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RNA helices that recapitulate sequences of the tRNA
acceptor stem, including the 39 NCCA nucleotides, can
be substrates for aminoacyl–tRNA synthetases (Frugier
et al+, 1994; Hamann & Hou, 1995; Martinis & Schim-
mel, 1995; Quinn et al+, 1995)+ Although the catalytic
efficiency of aminoacylation of RNA helices is reduced
from that of the full-length parent tRNA, the specificity
is maintained+ The specific aminoacylation lies in the
ability of aminoacyl–tRNA synthetases to recognize
functional groups within the RNA helices+ Analysis of
tRNA–synthetase structures has suggested a general
principle (Rould et al+, 1989; Ruff et al+, 1991; Arnez &
Moras, 1997)+ The class I synthetases, which attach an
amino acid initially to the 29-OH of the terminal ribose,
approach the acceptor and NCCA end from the minor
groove side+ The class II synthetases, which attach an
amino acid to the terminal 39-OH, approach from the
major groove side (Arnez & Moras, 1997)+ The class-
specific approach leads to tRNA–synthetase complexes
that are near mirror images of each other and provides
a structural rationale for the stereochemistries of amino-
acylation+ We report here the identification of a func-
tional group in the acceptor end of Escherichia coli
tRNACys that is important for the class I cysteine–tRNA
synthetase+ This functional group makes one of the
largest energetic contributions to aminoacylation+ How-
ever, it is located on the major groove side of the ac-
ceptor stem+ Kinetic analysis of the contribution of this
functional group to aminoacylation suggests new fea-
tures that are not anticipated from the class-specific
approach of synthetases+

The acceptor stem of E. coli tRNACys (Fig+ 1A) is a
substrate for aminoacylation (Hamann & Hou, 1995)+
For example, an RNA microhelix that contains the ac-
ceptor stem, the UCCA end, and the UUCG tetra-loop
(Fig+ 1B) is specifically aminoacylated with cysteine+An
RNA minihelix (not shown) that extends the microhelix
by including the TCC stem is also specifically amino-
acylated with cysteine, with a catalytic efficiency
(kcat/Km) of aminoacylation similar to that of the micro-
helix+ In these RNA helices, the determinant for amino-
acylation is U73 (Hamann & Hou, 1995)+ Substitution of
U73 with A73,C73, or G73 completely eliminates amino-
acylation+ Further, transfer of U73 to RNA helices of a
different specificity confers on the latter the ability to
accept cysteine+ For example, introduction of U73 to
the RNA helix of tRNAAla enables aminoacylation with
cysteine, even though the major determinant for amino-
acylation with alanine (G3:U73) is still present in the
acceptor stem+ In the transplanted helix, the kcat/Km

value of aminoacylation with cysteine is virtually iden-
tical to that of the helix of tRNACys, whereas kcat/Km

of aminoacylation with alanine is reduced by 30-fold
(Hamann & Hou, 1995)+ The dominant role of U73 in
aminoacylation with cysteine is also observed in the
full-length tRNACys+ In E. coli tRNACys, U73 is the most
important nucleotide for aminoacylation, and it ac-
counts for 7+1 kcal/mol of the free energy change of
activation (Komatsoulis & Abelson, 1993; Hou, 1997)+
The significance of U73 in E. coli tRNACys is followed
by the GCA anticodon (4+3 kcal/mol) and a G15:G48
tertiary base pair (2+8 kcal/mol) (Komatsoulis & Abel-
son, 1993; Lipman & Hou, 1998)+

U73 is conserved in all cysteine-specific tRNAs and
its role in aminoacylation appears conserved in evolu-
tion+ Studies of the human, yeast, and several micro-
bial cysteine tRNAs have confirmed the significance of
U73 (Lipman & Hou, 1998)+ The prominence of U73
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prompted us to investigate the functional groups in U73
that are important for recognition by cysteine–tRNA
synthetase+ We used the microhelix of E. coli tRNACys

as a framework for the design of substrates (Fig+ 1B)+
Although the kcat/Km of aminoacylation of the micro-
helix is reduced from that of the full-length tRNA by five
to six orders of magnitude (Table 1), the dependence
on U73 for aminoacylation is the same+ Extension of
the helix to include the TCC stem does not improve the
kcat/Km value; neither does the addition of a second
helix that consists of the D-anticodon domain (Hamann
& Hou, 1995)+ This argues that the acceptor stem is an
independent domain+ Further, kinetic studies show that

substitutions in the helix (not at U73) have the same
effect as those in the full-length tRNA+ For example,
alteration of the second and third base pairs of E. coli
microhelix decreases kcat/Km of aminoacylation by two-
fold+ The same decrease is observed when alteration
is made at the second and third base pairs of E. coli
tRNACys (Hou et al+, 1995)+ This indicates a close par-
allel between the microhelix and the acceptor stem of
the tRNA and suggests that the microhelix can be a
model system to examine the interaction between the
acceptor stem and cysteine–tRNA synthetase+

Kinetic parameters of the wild-type RNA microhelix
were determined under the steady-state kinetic condi-

FIGURE 1. A: Sequence and cloverleaf structure of E. coli tRNACys, where U73 adjacent to the CCA end is boxed+
B: Sequence of the synthetic wild-type RNA helix, where U73 is boxed+ Variants of the helix containing modifications of U73
were tested for aminoacylation with cysteine+ C: The structures of U (uridine) and its pyrimidine analogs, including C
(cytidine), m5isoC (5-methyl-isocytidine), dT (deoxy-thymidine), s4U (4-thio-uridine), and s2U (2-thio-uridine)+ RNA helices
containing an analog of U73 that have a kcat/Km value of aminoacylation within 10-fold of that of the wild type are denoted
as active (1), whereas the C73 helix with a kcat/Km 105-fold below of that of the wild type is inactive (2)+
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tions+ Based on the Lineweaver–Burk plot (Fig+ 2A), the
kcat was 1+81 3 1024 s21, which is reduced from that of
the full-length transcript of E. coli tRNACys (1+27 s21) by
about 104-fold+ The Km was 160 mM, which is higher

than the Km of the full-length tRNA (1+28 mM) by about
102-fold (Table 1)+ Both the kcat and Km values were
similar to those of our previous report (Hamann & Hou,
1995)+ Together, the kcat/Km of aminoacylation of the
microhelix is reduced from that of the full-length tRNA
by six orders of magnitude+

We synthesized variants of the RNA microhelix that
contained natural and unnatural pyrimidines to replace
U73+ These variants were to test the atomic groups of
the uridine base+ The closely related natural pyrimi-
dine, C73, was investigated first+ The U73C substitution
decreased kcat/Km of aminoacylation by approximately
105-fold+ This effect was estimated by comparing the
initial rate of the U73C mutant to that of the wild-type
microhelix+ The condition of aminoacylation was such
that the concentrations of the RNA substrate were at
least fivefold below the Km of the wild type+ Under this
condition, the initial rate was approximately propor-
tional to kcat/Km+

The 105-fold effect of the U73C substitution was
reproduced in the full-length tRNA+ The kcat and Km

values for the U73C variant of the tRNA were indi-
vidually obtained+ By using elevated levels of the en-
zyme, we determined the kcat of the U73C variant as
4+8 3 1025 s21 and the Km as 9+59 mM+ These val-
ues were valid, as the concentration of the enzyme
was maintained at 10-fold below the concentration
range of the RNA substrate+ Compared to values of
the wild-type tRNA, the decrease of kcat by almost
105-fold and the increase of Km by 10-fold led to a
decrease of kcat/Km by five to six orders of magni-
tude+ Thus, the effect of the U73C substitution in the
full-length tRNA is the same as that in the microhelix+
This provided additional support that the minihelix do-
main had quantitatively recapitulated features of the
acceptor stem of the full-length tRNA+

TABLE 1 + Kinetic parameters of aminoacylation with cysteine+

kcat

(s21)
Km

(mM)
kcat/Km

a

(M21s21)
Percentage
of chargingb

Wild-type tRNACys transcript 1+3 6 0+11 1+3 6 0+12 1+0 3 106 33
C73 transcript (0+48 6 0+05) 3 1024 9+6 6 1+1 0+5 3 101 30
Wild-type (U73) helix (1+8 6 0+22) 3 1024 160 6 6+3 1+12 62
C73 helix n+d+ n+d+ ,1025 n+d+
m5isoC73 helix (0+40 6 0+05) 3 1024 69 6 6+4 0+58 65
dU73 helix n+d+ n+d+ 2+10 60
dT73 helix n+d+ n+d+ 0+96 60
s4U73 helix (2+0 6 0+48) 3 1024 1,300 6 110 0+15 80
s2U73 helix n+d+ n+d+ 1+00 80

aThe kcat/Km values were obtained by one of two methods+ First, it was derived from the
Lineweaver–Burk equation, based on individual kcat and Km values (as shown in the table)+
Values obtained by this method include those for the wild-type transcript, the C73 transcript, the
wild-type helix, the m5isoC73 helix, and the s4U73 helix+ Alternatively, the kcat/Km values were
estimated from initial rates of aminoacylation at substrate concentrations significantly below the
Km of the respective wild-type RNA+ With this method, the individual kcat and Km values for a
substrate were not determined (n+d)+ Each value is an average of at least two determinations+

bThe percentage of charging indicated the percentage of each RNA substrate that was
functional for aminoacylation (see Materials and methods)+ Based on the percentage of charg-
ing, the concentration of a substrate was then adjusted accordingly+

FIGURE 2. The Lineweaver–Burk plot of aminoacylation with cys-
teine of the wild-type RNA helix (A) and the m5isoC73 variant (B) as
a function of substrate concentration+ The linear regression of y 5
ax 1 b, together with the R2 value (the correlation coefficient), is
shown for each plot+
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U73 differs from C73 at the 3- and 4-positions of the
pyrimidine ring+ U73 contains the 4-carbonyl group in-
stead of the 4-amino group and has the N3 as a hy-
drogen donor instead of an acceptor (Fig+ 1C)+ The
large effect of the U73C substitution on aminoacyla-
tion suggests that the functional groups at the 3- and
4-positions may be the basis for the effect+ Several
RNA helices were chemically synthesized to test these
functional groups (Fig+ 1C)+ The methods for chemical
synthesis have all been previously described (Strobel
et al+, 1994; Kumar & Davis, 1995, 1997)+ One helix
has 5-methyl-isoC (m5isoC) at position 73, which main-
tains the 4-carbonyl group but converts the N3 into a
hydrogen bond acceptor+ The m5isoC substitution also
replaces the 2-carbonyl group with an amino group and
introduces a methyl group to the 5 position of the py-
rimidine ring+ The kcat/Km of aminoacylation of this helix
is dramatically improved over that of the C73 variant+
The improved kcat/Km is within twofold of that of the
wild type (Table 1; Fig+ 2B)+ Comparison of m5isoC with
C (Fig+ 1C) suggests that this improvement was not
due to the 3-position of the pyrimidine ring, which is
common to both nucleosides+ Rather, the improvement
might come from the 4-carbonyl group, which is also
present in U+ To determine if the 5-methyl group was
responsible for the improved kcat/Km, helices contain-
ing dT (deoxy thymidine) and dU at position 73 were
synthesized+ The helix with dU73 has only a twofold
effect (Table 1), therefore any change seen for the dT73
helix was expected to be due to the methyl group+ The
kcat/Km of the dT73-containing RNA is similar to that of
the wild type, suggesting that the 5-methyl group has
little effect on aminoacylation+

To determine the importance of the 4-carbonyl
group of U73, we investigated an RNA helix containing
4-thiouridine (s4U) at position 73+ In s4U, the 4-carbonyl
group of uridine is replaced by a thio group but the N3
imino is maintained+ The kcat/Km of the s4U-containing
helix is reduced from that of the wild type by 10-fold
(Table 1)+ This modest effect suggests that the 4-car-
bonyl is important, but that the interactions important
for aminoacylation are tolerant of the greater size and
reduced hydrogen-bonding potential of the 4-thio group+
To further confirm the significance of the 4-position,
but not the 2-position, we tested a helix containing
2-thiouridine (s2U)+ In s2U, the 3-position is again main-
tained while the 2-position has the chemically similar
thio group+ The kcat/Km of the s2U-containing helix is
virtually identical to that of the wild type+ This sup-
ported the data of the m5isoC73 and C73 substitutions
and further illustrated that aminoacylation is tolerant to
substitutions at the 2-position but not at the 4-position+

The contribution of the 4-carbonyl group of U73 to
aminoacylation is largely through a kcat effect+ The U73C
variant of the full-length tRNA lacks this functional group
and suffers from a loss of kcat by almost five orders of
magnitude (Table 1)+ The kcat of the U73C variant of the

RNA helix was not measured, due to limitations in the
amount of the enzyme needed to offset the severe
kinetic defect+ However, because of the close parallel
between the microhelix domain and the acceptor stem
of the full-length tRNA, the kcat of the U73C variant was
expected to be impaired+ The loss of kcat in the U73C
variant and the recovery of kcat in the m5isoC and s4U
mutants suggest that the 4-carbonyl group is important
in the transition state of aminoacylation+

In standard RNA helices, the 4-carbonyl group of uri-
dine is located in the major groove+ Although U73 is a
single-stranded nucleotide protruded from the acceptor
helix, two solution NMR studies show that the struc-
tural environment of U73 is analogous to the major
groove of a double helix+ One NMR study focused on a
variant of E. coli tRNAfMet that contained U73 and the
first 4 bp identical to those of E. coli tRNACys (Puglisi
et al+, 1994)+ The second focused on the acceptor stem
of Mycoplasma pneumoniae tRNACys, which contains
U73 and the same first 2 bp as those of E. coli tRNACys

(Holland et al+, 1999)+ The key finding of both studies is
that U73 is well stacked between two nucleotides, the
C72 below it and the C74 above it+ The continuous
stacking of C72, U73, and C74 creates an RNA “A-like”
conformation that places U73 on the major groove side
of the acceptor stem+ Further, the NMR data indicate
that C75 and A76 of the CCA end bend over towards
G1 such that the major groove position of the 4-carbonyl
group of U73 is even more exposed+ These major
features of U73 are believed to be present in E. coli
tRNACys, based on the common UCCA end and the first
2–4 bp at the acceptor end+ Also, recent kinetic analy-
sis of microhelices of E. coli tRNACys and of M. pneu-
moniae tRNACys has demonstrated strong similarities
between the two (Y+M+ Hou, X+L+ Zhang, J+A+ Holland, &
D+R+ Davis, in prep+)+

The importance of the 4-carbonyl group of U73 in the
major groove is unexpected, as cysteine–tRNA synthe-
tase is a class I enzyme (Eriani et al+, 1991; Hou et al+,
1991)+ Studies of functional groups in the acceptor ends,
particularly at the terminal 73 position and the 1:72 bp,
have largely supported the class-specific principle+
For example, crystal structures of the class I gluta-
mine–tRNA synthetase and of the class II aspartate–
tRNA synthetase show recognition of the 73 base on
the minor and major groove sides, respectively (Rould
et al+, 1989; Ruff et al+, 1991)+ The class II alanine– and
proline–tRNA synthetases both recognize the 1:72 bp
in the major groove (Liu et al+, 1996; Fischer et al+,
1999)+ Although the alanine enzyme recognizes the
determinant G3:U70 in the minor groove (Musier-
Forsyth et al+, 1991, 1995; Beuning et al+, 1997), this
determinant is further away from the acceptor end and
thus may not comply with the class-specific rule+ The
only other known exception to the class-specific rule is
recognition by the class II serine–tRNA synthetase of
the 2-amino group of G73, which is located on the
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minor groove side of the acceptor end (Breitschopf &
Gross, 1996)+ Additional studies of other synthetases
are necessary to gain more insights into the class-
specific rule at the acceptor end+

The energetic contribution of the 4-carbonyl group
of U73 to aminoacylation is large+ It is estimated as
7 kcal/mol based on the change of five orders of mag-
nitude in kcat/Km from the C73 variant to the m5isoC73
variant (Table 1)+ Among known groups that are impor-
tant for aminoacylation (Musier-Forsyth & Schimmel,
1999), the value of 7 kcal/mol is the largest for a single
atomic group+ However, the actual contribution of the
4-carbonyl group may be smaller, because the 4-amino
group of C73 may serve as a negative determinant
to prevent aminoacylation by other synthetases+ The
delineation of how the 4-carbonyl group of U73 con-
tributes to aminoacylation will be important for under-
standing the catalysis of tRNA aminoacylation by the
class I cysteine enzyme+ The 4-carbonyl group of U73
is located at the helical end where the major groove is
widely accessible to RNA–protein interactions+One pos-
sibility is that it could directly contact cysteine–tRNA
synthetase to form a transition-state complex+ Alterna-
tively, it could form a structure with another part of the
RNA during the transition-state of aminoacylation+ This
RNA–RNA interaction would then be required for the
cysteine enzyme to turn the CCA end to the minor
groove side of the acceptor helix, where the class I
enzyme is expected to approach+

MATERIALS AND METHODS

Kinetics of aminoacylation of cysteine was determined under
previously established steady-state conditions (Hamann &
Hou, 1995)+ The wild-type transcript was assayed in the range
of 0+3–10 mM and with 0+8 nM of E. coli cysteine–tRNA syn-
thetase+ The C73 transcript was assayed in the range of
5–50 mM and with 0+5 mM of the cysteine enzyme+ The wild-
type helix and the m5isoC73 variant were assayed in the
range of 20–300 mM with 3 mM of the cysteine enzyme+ For
all of these RNA substrates, the reported Km values were in
the same range of substrate concentrations that were tested+
This gave credence to the accuracy of the Km values+ How-
ever, the s4U73 variant was assayed in the range of 50–
400 mM with 4+2 mM of the cysteine enzyme+ As the reported
Km (1,300 mM) was outside the range of substrate concen-
trations, it was an estimation+ All other microhelix variants
were assayed at 30 mM with 3 mM of the cysteine enzyme
and the initial rates of their aminoacylation reactions were
used to estimate kcat/Km+

The percentage of charging for each substrate (in Table 1)
was determined by aminoacylation with substrate levels of
cysteine–tRNA synthetase over a 30-min time course+ The
plateau of aminoacylation indicated the amount of the sub-
strate that was functional+ This value was then compared to
the standard of 1,600 pmol/OD (based on a 100% functional
substrate) to determine the percentage of charging+ In this
study, all of the RNA substrates had been gel purified and
ethanol precipitated+ The percentage of charging for the tran-

scripts of the wild type and the C73 variant that were syn-
thesized by T7 RNA polymerase was estimated to be 30%,
whereas that for minihelices that were chemically synthe-
sized was estimated to be 60–80%+

Chemical synthesis of RNA containing the m5isoC, dU,
and dT modifications was achieved at the Nucleic Acid Fa-
cility of the University of Pennsylvania+ The dU and dT phos-
phoramidites were purchased from Glen Research+ The
m5isoC phosphoramidite was synthesized as described (Stro-
bel et al+, 1994)+ Synthesis of s4U and s2U phosphoramidites
was as described (Kumar & Davis, 1995, 1997)+ All RNAs
were examined by HPLC analysis and were purified by elec-
trophoresis through a 12% polyacrylamide/7 M urea gel as
described (Hamann & Hou, 1995)+ The composition of the
s4U- and s2U-containing RNA helices was also verified by
MALDI/MS analysis at the University of Utah+
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