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METHOD

Use of terbium as a probe of tRNA tertiary
structure and folding

MICHELE R. SEFFERNICK HARGITTAI 1 and KARIN MUSIER-FORSYTH 1,2

1Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School,
Minneapolis, Minnesota 55455, USA

2Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA

ABSTRACT

Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA.
Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentra-
tions of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher
concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded,
non-Watson–Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNA Lys,3 tertiary
structure and folding. When 1 mM tRNA is used, the optimal terbium ion concentration for detecting Mg 21-induced
tertiary structural changes is 50–60 mM. Using these concentrations of RNA and terbium, a magnesium-dependent
folding transition with a midpoint ( KMg) of 2.6 mM is observed for unmodified human tRNA Lys,3 . At lower Tb 31

concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chem-
ical probe should also be useful for detecting protein induced structural changes in RNA.
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INTRODUCTION

The lanthanide metals have been widely used to map
metal-binding sites in RNA (Ciesiolka et al+, 1989a,
1989b; Marciniec et al+, 1989; Gast et al+, 1996; Micha-
lowski et al+, 1996; Dorner & Barta, 1999)+ The binding
constants for lanthanide metals have been reported to
be 600- to 10,000-fold higher than those for magne-
sium (Kayne & Cohn, 1974; Wolfson & Kearns, 1975;
Draper, 1985)+ Thus, low concentrations of lanthanide
metals easily displace magnesium+Once bound to RNA,
lanthanides cleave the phosphodiester backbone by
abstracting a hydrogen ion from the 29-hydroxyl of a
nearby nucleotide (Ciesiolka et al+, 1989a; Matsumura
& Komiyama, 1997)+ The 29-oxyanion attacks the ad-
jacent phosphodiester bond, resulting in backbone scis-
sion+Although most metals in the lanthanide series can
induce RNA cleavage (Ciesiolka et al+, 1989a; Ko-
miyama et al+, 1992), europium and terbium have been
the most extensively studied, in part, due to their ad-
ditional luminescent properties (Horrocks, 1993)+

Lanthanide ions have also been developed for use in
a wide variety of biotechnological applications+ For ex-
ample, chelated lanthanide ion complexes have been
covalently attached to antisense oligonucleotides de-
signed to anneal to a target RNA to generate site-
specific cleavage (Morrow et al+, 1992; Hall et al+, 1994,
1996;Magda et al+, 1994; Komiyama, 1995; Baker et al+,
1999)+ The lanthanide metals cerium and lanthanum
and their complexes have also been used to cleave
DNA (Takasaki & Chin, 1994; Komiyama, 1995; Branum
& Que, 1999)+

Although lanthanide cleavage studies of RNA have
been largely limited to mapping metal-binding sites,
Walter et al+ (2000) recently reported the use of ter-
bium to detect secondary and tertiary structural fea-
tures of the hairpin ribozyme+When low concentrations
of terbium were used (40–100 mM), cleavage only oc-
curred at high-affinity metal-binding sites+ However, at
higher terbium:RNA ratios, the terbium cleaved not only
the metal-binding pockets, but also non-Watson–Crick
base-paired and single-stranded regions of the RNA+
These researchers concluded that terbium is a versa-
tile probe of RNA structure (Walter et al+, 2000)+

We were interested in characterizing the sensitivity
of the terbium cleavage assay on the tertiary structure
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of human tRNALys,3+ HIV-1 reverse transcriptase uses
this tRNA as a primer to initiate retroviral reverse tran-
scription (Wain-Hobson et al+, 1985; Rhim et al+, 1991;
Das et al+, 1994; Coffin et al+, 1997)+ The 39 18 nt of
human tRNALys,3 are perfectly complementary to the
genomic RNA primer binding site+ Prior to initiation of
reverse transcription, a binary complex forms between
these two RNAs that involves major conformational
changes in the tertiary structure of both nucleic acids
(Isel et al+, 1995; Skripkin et al+, 1996)+ In vitro, the
HIV-1 nucleocapsid protein (NC) facilitates the anneal-
ing of tRNALys,3 to the primer-binding site (Barat et al+,
1989; Darlix et al+, 1995)+ Acceptor stem strand sepa-
ration is a prerequisite to primer annealing+ However,
using fluorescence resonance energy transfer, we re-
cently determined that the acceptor stem of tRNALys,3

