Skip to main content
RNA logoLink to RNA
. 2000 Sep;6(9):1289–1305. doi: 10.1017/s1355838200000327

The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function.

L A Lindsey-Boltz 1, G Chawla 1, N Srinivasan 1, U Vijayraghavan 1, M A Garcia-Blanco 1
PMCID: PMC1370002  PMID: 10999606

Abstract

In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achsel T., Ahrens K., Brahms H., Teigelkamp S., Lührmann R. The human U5-220kD protein (hPrp8) forms a stable RNA-free complex with several U5-specific proteins, including an RNA unwindase, a homologue of ribosomal elongation factor EF-2, and a novel WD-40 protein. Mol Cell Biol. 1998 Nov;18(11):6756–6766. doi: 10.1128/mcb.18.11.6756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ansari A., Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001–4009. doi: 10.1002/j.1460-2075.1995.tb00071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayadi L., Callebaut I., Saguez C., Villa T., Mornon J. P., Banroques J. Functional and structural characterization of the prp3 binding domain of the yeast prp4 splicing factor. J Mol Biol. 1998 Dec 4;284(3):673–687. doi: 10.1006/jmbi.1998.2183. [DOI] [PubMed] [Google Scholar]
  4. Ben Yehuda S., Dix I., Russell C. S., Levy S., Beggs J. D., Kupiec M. Identification and functional analysis of hPRP17, the human homologue of the PRP17/CDC40 yeast gene involved in splicing and cell cycle control. RNA. 1998 Oct;4(10):1304–1312. doi: 10.1017/s1355838298980712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Yehuda S., Russell C. S., Dix I., Beggs J. D., Kupiec M. Extensive genetic interactions between PRP8 and PRP17/CDC40, two yeast genes involved in pre-mRNA splicing and cell cycle progression. Genetics. 2000 Jan;154(1):61–71. doi: 10.1093/genetics/154.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boger-Nadjar E., Vaisman N., Ben-Yehuda S., Kassir Y., Kupiec M. Efficient initiation of S-phase in yeast requires Cdc40p, a protein involved in pre-mRNA splicing. Mol Gen Genet. 1998 Nov;260(2-3):232–241. doi: 10.1007/s004380050891. [DOI] [PubMed] [Google Scholar]
  7. Chua K., Reed R. Human step II splicing factor hSlu7 functions in restructuring the spliceosome between the catalytic steps of splicing. Genes Dev. 1999 Apr 1;13(7):841–850. doi: 10.1101/gad.13.7.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Couto J. R., Tamm J., Parker R., Guthrie C. A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes Dev. 1987 Jul;1(5):445–455. doi: 10.1101/gad.1.5.445. [DOI] [PubMed] [Google Scholar]
  9. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  10. Ford C. E., Skiba N. P., Bae H., Daaka Y., Reuveny E., Shekter L. R., Rosal R., Weng G., Yang C. S., Iyengar R. Molecular basis for interactions of G protein betagamma subunits with effectors. Science. 1998 May 22;280(5367):1271–1274. doi: 10.1126/science.280.5367.1271. [DOI] [PubMed] [Google Scholar]
  11. Frank D., Guthrie C. An essential splicing factor, SLU7, mediates 3' splice site choice in yeast. Genes Dev. 1992 Nov;6(11):2112–2124. doi: 10.1101/gad.6.11.2112. [DOI] [PubMed] [Google Scholar]
  12. Frank D., Patterson B., Guthrie C. Synthetic lethal mutations suggest interactions between U5 small nuclear RNA and four proteins required for the second step of splicing. Mol Cell Biol. 1992 Nov;12(11):5197–5205. doi: 10.1128/mcb.12.11.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horowitz D. S., Abelson J. Stages in the second reaction of pre-mRNA splicing: the final step is ATP independent. Genes Dev. 1993 Feb;7(2):320–329. doi: 10.1101/gad.7.2.320. [DOI] [PubMed] [Google Scholar]
  14. Horowitz D. S., Krainer A. R. A human protein required for the second step of pre-mRNA splicing is functionally related to a yeast splicing factor. Genes Dev. 1997 Jan 1;11(1):139–151. doi: 10.1101/gad.11.1.139. [DOI] [PubMed] [Google Scholar]
