose repression+

To test whether Lcp5p could be involved in methyl-
ation of the pre-rRNA and indirectly affect its pro-
cessing, we performed a pulse-chase labeling with
3H-methionine+ R-Lcp5p expressing cells were shifted
for three hours to YP-Glucose before the pulse-chase
labeling+ Northern-blot analyses showed accumulation
of labeled 35S precursor and a lower abundance of
18S rRNA suggesting that the aberrant processing was
not due to an overall methylation defect (results not
shown)+

The apparent similarity of Lcp5p to a CCAAT
enhancer-binding-like protein and the identification of
the ORF in a two-hybrid screen with Ngg1p would have
suggested a role in transcriptional activation+ To the
best of our knowlegde, no further experimental data
hint at an involvement of Lcp5p in this process+ How-
ever, either the in vivo depletion of Lcp5p or its inacti-
vation by a temperature-sensitive mutation led to the
accumulation of unprocessed rRNA processing inter-
mediates+ In addition, we have shown that FAL1 and
LCP5 interact genetically, suggesting a primary involve-
ment of Lcp5p in pre-rRNA processing+

As expected from a defective 18S rRNA production,
the mutant lcp5-1 showed reduced amounts of 40S

FIGURE 8. Antibodies directed against Lcp5p precipitate U3 snoRNA+
Immunoprecipitation was performed with protein A-tagged fusions of
Gar1p (lane 2), Nop1p (lane 3), and with antibodies directed against
Lcp5p (lanes 4, 6 and 8) or its cognate preserum (lanes 5, 7 and 9)
at the indicated salt concentration (top)+ Lane 10: Mock precipitation
without antibody+ Precipitated RNAs were subjected to Northern hy-
bridization with oligonucleotides complementary to snR10, snR17,
snR30 and snR128+

FIGURE 9. Synthetic lethality of fal1 and lcp5 mutant alleles+ Strains
deleted for both fal1 and lcp5 rescued by the wild-type FAL1 gene
and the mutant alleles lcp5-1, fal1-1 or fal1-9 (on centromeric plas-
mids) were streaked on SC or 5-FOA-containing SC-plates+ Plates
were incubated at 24 8C+
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ribosomal subunits and hypersensitivity to aminoglyco-
sidic antibiotics (neomycin and paromomycin) and to
cycloheximide+ Hypersensitivity to paromomycin has
been reported for mutants in NSR1, the putative yeast
nucleolin homologue (Lee et al+, 1992) and in FAL1
(Kressler et al+, 1997)+ As a result, both gene products
were shown to be involved in 18S rRNA maturation+
Aminoglycosidic antibiotics inhibit early steps in trans-
lation (Eustice & Wilhelm, 1984b), act as suppressors
of nonsense codons (Palmer et al+, 1979; Singh et al+,
1979) and cause misreading in translation (Eustice &
Wilhelm, 1984a)+ Cycloheximide binds to the 60S ribo-
somal subunit and inhibits both initiation and elonga-
tion of translation (Hampsey, 1997)+ The observed
hypersensitivity is consistent with a defective transla-
tion initiation in lcp5 mutants as a consequence of a
reduced amount of 40S ribosomal subunits+ Polysome
profile analyses confirmed that translation is impaired
in lcp5-1 mutants+ Almost all the ribosomal subunits
were present in subpolysomal fractions+ The low num-
ber of free 40S ribosomal subunits due to deficient 18S
rRNA formation probably prevents efficient polysome
formation (see Table 2)+ Therefore, antibiotics that lead
to aberrant translation products or inhibit initiation of
translation enhance the mutant phenotype beyond a
tolerable level+ It is likely that the enhanced turnover of
R-Lcp5p in vivo, even when cells were cultured in YP-
Galactose, led to an increase in free 60S ribosomal
subunits and 80S monosomes compared to the wild-
type control (compare Fig+ 6A with 6C)+ This is in agree-
ment with Northern-blot analyses of R-Lcp5p expressing
cells (compare Fig+ 4A, lanes 1 and 2, to Fig+ 3B, panel
C, lane LCP5)+ The amount of 18S rRNA correlates
well with the strength of the observed phenotypes (re-
sults not shown)+

Biochemical and genetic analyses have shown that
poly(A)-bound Pab1p binds to the initiation factor eIF4G
(Tarun & Sachs, 1996; Tarun et al+, 1997) which in turn
recognizes the 59 cap structure via the cap binding
protein eIF4E (Haghighat & Sonenberg, 1997)+ Re-
cently, it has also been shown that mRNAs with shorter
poly(A) tracts are shifted towards monosomes in poly-
some profiles of mutant pap1-1 cells when ribosomal
subunits are depleted at the same time (Proweller &
Butler, 1997)+ Similarly, a more severe depletion of the
40S small ribosomal subunit because of pre-rRNA pro-
cessing defects, as observed in lcp5 mutants, could
lead to inefficient translation and eventually to cell death
in the lcp5-1 pap1-7 double mutant+ Other experiments
also suggested that synthetic lethality between pap1
and lcp5-1 mutants is allele dependent+ We found that
the reduction in the poly(A)-tail length of some of our
pap1 mutant alleles correlated with hypersensitivity to
translation inhibitors, mutant polysome profiles, and
synthetic lethality with lcp5-1 at any temperature (T+
Wiederkehr, P+J+ Preker, & L+ Minvielle-Sebastia, in
prep+)+ However, we cannot exclude that additional de-

fects, like the mRNA stability of specific transcripts, con-
tribute to the synthetic lethality+

We have demonstrated that Lcp5p is present in the
nucleolus because Nop1p and Lcp5p antibodies dec-
orated the same crescent-shaped regions previously
shown to correspond to yeast nucleoli (Guthrie & Fink,
1991)+ Furthermore, detection of Pap1p in the nucleus
was weaker in regions where the Lcp5p signal was
located+

We have shown that snR17 is tightly associated
with Lcp5p and that none of the other snoRNAs
snR10, snR128, and snR30, were precipitated in the
same experiment+ Upon temperature shift of the mu-
tant lcp5-1 or after depletion of the protein in the
R-Lcp5p expressing strain, no decrease in the steady-
state levels of snR17 or snR128 was detected (re-
sults not shown)+ Sof1p was the first protein in
Saccharomyces cerevisiae to be found associated with
U3 snoRNA (Jansen et al+, 1993)+ Recently, another
component of U3 snoRNP in yeast, Mpp10p, has been
identified (Dunbar et al+, 1997)+ Like Lcp5p, immuno-
precipitation of Mpp10p and Sof1p precipitates snR17+

Further experiments are underway to examine
whether Lcp5p is directly associated with other com-
ponents of the U3 snoRNP+ Our results reported here
demonstrate that Lcp5p is a novel essential protein
required for rRNA maturation, and suggest that not all
the factors involved in this complex processing reac-
tion have been uncovered yet+

MATERIALS AND METHODS

Yeast strains, media, and genetic methods

The S. cerevisiae strains used in this study are listed in
Table 1+ Media and genetic methods were as described else-
where (Guthrie & Fink, 1991)+ Yeast cells were transformed
by treatment with lithium acetate and polyethylene glycol
(Gietz et al+, 1992)+

Synthetic lethal screen

The strain JL17-3C was transformed with pApap1-7 (Minvielle-
Sebastia et al+, 1994)+ About 7 3 104 transformants were
spread on 42 SC plates, lacking adenine, uracil and leucine+
UV irradiation was carried out with a handheld germicidal
light at 254 nm for 80 s at a distance of 50 cm+ Viable colonies
(13104) were replica-plated on SC supplemented with 5-FOA+
About 0+5% of the cells were not able to grow in the absence
of pHCp50, containing PAP1 (see Table 1)+ The mutants were
restreaked and tested for the temperature-sensitive and
5-FOA-sensitive phenotypes+ The temperature-sensitive mu-
tation lcp5-1 was isolated by four outcrosses to W303+

Cloning of LCP5 and disruption

Strain YTW5, containing the temperature-sensitive allele lcp5-1
was transformed with a genomic library constructed in the
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centromeric plasmid pFL39 (a gift of François Lacroute)+ Sev-
eral thousand transformants were replica-plated onto rich me-
dium at 37 8C+ One temperature-resistant colony was picked,
restreaked, the plasmid was isolated, and the genomic insert
sequenced at both ends+We used the tFASTA algorithm (Pear-
son & Lipman, 1988) to obtain the complete sequence infor-
mation of the complementing genomic region (accession No+
L11119; EMBL)+ The genomic region was analyzed for com-
plementation by cloning restriction fragments into pFL39 and
transformation into lcp5-1 mutants+As a consequence a frag-
ment containing YER127w as the only detectable ORF-
coding gene was identified+ For disruption, a genomic fragment
containing LCP5 was cloned into pUC19+ A TRP1 marker
cassette was introduced between a N-terminal Nsi I and a
C-terminal Bbs I site+ The deletion construct was cut from
pUC19 by restriction at two flanking sites in the polylinker and
directly used to transform BMA41 cells+

Synthetic lethality of fal1 alleles and lcp5-1

Strain YDK2-7A was crossed to strain YTW7, the diploids
were sporulated and tetrads were dissected+ A spore con-
taining the chromosomal disruptions fal1::HIS3MX6 and
lcp5::TRP1 was transformed with the mutant alleles fal1-1
and fal1-9 on centromeric plasmids (Kressler et al+, 1997)+
Transformants were streaked on SC- or 5-FOA-containing
SC-plates+

Plasmids

Plasmids were constructed by standard procedures (Sam-
brook et al+, 1989)+ pFL39-LCP5 was derived from the com-
plementing plasmid by Pst I/BamH I digestion and religation+
pFLU-LCP5 was derived from pFL39-LCP5 by exchanging
the TRP1 marker with a URA3 marker+ pGM-LCP5 was con-
structed by cutting pGM10 (Martin & Keller, 1996) with Nde I/
BamH I and inserting an Nde I/BamH I genomic fragment
containing the C-terminus of Lcp5p and 39 untranslated se-
quences+ The Nde I site was used to insert the N-terminus of
Lcp5p by PCR with the primers 59-LCP5: GGGAATTC
CATATGTCTGAACTTAATGCATTATTA/ 39-LCP5: CTACAG
TCTCCTTTGAGCTCTATCCCAGGC and overnight digestion
with Nde I+ The resulting plasmid was cut with Nsi I/BamH I
and an Nsi I/Afl III fragment of pFL39-LCP5 covering most of
the open reading frame was inserted+ For the construction of
pGUR1-LCP5, a PCR fragment containing flanking Not I sites
(Primer 59 rGAL-LCP5: AAGGAAAAAAGCGGCCGCGAG
AGGGAGTCACCATCACCATCACCATAT/ 39 rGAL-LCP5: T
TCCTTTTTTGCGGCCGCCTACAGTCTCCTTTGAGC) was
amplified from pGM-LCP5, and inserted into the Not I site of
pGUR1 (Jenny et al+, 1996)+ pHH2-LCP5 was constructed by
inserting the Not I cassette of pGUR1-LCP5 containing a
histidine tag and the ORF of Lcp5p into Not I restricted pHH2
(centromeric vector containing an HA- and a histidine tag; L+
Minvielle-Sebastia, unpubl+ vectors)+ The resulting construct
contains an HA- and two consecutive histidine tags+ For gap
repair the complementing plasmid was cut with Pst I and
religated+ The resulting vector was linearized with BamH I/
Apa I digestion and transformed into lcp5-1 mutant cells+
Transformants were temperature sensitive and the plasmid
was recovered by yeast plasmid DNA preparation and elec-

trotransformation into Escherichia coli according to estab-
lished procedures (Guthrie & Fink, 1991)+

RNA isolation, blotting, and primer extension

RNAs were extracted from strains grown in YPAD to an OD600

of ;1+ For temperature shift, an equal volume of prewarmed
(51 8C) medium was added and the culture was incubated at
37 8C+Aliquots corresponding to 10 OD600 were removed+ For
the galactose-glucose shift, cells were grown in YP-Galactose
to an OD600 of 0+07–0+5, the culture was centrifuged, resus-
pended in YP, split in two parts, and the sugar concentration
was adjusted to either 5% glucose or 2% galactose+ Aliquots
corresponding to 3+5–10 OD600 were withdrawn at the times
indicated and added to an equal volume of crushed ice+ After
centrifugation at 4 8C, the cells were washed with 1 ml of cold
water and cell pellets were frozen on dry ice+ RNA was iso-
lated with hot acidic phenol (Collart & Oliviero, 1994)+ Equal
amounts of total RNA (5 mg) were separated on 1+2%
formaldehyde/agarose gels or used without further treatment
for primer extensions+ Northern blotting, hybridization, and
primer extension were done according to published proce-
dures (Venema & Tollervey, 1996; Kressler et al+, 1997)+ The
sequences of the primers are: Oligonucleotide 59 A0: GGT
CTCTCTGCTGCCGG, oligonucleotide A2/A3: TGTTACCTC
TGGGCCC,Oligonucleotide D/A2:CGGTTTTAATTGTCCTA,
Oligonucleotide E/C2: GGCCAGCAATTTCAAGTTA, Oligo-
nucleotide 59A1: ACTATCTTAAAACAAGCAACAAGCAG
(Elela et al+, 1996)+ For probing of snoRNAD the following
oligonucleotides were used (Kressler et al+, 1997): Oligonu-
cleotide anti-snR10:CCTTGCAACGGTCCTCATCCGGG, oli-
gonucleotide anti-snR17:TTCGGTTTCTCACTCTGGGGTAC,
oligonucleotide anti-snR30:GAAGCGCCATCTAGATG, oligo-
nucleotide anti-snR128: GGAACCAGTCTTTCATCACC+

Polysome analysis

Polysomes were prepared according to Kressler et al+ (1997)+
To 200-ml cultures of yeast cells (OD600 5 0+4–1) in YPAD,
100 mg/ml cycloheximide was added, mixed, and the cells
were kept on ice for 5 min+ The cells were harvested, washed
in lysis buffer (10 mM Tris-HCl [pH 7+5 (24 8C)], 100 mM NaCl,
30 mM MgCl2, 100 mg/ml cycloheximide, and 200 mg/ml hep-
arin), centrifuged, and resuspended in 1 ml lysis buffer+ After
a 10-s centrifugation, the cells were resuspended in 3 vol-
umes of lysis buffer, 1 volume of glass beads was added, and
the cells were broken by vortexing eight times for 30 s+ Be-
tween vortexing, the cells were kept on ice for 30 s+ The
lysate was centrifuged for 10 min at 4 8C, 1/10 volume of 80%
glycerol was added, and the extract was frozen in liquid ni-
trogen+ 0+2–0+4 ml (OD260 5 25–40) were loaded onto 12 ml
15+7–54% (w/v) sucrose (Bio-Rad) gradients made up in
50 mM Tris-acetate [pH 7+5 (24 8C)], 50 mM NH4Cl, 12 mM
MgCl2, 1 mM DTT, and 100 mg/ml heparin+ The gradients
were spun at 39,000 rpm (204,000 3 g) for 165 min in a
TST41+14 rotor at 4 8C+ The gradients were unloaded and the
OD254 was continuously monitored+ For determination of ri-
bosomal subunit and monosome peaks in the elution profile,
fractions were collected and RNA was extracted and ana-
lyzed for 18S and 25S rRNA contents+ For analysis of ribo-
somal subunits, cells were grown as above, sodium azide
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was added to the culture to a final concentration of 1 mM, the
cells were shaken for 15 min and harvested and extracted as
above+ Lysis buffer consisted of 50 mM Tris-HCl [pH 7+4
(24 8C)], 50 mM NaCl, and 1 mM DTT+ The extracts were
loaded onto 7–50% (w/v) sucrose gradients made up in lysis
buffer+ The gradients were centrifuged for 210 min at 39,000
rpm in a TST41+14 rotor at 4 8C+ The gradients were unloaded
and the OD280 was continuously monitored+

Expression of recombinant protein and
production of antibodies

pGM-LCP5 was used to transform BL21(DE3)LysS cells
(Studier, 1991)+ The histidine-tagged protein was purified on
Ni21-nitrilotriacetic-acid-agarose (Qiagen) columns accord-
ing to the manufacturers’ instructions for denaturing purifica-
tion of proteins+ A rabbit was injected with 50–100 mg of
gel-purified protein in a 1 ml volume containing 50% adjuvant
(Specol)+ Affinity purification was done by adsorption of anti-
serum to nitrocellulose pieces (Schleicher & Schuell) blotted
with recombinant Lcp5p protein, subsequent elution in acidic
buffer and neutralization (Harlow & Lane, 1988)+

Pre-mRNA 3 9-end processing activity

Preparation of cell extracts and in vitro 39-end processing
assays were done as described (Minvielle-Sebastia et al+,
1994)+

Computational analysis

For the prediction of coiled coil regions and nuclear localiza-
tion signals we used the programs COILS (Lupas et al+, 1991)
and PSORT (Nakai & Kanehisa, 1992), respectively+ Both are
available in the menu TOOLS from the ExPASY Server from
the Geneva University Hospital and the University of Geneva
(internet access: http://expasy+hcuge+ch/www/expasy-top+
html)+