does not separate upon NC binding in the absence of
the RNA genome (Chan et al+, 1999), a result that is
consistent with recent NMR data (C+ Tisné, B+P+Roques,
and F+ Dardel, submitted)+ The fluorescence data could
not determine whether NC induces other structural
changes upon tRNA binding, such as partial or com-
plete tertiary structure unfolding+ To address this ques-
tion, we wanted to develop a chemical probing method
that would allow us to measure more subtle tRNA struc-
tural changes upon protein binding+

Lead has been extensively employed as a useful
probe of tRNA tertiary structure+ For example, yeast
tRNAPhe possesses a high affinity lead-binding site that
results in specific D-loop cleavage (Sundaralingam et al+,
1984; Brown et al+, 1985; Ciesiolka et al+, 1989a; Mar-
ciniec et al+, 1989; Khan et al+, 1996;Michalowski et al+,
1996)+ However, based on the known crystal structures
of lead (Rubin & Sundaralingam, 1983; Sundaralin
gam et al+, 1984; Brown et al+, 1985), magnesium (Hol-
brook et al+, 1977; Hingerty et al+, 1978; Quigley et al+,
1978), and the lanthanide metal samarium (Robertus
et al+, 1974; Stout et al+, 1978) bound to yeast tRNAPhe,
as well as tRNA cleavage studies conducted with all
three metals (Ciesiolka et al+, 1989a; Marciniec et al+,
1989; Michalowski et al+, 1996), trivalent lanthanides
mimic magnesium ion binding more closely than lead+
Moreover, lanthanide ion cleavage appears to be
more general and versatile than lead cleavage (Ciesi-
olka et al+, 1989a, 1989b;Marciniec et al+, 1989;Micha-
lowski et al+, 1996; Walter et al+, 2000)+ Specific lead
cleavage of yeast tRNAPhe is inhibited upon NC binding
(Khan et al+, 1996), suggesting that NC does alter the
tRNA tertiary structure+We find that the terbium cleav-
age pattern of human tRNALys,3 is also altered upon NC
binding (M+R+S+ Hargittai & K+Musier-Forsyth, in prep+)+
To assist in the interpretation of these NC-induced
changes, which will be reported in a separate manu-
script, we characterized the terbium cleavage pattern
of human tRNALys,3 as a function of terbium and mag-
nesium ion concentration+We find that in addition to its
well-known capability to identify magnesium-binding

sites in RNA, terbium is a sensitive probe of tRNA ter-
tiary structure and folding+

RESULTS AND DISCUSSION

Effect of terbium ion concentration
on the cleavage pattern of unfolded
and folded tRNA Lys,3

We first determined the sensitivity of human tRNALys,3

to different terbium cleavage conditions+ A terbium ti-
tration was performed using both “unfolded” (0 mM
Mg21) and folded (10 mM Mg21) tRNALys,3+ Through-
out this work we designate the tRNA prepared in the
absence of magnesium as “unfolded,” even though this
molecule has substantial secondary structure and pos-
sibly weak tertiary interactions as well (Maglott et al+,
1998)+ Our initial goal was to obtain the optimal terbi-
um:RNA ratio for detecting structural features in the
tRNA+ Using 1 mM tRNA, we varied the terbium con-
centration over the range of 0 to 5 mM and the results
are shown in Figure 1+ At low terbium concentrations
(0+03 mM), both the unfolded and the folded tRNAs are
weakly cleaved at only a few positions+ Cleavage is
observed primarily at nt 15, 16, and 36+ In most cases,
cleavages are stronger in the folded than the unfolded
tRNA+ At 0+05 mM terbium, the unfolded tRNA was
cleaved at nearly every position (Fig+ 1)+ This cleavage
pattern remained fairly constant up to 0+1 mM terbium+
At terbium concentrations greater than 0+1 mM, weak
protection from cleavage was observed in the unfolded
RNA at nt 12–14 and 22–24, presumably due to some
terbium-induced structural perturbations+