  15. Jones M. H., Frank D. N., Guthrie C. Characterization and functional ordering of Slu7p and Prp17p during the second step of pre-mRNA splicing in yeast. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9687–9691. doi: 10.1073/pnas.92.21.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kolodziej P. A., Young R. A. Epitope tagging and protein surveillance. Methods Enzymol. 1991;194:508–519. doi: 10.1016/0076-6879(91)94038-e. [DOI] [PubMed] [Google Scholar]
  17. Komachi K., Johnson A. D. Residues in the WD repeats of Tup1 required for interaction with alpha2. Mol Cell Biol. 1997 Oct;17(10):6023–6028. doi: 10.1128/mcb.17.10.6023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., Sigler P. B. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996 Jan 25;379(6563):311–319. doi: 10.1038/379311a0. [DOI] [PubMed] [Google Scholar]
  19. Lindsey L. A., Garcia-Blanco M. A. Functional conservation of the human homolog of the yeast pre-mRNA splicing factor Prp17p. J Biol Chem. 1998 Dec 4;273(49):32771–32775. doi: 10.1074/jbc.273.49.32771. [DOI] [PubMed] [Google Scholar]
  20. Murzin A. G. Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins. 1992 Oct;14(2):191–201. doi: 10.1002/prot.340140206. [DOI] [PubMed] [Google Scholar]
  21. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  22. Neer E. J., Smith T. F. G protein heterodimers: new structures propel new questions. Cell. 1996 Jan 26;84(2):175–178. doi: 10.1016/s0092-8674(00)80969-1. [DOI] [PubMed] [Google Scholar]
  23. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  24. O'Keefe R. T., Newman A. J. Functional analysis of the U5 snRNA loop 1 in the second catalytic step of yeast pre-mRNA splicing. EMBO J. 1998 Jan 15;17(2):565–574. doi: 10.1093/emboj/17.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Keefe R. T., Norman C., Newman A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996 Aug 23;86(4):679–689. doi: 10.1016/s0092-8674(00)80140-3. [DOI] [PubMed] [Google Scholar]
  26. Patterson B., Guthrie C. An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell. 1987 Jun 5;49(5):613–624. doi: 10.1016/0092-8674(87)90537-x. [DOI] [PubMed] [Google Scholar]
  27. Pringle J. R., Preston R. A., Adams A. E., Stearns T., Drubin D. G., Haarer B. K., Jones E. W. Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989;31:357–435. doi: 10.1016/s0091-679x(08)61620-9. [DOI] [PubMed] [Google Scholar]
  28. Printen J. A., Sprague G. F., Jr Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics. 1994 Nov;138(3):609–619. doi: 10.1093/genetics/138.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwer B., Gross C. H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 1998 Apr 1;17(7):2086–2094. doi: 10.1093/emboj/17.7.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwer B., Guthrie C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 1992 Dec;11(13):5033–5039. doi: 10.1002/j.1460-2075.1992.tb05610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schwer B., Guthrie C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature. 1991 Feb 7;349(6309):494–499. doi: 10.1038/349494a0. [DOI] [PubMed] [Google Scholar]
  32. Seshadri V., Vaidya V. C., Vijayraghavan U. Genetic studies of the PRP17 gene of Saccharomyces cerevisiae: a domain essential for function maps to a nonconserved region of the protein. Genetics. 1996 May;143(1):45–55. doi: 10.1093/genetics/143.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  34. Sondek J., Bohm A., Lambright D. G., Hamm H. E., Sigler P. B. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996 Jan 25;379(6563):369–374. doi: 10.1038/379369a0. [DOI] [PubMed] [Google Scholar]