Immunofluorescence

The strains were grown to an OD600 of ;1+ To 25 ml of
culture, 2+5 ml of 37% formaldehyde were added and incu-
bation was continued for 1 h+ The cells were put on ice for up
to 90 min, harvested and resuspended in 100 mM Tris/HCl
(pH 9+5, 24 8C), 10 mM DTT+ The fixated cells were shaken
for 8 min and centrifuged+ The pellets were resuspended in
1 ml of buffer A [50 mM KPi (pH 7+4, 24 8C), 1+2 M Sorbitol],
washed, and resuspended in the same buffer containing
0+3 mg/ml Zymolyase 100T (Seigakaku Co+)+ Following incu-
bation for 20 min at 30 8C, the cells were centrifuged, resus-
pended in buffer A and centrifuged twice (once at 24 8C, once
at 4 8C)+ The pellet was resuspended in buffer A and the
suspension was added to poly-L-lysine (Sigma)-treated cov-
erslips and allowed to dry for five minutes+ All subsequent
steps were carried out in Buffer B (1 3 PBS, 1% BSA, 0+5%
Tween-20) at 24 8C+ The coverslips were incubated for
20 min, washed four times for 5 min, and incubated upside
down with 30 ml of buffer B containing the monoclonal mouse
antibody A66 directed against Nop1p (dilution 1:30), affinity

purified polyclonal antibodies directed against Lcp5p (dilution
1:100), or the mouse monoclonal antibody 12CA5 directed
against the HA epitope (Boehringer Mannheim; dilution 1:10)
for 1 h in a moist chamber+ The coverslips were washed as
above and overlayed with 200 ml of FITC-conjugated anti-
bodies directed against rabbit IgG and Texas-Red-conjugated
antibodies (Vector) directed against mouse IgG at a dilution
of 1:250 for 1 h+ The coverslips were washed as above, DAPI
was added at a concentration of 0+5 mg/ml, and incubated for
5 min+ The coverslips were washed twice as above+ The cells
were mounted in mowiol, followed by incubation for 10 min at
50 8C+

Microscopy

FITC, Texas Red, and DAPI were viewed by standard fluo-
rescence microscopy through a FITC, TRITC, or UV filter,
respectively, on a Nikon Microphot-FXA+ FITC and Texas Red
were viewed by confocal microscopy on a Noran Odyssey,
equipped with an argon/krypton laser, with excitation wave-
lengths of 488 nm and 568+2 nm+

Immunoprecipitation

Total yeast extracts were prepared by glass bead lysis as
described (Mitchell et al+, 1996) from strain YTW12, ex-
pressing the HA-histidine-tagged Lcp5p+ Lysis buffer con-
sisted of 20 mM Tris pH 8+0 [24 8C], 150 mM KCl, 5 mM
MgCl2, 0+01% Triton X-100, 10 mM vanadyl-ribonucleoside
complex (GIBCO), 2 mM phenylmethylsulfonylfluoride
(Serva), and 1 mM DTT+ The lysate was cleared by centri-
fugation for 10 min at 15,000 rpm+ For immunoprecipitation,
50 ml of immune or preimmune serum were coupled to
80-ml-packed protein A sepharose (Pharmacia) in Ipp500
[10 mM Tris pH 8+0 (24 8C), 500 mM NaCl, 0+1% NaN3,
0+1% NP40]+ After overnight incubation at 4 8C, the pellets
were washed in Ipp150 and 200 ml of yeast extract were
added with an equal volume of Ipp150+ The mixture was
revolved for 2 h at 4–10 8C+ After centrifugation the super-
natant was discarded and the pellet was washed four times
for 20 min at 4 8C with Ipp buffer of the indicated salt con-
centration+ Proteins were digested with Proteinase K at 50 8C
and RNAs were recovered by two PCI (phenol:chloroform:
isoamylalcohol, 25:24:1) extractions+ The RNA was ethanol
precipitated, loaded on a denaturing 8% polyacrylamide gel,
transferred to Hybond-N1 filters (Amersham), and sub-
jected to Northern hybridization with specific oligonucleo-
tides (see RNA isolation, blotting and primer extension)+
For immunoprecipitation from strains expressing protein
A-tagged fusion proteins, 20 ml of IgG Sepharose (Sigma)
was equilibrated in Ipp150, then 100 ml of extract and
300 ml of Ipp150 were added and processed as above+

Genbank accession number

LPC5 has been assigned Genbank accession no+ 603366+
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