At terbium concentrations greater than 0+04 mM, the
pattern of cleavage observed for the folded tRNA was
remarkably different than that of the unfolded tRNA+ In
the folded tRNA, the A-form helical regions are pro-
tected from cleavage when compared to the unfolded
tRNA cleaved at the same terbium concentration+ Dif-
ferences in the extent of cleavage for the folded tRNA
revealed significant protection from cleavage in the
0+05–0+06 mM terbium concentration range, with the
exception of position 15, where enhanced cleavage is
observed (Fig+ 1)+ Between 0+07 and 0+1 mM terbium,
protection was slightly less evident at most positions of
the folded tRNA+Above 0+1 mM terbium, increased pro-
tection from terbium cleavage is once again observed+
At these higher terbium concentrations, the terbium
appears to slightly alter the tRNA tertiary structure,
as also observed in the unfolded molecule+ Terbium
has been reported to support DNA structure at high
concentration by binding to the phosphodiester back-
bone (Tajmir-Riahi et al+, 1993)+ Based on these obser-
vations, the optimal terbium concentration range for
detecting magnesium-dependent tertiary structural fea-
tures of 1 mM tRNA is 0+05–0+06 mM+
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One of the most striking features in the terbium
cleavage pattern is the strong cleavage at position
15 in the folded tRNA+ Terbium is known to have a
high affinity for magnesium-binding sites in RNA (Wolf-
son & Kearns, 1975; Draper, 1985) and can readily
displace the magnesium and induce cleavage (Ciesi-
olka et al+, 1989a, 1989b; Marciniec et al+, 1989; Gast
et al+, 1996; Michalowski et al+, 1996)+ In tRNALys,3,
position 15 is especially sensitive to cleavage when
folded+ However, when the metal-binding site is not
formed prior to the addition of terbium, as in the un-
folded tRNA, enhanced cleavage is generally not
present at position 15+ At low (0+04 and 0+05 mM)
terbium concentrations, the unfolded tRNA does ex-
hibit enhanced cleavage at position 15+ Since the

metal-binding site is presumably not formed prior to
the addition of terbium, a terbium ion may assist in
the formation of the binding pocket+ At low terbium
concentrations, this apparently occurs before induc-
ing more random cleavage at other sites, resulting in
stronger cleavage at position 15+ At higher concen-
trations of terbium ($0+06 mM), the metal-binding
pocket is not evident in the unfolded tRNA, and po-
sition 15 is cleaved to a similar extent as the sur-
rounding nucleotides (Fig+ 1)+

In Figure 2, the percent cleavage at 0+05 mM terbium
for the folded and unfolded tRNAs is plotted as a func-
tion of the nucleotide positions for which quantitative
data could be obtained+ The most prominent cleavage
events in the folded tRNA were proximal to nt 15 and

FIGURE 1. Phosphorimage showing the results of terbium-induced cleavage of unfolded (0 mM Mg21) and folded (10 mM
Mg21) tRNALys,3 at varying terbium concentrations+ 59-[32P]-end-labeled tRNALys,3 was incubated with the concentration of
terbium indicated above each lane+ Lanes labeled T1 correspond to tRNA digested with RNase T1, and lanes labeled OH2

correspond to a partial alkaline hydrolysis ladder+ The tRNA nucleotide position is indicated on the left side of the gel and
the corresponding tRNA domain is indicated on the right+
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36+ This graph shows that the helical regions are largely
protected from cleavage in the folded tRNA+ In partic-
ular, strong protection ($70% relative to unfolded tRNA)
from cleavage is observed at nucleotide positions 6–
14, 21–31, 28–43, 48–59, 61–64, and 66–71+

The cleavage results obtained at 0+05 mM terbium, in
the presence and absence of 10 mM magnesium, are
also indicated on the L-shaped tRNA shown in Fig-
ure 3A+ Cleavage was observed throughout the tRNA
sequence in the unfolded state (Fig+ 3A, left)+ Upon
folding the tRNA in the presence of magnesium, the
helical regions are protected from cleavage and the
primary sites of cleavage (black, blue, and green balls)
are in the anticodon loop and the tertiary core (Fig+ 3A,
right)+ These domains constitute well-known metal-
binding pockets in tRNA (Holbrook et al+, 1977; Quigley
et al+, 1978; Sundaralingam et al+, 1984; Ciesiolka et al+,
1989a, 1989b;Marciniec et al+, 1989;Michalowski et al+,
1996)+ The cleavage observed in the folded tRNA is
also mapped onto the secondary cloverleaf structure
of tRNALys,3 shown in Figure 3B+ This figure also shows
that cleavage by terbium does not appear to be se-
quence specific+

These cleavage experiments are consistent with the
presence of three to four high-affinity terbium-binding

pockets in tRNALys,3 (Figs+ 2 and 3)+ This number is in
good agreement with X-ray crystallography (Robertus
et al+, 1974; Stout et al+, 1978), europium and terbium
luminescence (Kayne & Cohn, 1974;Wolfson & Kearns,
1975; Draper, 1985), NMR (Jones & Kearns, 1974),
and theoretical studies (Misra & Draper, 2000) carried
out with other tRNAs+ The D-loop contains at least two
terbium-binding pockets+ One terbium is located near
position 15, where the strongest cleavage is observed
in the folded tRNA+ This terbium ion is also likely to be
responsible for the modest cleavage observed at po-
sitions 16 and 17 and weak cleavage at position 18+ A
second terbium-binding site is located near the 39 end
of the D-loop where modest cleavage is observed at
positions 19 and 20, with weaker cleavage at position
47+ A third terbium-binding site is likely to be located
near positions 7 and 8, which are both weakly cleaved+
The anticodon-loop contains a fourth terbium-binding
site+ Cleavage extends from position 32 to 37, with the
strongest cleavage at position 36+ These four terbium-
binding sites mapped by terbium cleavage of tRNALys,3

correspond to the approximate location of magnesium-
binding sites as determined from the X-ray crystal struc-
ture of yeast tRNAPhe (Fig+ 3A, open circles) (Holbrook
et al+, 1977; Hingerty et al+, 1978; Quigley et al+, 1978)+

FIGURE 2. Bar graph showing relative percent cleavage at each nucleotide position of the unfolded (filled bars) and folded
(open bars) tRNA incubated with 0+05 mM terbium+ The graph shows the average percent cleavage at each position based
on quantitation of 5–10 separate experiments+ The percent cleavage was calculated by subtracting the background volume
(at 0 mM terbium and the appropriate concentration of magnesium), dividing by the total activity in each lane (sum of the
background subtracted volumes for cleavage at positions 6–76), and multiplying by 100%+
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Magnesium competition assays have also concluded
that the lanthanide metal europium binds to the same
sites on tRNA as magnesium (Wolfson & Kearns, 1975;
Draper, 1985; Gast et al+, 1996)+ This assay does not
measure the binding affinities of each bound metal+
Since cleavage is dependent on terbium’s accessibility
to the 29-hydroxyl, the strength of the cleavage de-
pends on the distance between the terbium and the

29-hydroxyl of the nucleotides comprising the binding
pocket+

Sensitivity of terbium cleavage pattern of
tRNALys,3 to magnesium ion concentration

The previous experiments established that terbium is in-
deed a good probe of the folded state of tRNA+We next

FIGURE 3. A: Relative cleavage observed at 0+05 mM terbium de-
picted on a folded L-shaped tRNA structure for both the unfolded
(0 mM Mg21, left) and folded (10 mM Mg21, right) tRNAs+ A ball was
placed at every backbone position where significant cleavage was
observed+ The colors correspond to the following extents of cleav-
age: yellow (smallest symbols): 0+108–0+180%; red: 0+181–0+305%;
green: 0+306–0+509%; blue: 0+510–0+849%; black (largest symbols):
$0+850% cleavage+ The open circles correspond to the position of
four magnesium-binding sites observed in the crystal structure of
yeast tRNAPhe (Holbrook et al+, 1977)+B:Sequence of human tRNALys,3

and the cleavage results for the folded tRNA mapped on the clover-
leaf structure+ The colored arrows correspond to the same extents of
cleavage as described for the balls in A+
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wished to ask the question: Is terbium cleavage sensi-
tive enough to detect conformational changes as the
tRNA folds to a stable tertiary structure? To address this
question, terbium cleavage was monitored as a func-
tion of magnesium concentration+ Based on the results
obtained in the presence and absence of 10 mM mag-
nesium (Fig+ 1), cleavage was performed over a range
of magnesium concentrations using 0+03 mM, 0+05 mM,
and 0+07 mM terbium+At each terbium concentration, the
magnesium concentration was increased in 1 mM in-
crements from 0 to 10 mM+As expected, the lowest con-
centration of terbium employed (0+03 mM) only cleaved
sites proximal to the terbium-binding pockets (Fig+ 4,
lanes 3–11)+ At the higher terbium concentrations, in
the absence of magnesium, the tRNA was cleaved at
virtually every position (Fig+ 4, lanes 12 and 21)+ Of the
two higher terbium concentrations used in this experi-
ment, 0+05 mM appeared more sensitive to magnesium-
induced folding transitions in tRNALys,3 than 0+07 mM+
Even upon addition of only 1 mM magnesium, signifi-
cant changes in the 0+05 mM terbium cleavage pattern
were observed+ For example, nt 12–14, 21–30, and
51–53 are protected from cleavage, whereas cleavage
is enhanced at nt 15+ These protected regions are pri-
marily located in the D and anticodon stems+ As the
magnesium concentration is increased further, cleav-
age in the helical regions continues to decrease and
additional regions of protection are observed+ We also
observe a direct correlation between the magnesium
concentration and the increased intensity of cleavage
at nt 15+ We presume that as the magnesium concen-
tration increases, the metal-binding pocket within the
D-loop becomes more well defined+ As this occurs, ter-
bium’s affinity for this site also increases and the lan-
thanide ion can more readily enter the metal-binding
site, displace magnesium, and induce cleavage at nt
15+ A much less dramatic increase in cleavage was
also observed at neighboring nt 16+

The accessibility of tRNA nucleotides at positions 58,
59, and 60 to cleaving agents has previously been used
as an indicator of tRNA folding because these nucleo-
tides participate in tertiary interactions within the highly
structured tRNA core (Latham & Cech, 1989; Ramesh
et al+, 1997; Shelton et al+, 1999)+ For example, in un-
folded yeast tRNAPhe, positions 58, 59, and 60 are highly
susceptible to cleavage by hydroxyl radicals (Latham &
Cech, 1989; Ramesh et al+, 1997)+ Upon tertiary struc-
ture formation, these positions are buried in the tRNA
tertiary structure, thereby being protected from hy-
droxyl radical attack+ Thus, cleavage at these positions
can be used to monitor the extent of tRNA folding+ The
plot shown in Figure 5 indicates that the extent of ter-
bium cleavage at positions 58, 59, and 60 does indeed
vary as a function of the magnesium ion concentration+
A magnesium-dependent transition is observed with a
midpoint (KMg) value of 2+58 6 0+09 mM (Fig+ 5)+ These
data also indicate that folding is essentially complete at

a concentration of 6 mM magnesium, in general agree-
ment with values reported for unmodified yeast tRNAPhe

(Friederich & Hagerman, 1997; Maglott et al+, 1998)+

CONCLUDING REMARKS

In addition to its well-established capability to map metal-
binding sites in RNA, we have shown that terbium is a
sensitive probe of tRNA structure and folding+ Using
1 mM tRNA, we find that the optimal concentration of
terbium to detect tRNA structural changes is 50–60 mM+
Under these conditions, we detected a magnesium-
dependent transition with a midpoint of 2+6 mM mag-
nesium+ Although human tRNALys,3 is the only RNA
examined by this technique to date, we imagine that
this will be a useful probe for monitoring folding in other
RNAs (Walter et al+, 2000)+ The terbium ion concentra-
tion may have to be optimized for each system to max-
imize its sensitivity to folding+ The small size of this
chemical probe and its relative ease of use should not
only make it a useful reagent for probing a wide variety
of RNA structures, but also for detecting protein in-
duced conformational changes in RNA tertiary struc-
ture and folding+

MATERIALS AND METHODS

RNA preparation

Unmodified human tRNALys,3 was prepared by in vitro tran-
scription (Milligan et al+, 1987) of the FokI digested pK-F119,
a plasmid containing the gene for human tRNALys,3 located
downstream from a T7 RNA polymerase promoter (Chan &
Musier-Forsyth, 1997)+ RNA with a free 59-OH was tran-
scribed by addition of 4 mM guanosine and 1 mM of each of
the NTPs to the transcription reaction+ The transcripts were
gel purified on an 8% denaturing polyacrylamide gel+ The
59-OH-containing tRNALys,3 was radiolabeled with g-[32P]-
ATP and polynucleotide kinase+ After gel purification, the ra-
diolabeled tRNA was dissolved in diethyl pyrocarbonate-
treated water and stored at 220 8C+

Prior to use, the tRNA was refolded in 50 mM HEPES,
pH 7+5, and 20 mM NaCl by heating at 80 8C for 2 min then
cooling to 60 8C for 2 min, followed by addition of MgCl2 to
10 mM and placing on ice+ The unfolded tRNA was prepared
in 50 mM HEPES, pH 7+5, and 20 mM NaCl by heating at
80 8C for 2 min then placing on ice+

TbCl3 cleavage assays

The highest purity terbium (99+999%), purchased from Sigma,
was freshly dissolved in diethyl pyrocarbonate-treated water
daily+ The refolded or unfolded tRNA (1+25 mM final concen-
tration) was added to a solution containing 62+5 mM HEPES,
pH 7+5, 25 mM NaCl, and 0–12+5 mM MgCl2+ To initiate the
cleavage reaction, an 8-mL aliquot of this mixture was com-
bined with 2 mL of an appropriate dilution of TbCl3 to achieve
a final Tb31 concentration of 0 to 5 mM+ Thus, the final re-
action mixture contained 50 mM HEPES, pH 7+5, 20 mM
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NaCl, 0–10 mM MgCl2, 1 mM [32P]-tRNA (5 3 104 cpm), and
0–5 mM TbCl3+ The reaction was incubated at 37 8C for 15 min
and quenched by adding EDTA, pH 8+0, to a final concentra-
tion of 45 mM and placing on ice+ The tRNA was ethanol
precipitated at 220 8C and redissolved in 10 mM Tris-HCl,
pH 7+5, 1 mM EDTA+

An alkaline hydrolysis cleavage ladder was generated by
incubating the tRNA in 50 mM sodium carbonate and 3 mM
EDTA, pH 8+0, at 90 8C for 5 min+ The samples were placed
on ice to quench the cleavage reaction+ The RNase T1 digest
was performed by incubating the tRNA, 13 mM sodium ci-
trate, and 4+6 mM EDTA, pH 8+0, at 80 8C for 2 min then

FIGURE 4. Terbium-induced cleavage of tRNALys,3 as a function of magnesium concentration+ The 59-[32P]-end-labeled
tRNA was incubated at the magnesium concentration indicated at the top of the gel and cleaved with 0+03 mM (lanes 3–11),
0+05 mM (lanes 12–20), or 0+07 mM (lanes 21–29) terbium+ Lanes labeled T1 and OH2 are as described in the legend to
Figure 1+
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cooling to 50 8C+ Cleavage was initiated upon addition of 100
mU RNase T1 from USB+ The samples were incubated at
50 8C for 15 min then placed on ice+ Prior to analysis by gel
electrophoresis, an equal volume of 100% formamide was
added to all samples, which were then denatured at 80 8C for
3 min and placed on ice+ The cleavage products were sep-
arated on a 15% denaturing polyacrylamide gel run at a con-
stant power of 80 W+ To visualize positions 6–40, the gels
were run for 2+5 h, whereas longer RNA fragments (41–73)
were resolved for 5+25 h+ The gels were visualized using a
Bio-Rad Molecular Imager FX and quantified with Bio-Rad
Quantity One Software+
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