  35. Srinivasan N., Blundell T. L. An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 1993 Jul;6(5):501–512. doi: 10.1093/protein/6.5.501. [DOI] [PubMed] [Google Scholar]
  36. Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
  37. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  38. Sutcliffe M. J., Hayes F. R., Blundell T. L. Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng. 1987 Oct-Nov;1(5):385–392. doi: 10.1093/protein/1.5.385. [DOI] [PubMed] [Google Scholar]
  39. Ségault V., Will C. L., Polycarpou-Schwarz M., Mattaj I. W., Branlant C., Lührmann R. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol Cell Biol. 1999 Apr;19(4):2782–2790. doi: 10.1128/mcb.19.4.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Teigelkamp S., Newman A. J., Beggs J. D. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 1995 Jun 1;14(11):2602–2612. doi: 10.1002/j.1460-2075.1995.tb07258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Topham C. M., McLeod A., Eisenmenger F., Overington J. P., Johnson M. S., Blundell T. L. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol. 1993 Jan 5;229(1):194–220. doi: 10.1006/jmbi.1993.1018. [DOI] [PubMed] [Google Scholar]
  42. Umen J. G., Guthrie C. A novel role for a U5 snRNP protein in 3' splice site selection. Genes Dev. 1995 Apr 1;9(7):855–868. doi: 10.1101/gad.9.7.855. [DOI] [PubMed] [Google Scholar]
  43. Umen J. G., Guthrie C. Prp16p, Slu7p, and Prp8p interact with the 3' splice site in two distinct stages during the second catalytic step of pre-mRNA splicing. RNA. 1995 Aug;1(6):584–597. [PMC free article] [PubMed] [Google Scholar]
  44. Umen J. G., Guthrie C. The second catalytic step of pre-mRNA splicing. RNA. 1995 Nov;1(9):869–885. [PMC free article] [PubMed] [Google Scholar]
  45. Vaisman N., Tsouladze A., Robzyk K., Ben-Yehuda S., Kupiec M., Kassir Y. The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol Gen Genet. 1995 Apr 20;247(2):123–136. doi: 10.1007/BF00705642. [DOI] [PubMed] [Google Scholar]
  46. Vijayraghavan U., Company M., Abelson J. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 1989 Aug;3(8):1206–1216. doi: 10.1101/gad.3.8.1206. [DOI] [PubMed] [Google Scholar]
  47. Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995 Dec 15;83(6):1047–1058. doi: 10.1016/0092-8674(95)90220-1. [DOI] [PubMed] [Google Scholar]
  48. Wang Y., Guthrie C. PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA. 1998 Oct;4(10):1216–1229. [PMC free article] [PubMed] [Google Scholar]
  49. Wyatt J. R., Sontheimer E. J., Steitz J. A. Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing. Genes Dev. 1992 Dec;6(12B):2542–2553. doi: 10.1101/gad.6.12b.2542. [DOI] [PubMed] [Google Scholar]
  50. Xu D., Field D. J., Tang S. J., Moris A., Bobechko B. P., Friesen J. D. Synthetic lethality of yeast slt mutations with U2 small nuclear RNA mutations suggests functional interactions between U2 and U5 snRNPs that are important for both steps of pre-mRNA splicing. Mol Cell Biol. 1998 Apr;18(4):2055–2066. doi: 10.1128/mcb.18.4.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang X., Schwer B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 1997 Jun 1;25(11):2146–2152. doi: 10.1093/nar/25.11.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhou Z., Reed R. Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. EMBO J. 1998 Apr 1;17(7):2095–2106. doi: 10.1093/emboj/17.7.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. ter Haar E., Musacchio A., Harrison S. C., Kirchhausen T. Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker. Cell. 1998 Nov 13;95(4):563–573. doi: 10.1016/s0092-8674(00)81623-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES